
1

Architecture Models of Distributed Systems
• An architectural model of a distributed system is

concerned with the definition and placement of its
components and relationship between them. Its goals:
– Meet present and likely future demands.
– Make the system reliable, manageable, adaptable, and cost-

effective.
• An architectural Model should:

– Simplify and abstract the functions of individual components
• Example of an initial simplification is achieved by classifying

processes as server process / client process / peer process.
– Define the placement of the components across a network of

computers and patterns for the distribution of data and workloads
– The interrelationship between the components

• i.e. functional roles and the patterns of communication between
them.

• Examples of architecture models:
– Client-Sever,
– Peer-to-peer,
– Service Oriented Architecture.

For a specific service; processes are divided into
two groups: servers and clients

• Client:
– A process that requests service. Clients usually

invoked by end users when they require service. A
Client usually blocks until server responds.

• Server:
– A process that provides service and usually with

special privileges. A Server usually waits for incoming
requests.

– A Server can have many clients making concurrent
requests.

Client/Server Basic Model (1)

Client/Server Basic Model (2)

• Client process interact with individual server processes in order to
access data or resource. The server in turn may use services of
other servers.

• Examples:
– A Web browser is a client to a Web Server which is often a client of file

server.

Server

Client

Client

invocation

result

Serverinvocation

result

Process:
Key:

Computer:

An Example Client and Server
(1)

• The header.h file used by the client and
server.

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice‐Hall, Inc. 2002

An Example Client and Server
(2)

• A sample server.

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice‐Hall, Inc. 2002

An Example Client and Server
(3)

• A client using the server to copy a file.

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice‐Hall, Inc. 2002

2

Advantages of the Client-Server
Architecture

• Efficient division of labor.
• Horizontal and vertical scaling of resources.
• Better price/performance on client machines.
• Ability to use familiar tools on client machines.
• Client access to remote data (via standards) .
• Full DBMS functionality provided to client

workstations.
• Overall better system price/performance.

Problems with the Multiple Client /
Single Server Architecture

• Server forms a bottleneck.
• Server forms a single point of failure.
• System scaling is difficult.

Variants of Client/Sever Model

• C/S can be modified by:
– The partitioning /replication of

data at cooperative servers

– The caching of data by proxy servers or clients

Variants of Client Sever Model:
Mobile Code and Web Applets

• Applets downloaded to clients give good interactive response.
• Mobile codes such as applets are potential security threat,

– The browser gives applets limited access to local resources (e.g.
NO access to local/user file system).

a) client request results in the downloading of applet code

Web
server

Client
Web
serverApplet

Applet code
Client

b) client interacts with the applet

Variants of Client Sever Model:
Mobile Agents

• Mobile agent: A running program (code and data)
that travels from one computer to another in a
network carrying out an autonomous task, usually
on behalf of some other process.
– Advantages: flexibility, savings in communications cost

• Potential security threat to the resources in
computers they visit. The environment receiving
agent should decide which of the local resource(s)
to allow. (e.g., crawlers and web servers).

• Agents themselves can be vulnerable – they may
not be able to complete task if they are refused
access.

Application S/W Logical Components

• Many applications can be considered to be made
up of three software components or logical tiers:
– user interface, processing (logic) layer, and data layer

Copywrite: Sanjeev Setia; Distributed Software Systems

3

Architecture of Application S/W
• Client/server architectures

– single-physical tiered
– two-physical tiered
– multi-tiered

e.g. Distributed DB Network File system WWW Telnet X-windows
Gartener Group Configurations

3-Tier C/S Architecture

Advantages of Multi-Tier
Architecture

• Frees clients from dependencies on the exact
implementation of the database.

• It allows “business logic” to be concentrated in
one place.

• Software updates are restricted to middle layer
• Performance improvements possible by

batching requests from many clients to the
database.

• Database and business logic tiers could be
implemented by multiple servers for scalability

• An example of horizontal distribution of a
Web service.

Peer-to-Peer (P2P) Architecture
Definition:
• A P2P computer network refers to any network that does not have fixed

clients and servers, but a number of peer nodes that function as both
clients and servers to other nodes on the network. (Wikipedia.org)

• P2P computing is an alternative to the centralized and client-server
models of computing,
– In its purest form, the P2P model has no concept of server; rather all

participants are peers.

• Because accessing these decentralized resources means operating in
an un-trusted environment of unstable connectivity and unpredictable
IP addresses, P2P nodes must operate outside the DNS system and
have significant or total autonomy from central servers.

Structured Peer-to-Peer

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice‐Hall, Inc. 2002

• Chord System: nodes are
logically organized in a ring.

• Mapping between nodes
and the data they own is
required.

• Function lookup(k) returns
the network address of the
node owning k. Lookups
can be done in O(log(N)),
where N is the number of
nodes.

4

Unstructured Peer-to-Peer
• Rely on randomized algorithms for

constructing overlay networks that resembles a
random graph.

• Main idea:
– Each node maintains a list of neighbors, but that this

list is constructed in a more or less random way.
– Data items are assumed to be randomly placed on

nodes.
– Goal is that each node constructs a partial view of the

graph.

Peer-peer applications
• File sharing

– Napster, Gnutella, KaZaa.
– Second generation projects

• Oceanstore, PAST, Freehaven, FreeNet.
• Distributed Computation

– SETI@home, Entropia, Parabon, United Devices,
Popular Power.

• Other Applications
– Content Distribution (BitTorrent).
– Instant Messaging (Jabber), Anonymous Email.
– Groupware (Groove).
– P2P Databases.

Hybrid Architecture
• Solution with client-server architectures are combined

with decentralized architectures.

• BitTorrent :
– A centralized server is needed to let the client know about

the nodes from which chuncks of the file can be
downloaded.

– Once the client joins the system as a node, a
decentralized architecture will be used. Spring 2014 CS432: Distributed Systems 21

