
1 De�nition

This session is concerned with the idea of a delegation scheme. The idea is that
a weak veri�er wants to outsource the computation of y = f(x) to a powerful
entity (the prover), for some given f and x. A delegation scheme is called secure
if, for any PPT prover, it is unlikely that the prover can convince the veri�er
that y′ = f(x) for some y 6= y′. More formally, a delegation scheme involves the
following steps:

• Preprocessing(f, 1k)→ (ek, vk): the veri�er performs this step once for
a given function f to obtain a public evaluation key ek and a (possibly
private) veri�cation key vk. The security parameter is k.

• Query(x, vk)→ (X, s): the veri�er forms a query messageX that encodes
the input value x in some form. This is then sent to the prover. s is some
extra state information that the veri�er keeps for later.

• Eval(X, ek) → π: for a given query X, the prover performs this step to
compute some cryptographic proof π that will (1) enable the veri�er to
obtain y = f(x) and (2) convince the veri�er that y is indeed the correctly
computed output of f .

• Verify(s, π) → (b, y): the veri�er can now use a special Verify pro-
cedure to obtain the value y. Here, b ∈ {0, 1} indicates whether the
veri�cation was successful: (1, y) indicates success, while (0,⊥) indicates
failure. Ideally, we want Verify to take much less time than just com-
puting y = f(x) directly.

So we say that a delegation scheme as just de�ned is secure i�, for all PPT
adversarial prover ADV, it holds that:

∀f, x.Pr


(ek, vk)← Preprocessing(f);
(X, s)← Query(x, vk);
(b, y′)← Verify(s,ADV(X, ek));
f(x) 6= y′ 6= ⊥ ∧ b = 1

 = negl(k)

2 Outline

In this session we describe how to obtain a delegation scheme from FHE, at
least with the added assumption of the FHE scheme having a deterministic
evaluation function. After that, we slowly remove these restrictions, one by
one. Finally, we talk about a variation of this technique, one which reduces the
veri�er's preprocessing time by introducing additional rounds of interactivity.

3 One-time Scheme with 50% Failure Rate

The one-time scheme is not really meant to be useful in any realistic situation,
but is meant to be a simple starting point for more sensible schemes that we

1



describe later. Here, the goal is that we want to delegate the computation of
f(x), but in a rather restricted setting. In particular,

• We will tolerate a scheme that is secure for only a single invocation of
Eval.

• Even for that single invocation, we are okay if the adversary has a 50%
chance of winning the security game.

3.1 Approach 1

One idea is to simply ask the prover (who is also our adversary) to homomor-
phically evaluate on both X0 ← EncFHE(x) as well as X1 ← EncFHE(0). These
are sent to the prover in random order, after which we can decrypt and verify if
one of their decryption evaluates to y0 = f(0). This special check value y0 can
be computed during the Preprocessing phase. The hope here is that since
the prover cannot distinguish between X0 and X1, it has to evaluate them both
homomorphically, or else it will not produce y0 for the veri�er to check. The
prover can of course risk getting caught by evaluating only one of these and
returning random ciphertext for the other. In that case, there is a 50% chance
that the prover gets caught, depending on what the prover chose.

Unfortunately, this is not quite secure: it is very easy for the prover to win
every time by returning Eval(X1, ek) as a result of both inputs. However, it
still has most of the ingredients we need for security. More importantly, it has
the property that veri�cation time does not depend on the complexity of f �
it only depends on the size of x and y.

3.2 Approach 2

We �x the security hole above by assuming our FHE scheme provides determin-
istic evaluation. Our delegation scheme now looks like this:

• Preprocessing(f, 1k): Produces (ek, vk) = (pk, (X1, Ȳ1, sk)) as follows:
(pk, sk)← KeyGenFHE(1k). X1 ← EncFHE(0, pk), Ȳ1 = EvalFHE(X1, pk).

• Query(x, (X1, ·, sk)): Computes X0 ← EncFHE(x, sk), produces X =
(Xc, X1−c) and s← {0, 1}

• Eval((Xs, X1−s), pk): Computes π = (Ys, Y1−s), where Yi = EvalFHE(Xi, pk).

• Verify(s, (Ys, Y1−s), (·, Ȳ1, sk)): Checks Y1
?
= Ȳ1. On success, produces

(1,DecFHE(Y0, sk)). On failure, it produces (0,⊥).

The proof for security is fairly straightforward, albeit with a loose bound of
just 50% veri�cation rate. The idea is that protocol execution, from the point
of view of the adversary executing Eval, is indistinguishable from an execution
of a di�erent run of the protocol where x = 0. But if x = 0, we can see that the
adversary has a 50% chance of winning, by guessing s. Therefore, in the real
execution where x 6= 0, the adversary still wins with the same probability.

2



4 Improving Ver�cation

The scheme as described still has two major issues: it is a single-use scheme,
and the veri�cation scheme can fail with a very high probability of 50%. In this
section we solve the second issue. As often with probabilistic algorithms, simply
repeating it multiple times is enough to reduce error bound. Concretely, we now
create a new scheme that runs the above scheme in parallel k times with fresh
randomness. Finally, at veri�cation time, we do the following:

Verify
{

(s(i), Y
(i)
s , Y

(i)
1−s)

∣∣∣ i ∈ [1 . . . k]
}
: Checks ∀i, Y (i)

1
?
= Ȳ

(i)
1 and DecFHE(Y

(i)
0 , sk(i))

?
=

DecFHE(Y
(0)
0 , sk(0)).

Each check can fail with a probability of 1/2, so the full scheme now fails
with probability 2−k (exercise question: do we need to check if the decrypted
ciphertexts match? How would the error probability change if we didn't? Can
you prove your answer?).

5 Multiple Use

Finally, we were not able to use this scheme multiple times so far since we must
not let the adversary see the same X1 values a second time. But we don't want
to recompute fresh X1 each time either, since that will require us to compute f
each time � the thing we were trying to avoid in the �rst place.

The solution is conceptually straightforward: we just wrap everything in yet
another layer of FHE scheme (with indepedently selected keys). This will allow
us to send the same X1 values each time, now encrypted, without allowing the
adversary to see which values are being repeated.

6 Lower Preprocessing

Another interesting variant of this scheme is one that aims to reduce the initial
preprocessing overhead, by allowing more interaction. Here, we let the server do
all the preprocessing work under yet another layer of FHE, and then use PCP
to check that it was indeed done correctly. This allows the veri�er to avoid
computing the function f k-times at initialization, which might be expensive.

3


