Middleware and Interprocess
Communication

Reading

e Coulouris (5t Edition): 4.1, 4.2, 4.6
e Tanenbaum (2" Edition): 4.3

Outline

e Middleware
* Introduction to Interprocess Communication
e MPI

Middleware

e A software layer that provides a programming
abstraction as well as masking the heterogeneity of
the underlying networks, hardware, operating
systems and programming languages.

Properties of Middleware

e |t mostly, refers to the distributed system layer that
enables communication between distributed
systems.

 Mask the heterogeneity of the operating system,
hardware, and network layers.

* Provides a uniform computational model for use by
the programmers of servers and distributed
applications.

Distributed applications,
services,..

Hides lower layers and
provides a
communication platform

Communications and
other hardware
infrastructure

Middleware Layer

Machine A Machine B Machine C

Distributed applications

Middleware service

Local OS Local OS Local OS

Metwork

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002

Middleware Examples

Common Object Request Broker (CORBA). It provides
remote object invocation, which allows an object in a
program running on one computer to invoke a
method of an object in a program running on
another computer.

Tight coupling.

Java Remote Method Invocation (RMI). Both caller and
Remote Procedure Call (RPC). ;ae”reuen:iene: to
Message Oriented Middleware (MOM).

Web services.

Distributed transaction processing.

Categories of Middleware

Major categories:

Distributed objects (Chapters 5, 8)

Distributed components (Chapter §)

Publish-subscribe systems (Chapter 6)

Message queues (Chapter 6)

Web services (Chapter 9)

Peer-to-peer (Chapter 10)

Subcategory

Standard

Platform

Platform

Lightweight components
Lightweight components
Application servers
Application servers
Application servers

Web services

Grid services
Routing overlays
Routing overlays
Application-specific
Application-specific
Application-specific
Application-specific

Example systems
RM-0ODP

CORBA

Java RMI

Fractal

OpenCOM

SUN EJB

CORBA Component Model
JBoss

CORBA Event Service
Scribe

IMS

Websphere MQ
IMS

Apache Axis

The Globus Toolkit
Pastry

Tapestry

Squirrel
OceanStore

Ivy

Gnutella

Spring 2015

CS432: Distributed Systems

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn.5 © Pearson Education 2012

Outline

* Introduction to Interprocess Communication
e MPI

This
Lecture

Middleware Layers

Applications, services

Remote invocation, indirect communication

UDP and TCP

Middleware
layers

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn.5 © Pearson Education 2012

Spring 2015 CS432: Distributed Systems

10

Interprocess Communication

 Shared storage:

— Shared memory
— Shared files

* Message passing:
— Sockets
— Pipes
— MPI

e Others
— Overlay networks
— Multicasting

Message Passing

 Two operations: send and receive.
e To communicate:

— One process send a message (sequence of bytes) to a
destination.

— A process at the destination receives the message.
e Characteristics:

— Synchronous and asynchronous

— Destination of a message

— Reliability

— Ordering

Synchronous and Asynchronous
Communication

 Messages are received in a queue at the destination.

 Synchronous: the sending and receiving processes
synchronize at every message.
— Both send and receive are blocking.

— A sending process (thread) blocks until the message is
received.
— A receiving process (thread) blocks until a message arrive.

e Asynchronous:

— The sending operation is non-blocking. Sender proceeds
while the message is being transmitted.

— The receiving process (thread) can be either blocking or
non-blocking.

Message Destinations

Messages are sent to (Internet address, local port)
pairs.

A port has exactly one receiver but can have many
senders.

— Multicast ports are exception.

Fixed location: client uses a fixed Internet address to
refer to a service, then the service has to always run
on the same computer.

Location transparencey: Client programs refer to
services by name and use a name server to translate
their names into server locations at runtime.

Reliability

e Validity: messages are guaranteed to be delivered

despite a ‘reasonable’ number of packets being
dropped or lost.

* Integrity: messages must arrive uncorrupted and
without duplication.

Ordering

e Some applications require that messages be
delivered in sender order.

 These application will consider it as a failure if a
sender messages are received out of order.

Outline

e Middleware
e |ntroduction to Interprocess Communication
 MPI

Spring 2015 CS432: Distributed Systems

17

Message Passing Interface (MPI)

Used when performance is paramount, for instance
in high performance computing (HPC).

Objective: portability through presenting a
standardized interface independent of the operating
system or programming language-specific socket
interface.

MPI is flexible.

Interface is available as a message-passing library
available for a variety of operating systems and
programming languages, including C++ and Fortran.

MPI vs. Sockets
Sockets MPl_

Support only simple send Provide more variations of

and receive primitives send and receive
operations that handle
advanced features such as
buffering and
synchronization

Designed for TCP/IP Suitable for other
protocols that are typically
used for HPC clusters.
Example: infiniband.

Spring 2015 CS432: Distributed Systems 19

Point-to-Point Communication In
MPI

Process p Process ¢

receive

Message _ ? _

@

MPI library buffer

 An MPI library buffer in both the sender and the
receiver is used to hold data in transit.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn.5 © Pearson Education 2012

Blocking in MP|

* Blocking = ‘blocked until it is safe to return’
— application data has been copied into the MPI system and
hence is in transit or delivered
— application buffer can be reused (for example, for the next
send operation).

e Various interpretation of ‘safe to return’ are used:

— MPI_Ssend is the synchronous blocking send. Safety is
interpreted as delivered.

— MPI_Bsend interprets safety as allocating and copying data
to the library buffer.

— MPI_Bsend interprets safety as the receiver is ready to
accept the message and hence can be removed from
library buffer.

Send Operations in MPI

Send operations

Generic

Synchronous

Buffered

Ready

Blocking

MPI Send: the sender blocks until
it is safe to return — that is, until the
message is in transit or delivered
and the sender’s application buffer
can therefore be reused.

MPI Ssend.: the sender and receiver
synchronize and the call only
returns when the message has been
delivered at the receiving end.

MPI Bsend: the sender explicitly
allocates an MPI buffer library
(using a separate

MPI Buffer attach call) and the
call returns when the data is

successfully copied into this buffer.

MPI Rsend: the call returns when
the sender’s application buffer can
be reused (as with MPI Send), but
the programmer is also indicating to
the library that the receiver is ready
to receive the message, resulting in
potential optimization of the
underlying implementation.

Non-blocking

MPI Isend: the call returns
immediately and the programmer is
given a communication request
handle, which can then be used to
check the progress of the call via
MPI Wait or MPI Test.

MPI Issend: as with MPI Isend,
but with MPI Wait and MPI Test
indicating whether the message has
been delivered at the receive end.

MPI Ibsend: as with MPI Isend
but with MPI Wait and MPI Test
indicating whether the message has
been copied into the sender’s MPI
buffer and hence is in transit.

MPI Irsend: the effect is as with
MPI Isend, but as with
MPI_Rsend, the programmer is
indicating to the underlying
implementation that the receiver is
guaranteed to be ready to receive
(resulting in the same
optimizations),

Spring 2015

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn.5 © Pearson Education 2012

CS432: Distributed Systems

22

Thank You

