
1

Prof. Dr. Hussien Aly116

Middleware
• Definition: Distributed system services that have standard

programming interfaces (APIs) and protocols and “sit in the
middle” above OS and network software and below industry-
specific applications.

• Functional View of Middleware
– Information exchange services.
– Management and support services needed for locating

distributed resources and administering resources across
the network.

– Specialized services, e.g. transactional services and
replication services for distributed databases, groupware
services for collaborative applications, specialized services
for multimedia applications.

– Application-specific services..

Prof. Dr. Hussien Aly117

Middleware

Application Processes

Middleware

Local
services

Network
services

OS

H/W

Application Processes

Middleware

Local
services

Network
services

OS

H/W

Network Protocol

Exchange Protocol

Prof. Dr. Hussien Aly118

Middleware Technologies
• Some of the technologies that are used in building

middleware:
– TCP/IP Sockets
– RPC
– RMI/CORBA
– Web Services
– Message-oriented Middleware (MOM)

• There are many middleware packages that have
different architecture styles for different
environments.

Prof. Dr. Hussien Aly151

Process Interaction: RPC Model

• Sockets API ≡ send & receive calls ≡ I/O
• Remote Procedure Calls (RPC): A higher level

than sockets. RPC goals are:
– to provide a procedural interface for distributed

(i.e. remote) services
• Looks like a local procedure.

– to make distributed nature of service transparent
to the programmer

• No longer considered a good thing!

Prof. Dr. Hussien Aly152

Middleware layers

request-reply protocol
marshalling & external data representation

UDP & TCP

Services and Applications
RPC and RMI

Middleware
layers

Prof. Dr. Hussien Aly153

2

Prof. Dr. Hussien Aly154

• Stubs:
– client-side proxy for the actual procedure on the server.
– The client-side stub locates the server and marshals the parameters.
– The server-side stub receives this message, un-marshaled the

parameters, and performs the procedure on the server.

Sequence of RPC Operation

Prof. Dr. Hussien Aly155

Steps of a Remote Procedure Call
1. Client procedure calls client stub in normal way
2. Client stub builds message, calls local OS
3. Client's OS sends message to remote OS
4. Remote OS gives message to server stub
5. Server stub unpacks parameters, calls server
6. Server does work, returns result to the stub
7. Server stub packs it in message, calls local OS
8. Server's OS sends message to client's OS
9. Client's OS gives message to client stub
10. Stub unpacks result, returns to client

Prof. Dr. Hussien Aly156

RPCs Issues

• Parameter Passing
– call-by-value parameters
– call-by-reference parameters

• Marshalling
– atomic (simple) data structures
– object (complex) data structures

• Exception handling
– language dependent
– asynchronous events

Prof. Dr. Hussien Aly157

Parameter Passing in RPC (1)

Prof. Dr. Hussien Aly158

• a) Original message on the Pentium
• b) The message after receipt on the SPARC
• c) The message after being inverted.

(The small numbers in boxes indicate the address of each byte)

Parameter Passing in RPC (2)

integer

string

LITTLE ENDIAN BIG ENDIAN

Prof. Dr. Hussien Aly159

Example
Writing a Client and a Server in DCE RPC

3

Prof. Dr. Hussien Aly160

Remote Method Invocation: RMI

RMI = RPC + Object-orientation
• Java RMI
• Microsoft DCOM/COM+
• CORBA

– Middleware that is language-independent
• SOAP

– RMI on top of HTTP

Prof. Dr. Hussien Aly161

Object Model
• Object references

– Objects accessed via object references
– Object references can be assigned to variables, passed as

arguments and returned as results
• Interfaces

– Provides a signature of a set of methods (types of
arguments, return values and exceptions) without
specifying their implementations

• Actions (invocations)
• Exceptions
• Garbage Collection

Prof. Dr. Hussien Aly162

Distributed Objects (1)
• Remote object references

– An identifier that can be used throughout a distributed system to refer to a
particular remote object

• Remote interfaces
– CORBA provides an interface definition language (IDL) for specifying a remote

interface
– JAVA RMI: Java interface that extends the interface java.rmi.Remote.

• Actions: remote invocations: (Active and passive objects)
– Active object = instantiated in a running process
– Passive object = not currently active but can be made active

• Remote Exceptions: may arise for reasons such as partial failure or message
loss.

– In java RMI, each method of the interface declares java.rmi.RemoteException in
its throws clause in addition to any application-specific clauses.

• Distributed Garbage Collection: cooperation between local garbage collectors
needed

Prof. Dr. Hussien Aly163

Distributed Objects(2)

Prof. Dr. Hussien Aly164

Issues in Implementing RMI
• Parameter Passing

– Local & remote object references.
• Handling failures at client and/or server

– Client unable to locate server
– Request message lost
– Reply message lost
– Server crashes after receiving a request
– Client crashes after sending a request

• Supporting persistent objects, object adapters,
dynamic invocations.

• Location service.

Prof. Dr. Hussien Aly165

Message-Oriented Middleware (MOM)

• RPC and RMI (by default) support communication
between two processes that are executing at the
same time
– transient communication

• Typically, the client is blocked until the RPC/RMI
returns
– synchronous communication

• Not suitable for middleware that integrates
applications in widely dispersed and large-scale
distributed systems
– Message-oriented middleware

4

Prof. Dr. Hussien Aly166

General MOM Architecture

Prof. Dr. Hussien Aly167

Message-Queuing Model(1)

Prof. Dr. Hussien Aly168

Message-Queuing Model(2)

Basic interface to a queue in a message-queuing system.

Prof. Dr. Hussien Aly169

Message-queuing systems vs Email systems

• The architecture of message-queuing systems is
very similar to that for email services. However,
– email systems primarily provide support for end users.
– message-queuing systems enable persistent

communication between processes regardless of what the
process is doing.

• leads to different requirements, e.g., guaranteed
message delivery, message priorities, logging
facilities, load balancing, fault tolerance,
sequencing...

• Example of MQM is “Message Channel Agent”
(MCA) component of the IBM’s WebSphere.

