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1 Overview

In this note, we discuss the multiplication and dimension reduction technique of a fully homomor-
phic encryption scheme from standard LWE assumption based on Regev’s public-key cryptosystem
[1, 2]. Then, we discuss how to reduce the noise amplified by addition and multiplication using the
“bootstrapping” technique introduced by Gentry [3, 4].

2 Multiplication and Dimension Reduction

Recall that we define the encryption of a bit µ ∈ {0, 1} by Enc(µ) = c =
(
a, b = 〈a, s〉+ e+ µ

(
q+1
2

))
∈

Zn+1
p where a, s ∈ Znp , b, q ∈ Zp , and e

$←− χ for some noise distribution χ. Let t = (−s, 1) ∈ Zn+1
p ,

then we can define the decryption scheme by1

Dec(c) =

⌈
〈c, t〉 /

(
q + 1

2

)⌋
=

⌈
(b− 〈a, s〉)/

(
q + 1

2

)⌋
=

⌈(
e+ µ

(
q + 1

2

))
/

(
q + 1

2

)⌋
= µ

Addition in this scheme can be computed in a straightforward manner by cadd
def
= c1+c2. Correctness

can be shown as such:

c1 + c2 =

(
a1 + a2, b = 〈a1 + a2, s〉+ (e1 + e2) + (µ1 + µ2)

(
q + 1

2

))
=

(
aadd, badd = 〈aadd, s〉+ eadd + µadd

(
q + 1

2

))
Multiplication, however, is more complicated and requires a special multiplication and dimension
reduction technique to reduced the blown-up size of ciphertext after multiplication.

2.1 Multiplication

Let x,y ∈ Zkp for some k ∈ N, we define the tensor product of x and y by x⊗y = (x1y1, x1y2, ..., xnyn)

where x⊗ y ∈ Zk2p is the tuple of all the products between every element of x and y

Using the notations above, we define the multiplication of ciphertext by cmult
def
= c1 ⊗ c2. The

1The division and rounding operation here is not in group Zq. We simply compute 〈a, s〉 in group Zq then divide
and round it in the real field R, while the output is actually in {0, 1}.
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ciphertext of cmult is not decryptable with the secret key t⊗ t since

2 〈c1 ⊗ c2, t⊗ t〉 = 2 〈c1, t〉 · 〈c2, t〉

= 2

(
e1 + µ1

(
q + 1

2

))(
e2 + µ2

(
q + 1

2

))
= (2e1 + µ1)

(
e2 + µ2

(
q + 1

2

))
= (2e1e2 + µ1e2 + µ2e1) + µ1µ2

(
q + 1

2

)
= emult + µmult

(
q + 1

2

)
However, this multiplication technique is not yet acceptable since the dimension of cmult as well

as t ⊗ t turns into Z(n+1)2

p . If we wish to do multiplication polynomially many times, then the
dimension of the resulting ciphertext blows up exponentially; this also mean that the party who
decrypts the ciphertext also needs to know the computing function, which is an undesirable property
for a fully homomorphic encryption scheme. To cope with these issues, we deploy the dimension
reduction technique.

2.2 Dimension Reduction

In order to reduce the dimension of resulting ciphertexts from multiplication, we let the key gen-
erator generates and publishes the evaluation key ek for the evaluator to use to reduce dimension
after each multiplication without revealing any information about the secret key.

Let ek = D ∈ Z(n+1)2×(n+1)
p be a (n+ 1)2× (n+ 1) matrix with the property that DT t = t⊗ t,

so that

〈c, t⊗ t〉 = (t⊗ t)T · c = (DT t)T · c = tT (D · c) = 〈D · c, t〉

Notice that D · c ∈ Zn+1
p and the decryption key is only t. The next challenge is to find such D

that is both correct and secure.
Let t̃ = t ⊗ t and t̃(i,j) = t[i]t[j] where i, j ∈ [n + 1], i.e. the (i, j)-th element of the tensor

product, which is the multiplication of the i-th and j-th element of t. The following D satisfies our
criteria:

D(i,j) =
(
a, 〈a, s〉+ ei,j + t̃(i,j)

)
for ei,j

$←− χ. (Note that D(i,j) is the (i, j)-th row of D, the same way we define for t̃, not the
element of D at row i column j.)

Correctness can be easily shown as follows:

DT
(i,j)t =

(
a, 〈a, s〉+ ei,j + t̃(i,j)

)
· (−s, 1)

= ei,j + t̃(i,j)

≈ t̃(i,j)

as long as the error is kept “small”. The security follows directly from the standard LWE assumption
that (

a, 〈a, s〉+ ei,j + t̃(i,j)
) C
≈ (a, u)
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where u
$←− Zp.

In conclusion, the evaluator can compute one multiplication by c′mult = D · (c1 ⊗ c2) ∈ Zn+1
p ;

this decrypts to µ1µ2

(
q+1
2

)
+ e1e2 + edr where edr =

∑n+1
i

∑n+1
j ci,jei,j .

We can also reduce the amount of noise aggravated by edr by “interpreting” c in the binary
form, i.e. write c in {0, 1}(n+1)2 log(q), so that edr =

∑
i,j∈[(n+1)2 log(q)] ei,j .

3 Bootstrapping

Addition and multiplication as defined above give us homomorphic encryption, but not yet fully
homomorphic encryption; the problem stems from accumulative noise as a result of arithmetic
operations. For example, addition leaves us with e1 + e2, and multiplication e1e2 + edr. This
is acceptable for a small-sized circuit, i.e. NC1 circuits, but for a polynomial-sized circuit the
noise may grow too large and exceed the noise bound (in our case, [−p+1

2 , p+1
2 ]), which renders the

ciphertext undecryptable. We need a new technique to reduce this noise to make the homomophic
encryption scheme fit for any class of circuits to attain fully homomorphic encryption.

Definition 1. (C-homomorphism). Let C = {Cκ}κ∈N be a class of functions (together with their
respective representations). A scheme HE is a C-homomorphic (or, homomorphic for class C) if for
any sequence of functions fκ ∈ Cκ and respective input µ1, ..., µ` ∈ {0, 1} (where ` = `(κ)), it holds
that

Pr [HE.Decsk(HE.Evalek(f, c1, ..., c`)) 6= f(µ1, ..., µ`)] = negl(κ),

where (pk, ek, sk)← HE.Keygen(1κ) and ci ← HE.Encpk(µi).

Definition 2. (compactness). A homomorphic scheme HE is compact if there exists a polynomial
s = s(κ) such that the output length of HE.Eval(· · · ) is at most s bits long (regardless of f or the
number of inputs.

Definition 3. (fully homomorphic encryption). A scheme HE is fully homomorphic if it is both
compact and homomorphic for the class of all arithmetic circuits over GF (2).

Gentry [3, 4] introduced a noise-reduction technique called bootstrapping. The main idea is we
build a shallow decryption circuit using the “somewhat” homomorphic encryption scheme that we
already have to decrypt a noisy ciphertext to produce a new, fresh ciphertext with lower noise.
This decryption circuit includes the decryption key, but does not reveal any information about it
since the decryption key is encrypted using somewhat homomorphic encryption and embedded as
a part of the circuit. Gentry’s bootstrapping theorem is formally stated as follows:

Definition 4. (leveled fully homomorphic encryption). A leveled fully homomorphic encryp-
tion scheme is a homomorphic scheme where the HE.Keygen gets an additional input 1L (now
(pk, ek, sk) ← HE.Keygen(1κ, 1L)) and the resulting scheme is homomorphic for all depth-L binary
arithmetic circuits. The bound s(κ) on the ciphertext length must remain independent of L.
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Definition 5. (bootstrappable encryption scheme). Let HE be C-homomorphic, and let fadd and
fmult be the augmented decryption functions of the scheme defined as

f c1,c2add = HE.Decs(c1) XOR HE.Decs(c2) and f c1,c2mult = HE.Decs(c1) AND HE.Decs(c2)

Then E is bootstrappable if
{f c1,c2add , f c1,c2mult ⊆ C}.

Namely, the scheme is can homomorphically evaluate fadd and fmult.

Theorem 6. ([3, 4]). Let HE be a bootstrappable scheme, then there exists a leveled fully homo-
morphic encryption scheme as per Definition 4.

Definition 7. (weak circular security). A public key encryption scheme (Gen,Enc,Dec) is weakly
circular secure if it is IND-CPA secure even for an adversary with auxiliary information containing
encryptions of all secret key bits: {Encpk(sk[i])}i.

Theorem 8. ([3, 4]). Let HE be a bootstrappable scheme that is also weakly circular secure. Then
there is a fully homomorphic encryption scheme as per Denition 3.
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