CS 4501-6501 Topics in Cryptography

2015/02/09

Lecture 8

Lecturer: Mohammad Mahmoody

Scribe: Dasith Gunawardhana

1 Overview

- Previous lecture: Private-key encryption from LWE
- Today: Public-key encryption from LWE using leftover hash lemma

2 Private-Key Encryption (Regev's) Review

- Secret key: Vector s with components in \mathbb{Z}_q^n
- LWE tells us it is hard to distinguish $(a, \langle a, s \rangle + e)$ vs. (random)

-e is noise

- Encryption:
 - Encrypt $b \in \{0,1\}$ as $(a, \langle a, s \rangle + e + b \cdot (\frac{q+1}{2}))$
 - Can flip from 0 to 1 by adding or subtracting $\frac{q+1}{2}$
 - -a is a random element of \mathbb{Z}_q^n

3 Public-Key Encryption

3.1 General Idea

- Publish $\begin{bmatrix} c_0^1 & c_0^2 & \cdots & c_0^k \\ c_1^1 & c_1^2 & \cdots & c_1^k \end{bmatrix}$ as public key, where c_0^i and c_1^i are ciphertexts encrypting 0 and 1 respectively
- To encrypt, choose a random subset of the matrix

3.2 Applying the General Idea to Regev's

• Private key, s, is the same

• Public key:
$$A' = (A, b) = \begin{bmatrix} \vec{a}_1 & b_1 \\ \vec{a}_2 & b_2 \\ \vdots & \vdots \\ \vec{a}_m & b_m \end{bmatrix} = (A = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix}), b$$

- Matrix of encryptions of 0, where each row is a random sample of the secret keyspace

- Each \vec{a}_i is a vector of n elements
- $b = A \cdot s + \vec{e}$
 - $\ \vec{e}$ is a vector of noise

3.3 Encrypting 0

- Idea: Choose a random subset of the rows and add them
- Let R be a Boolean vector in $\{0,1\}^m$
- $\operatorname{Enc}(0) = R \times A'$
 - Has dimension n + 1, has the form (c, b)

3.4 Encrypting 1

• Encrypt 0 to get (c, b) then change b to $b + \frac{q+1}{2}$

3.5 **Proof of Security**

• Leftmost case is encrypting 0, rightmost is encrypting 1, we will show that an adversary cannot tell them apart

World 0	Imaginary 0	Imaginary 1	World 1
Public key: $[A, b] = A'$	Choose A' completely	A' is completely at ran-	Public key: $[A, b] = A'$
	at random	dom	
Cipher for 0: RA'	RA'	RA' with the last com-	Cipher for 1: $(RA' =$
		ponent shifted	cipher for 0) with the
			last component shifted

- Lemma 1: World 0 is indistinguishable from Imaginary 0. If some adversary ADV can tell apart the two worlds, then there exists some ADV' which can solve LWE.
- Lemma 2: No efficient adversary can distinguish World 1 from Imaginary 1. Subtract $\frac{q}{2}$ then reduce to Lemma 1
- Lemma 3: No ADV can tell apart Imaginary 0 from Imaginary 1 by more than 2^{-k} probability if $m >> 2k + (n+1)\log_2 q$
 - Statistical Distance: The statistical distance $\Delta(X, Y)$ between random variables X and Y is defined as:

$$\Delta(X,Y) = \frac{1}{2} \sum_{\alpha} |\Pr[X = \alpha] - \Pr[Y = \alpha]|$$

 α is any possible value of X or Y.

- Main Lemma about Statistical Distance: The statistical distance $\Delta(X, Y) = \varepsilon$ iff there exists an adversary who can distinguish samples from X from samples from Y by advantage ε .
- Lemma 3' (implies Lemma 3): The distribution of (A', RA') is statistically close to (A', U)($\Delta((A', RA'), (A', U)) \leq 2^{-k}$) if $m \geq 2k + n \log_2 q$. $q \leq \text{poly}(n)$ and $m \leq O(n)$
 - Leftover Hash Lemma: Let $Ex : R \times A' \to x$ be a function such that:
 - * $x \in |\mathbf{Z}_p^n| = 2^{n \log p}$
 - * Randomness of $R = m \ge 2k + n \log q$
 - * For any $R_1 \neq R_2$ the distribution of $Ex((R_1, A), (R_2, A)) \equiv (U, U')$. A is the same in both, and U and U' are independent.

Then the distribution of (A', x) is statistically close to (A, U) i.e. $\Delta((A', x), (A, U)) \leq 2^{-k} U$ is over the range of x.

The function Ex is a called a **strong extractor**.

The Lemma states that a public key and a ciphertext looks like a public key and a uniform random vector.

3.6 Summary

• We now have a public-key encryption scheme based on LWE that allows addition.

References

Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In STOC 2005 (2005) 8493.