Middleware

 Definition: Distributed system services that have standard
programming interfaces (APIs) and protocols and “sit in the
middle” above OS and network software and below industry-
specific applications.

» Functional View of Middleware
— Information exchange services.

— Management and support services needed for locating
distributed resources and administering resources across
the network.

— Specialized services, e.g. transactional services and
replication services for distributed databases, groupware
services for collaborative applications, specialized services
for multimedia applications.

— Application-specific services..

116 Prof. Dr. Hussien Aly

Middleware

Application Processes Application Processes
Local Network Exchange Protocol Local Network
services services services services

0s 0s
HW H/W

Network Protocol

117 Prof. Dr. Hussien Aly

Middleware Technologies

» Some of the technologies that are used in building
middleware:

— TCP/IP Sockets
- RPC
— RMI/CORBA
— Web Services
— Message-oriented Middleware (MOM)
» There are many middleware packages that have

different architecture styles for different
environments.

118 Prof. Dr. Hussien Aly

Process Interaction: RPC Model

» Sockets API = send & receive calls = |/O

* Remote Procedure Calls (RPC): A higher level
than sockets. RPC goals are:
—to provide a procedural interface for distributed
(i.e. remote) services
* Looks like a local procedure.
— to make distributed nature of service transparent
to the programmer
* No longer considered a good thing!

151 Prof. Dr. Hussien Aly

Middleware layers

\ Services and Applications \
| RPC and RMI |

Middleware

layers
request-reply protocol
marshalling & external data representation

UDP & TCP

152 Prof. Dr. Hussien Aly

Model of Execution tor RPCs

= Procedure-call structure of a program

main i
+ mackine 2
machine [i proc A |
N

« Moeodel of execution with remote procedure call

main program procedure A procedure B
on machine | on machine 2 on machine 3
i i f
¥ { ¥ /
call remote ;' call remote g
proc A ! proc B !
T T
; A ot]
Hoxit| respood respand
— oo | to caller

153 Prof. Dr. Hussien Aly

Sequence of RPC Operation

@l (@) 6! | [6]
o} @ @l | [6)
| RPC library I ‘ RPC library I
T]
(6]

» Stubs:
— client-side proxy for the actual procedure on the server.
— The client-side stub locates the server and marshals the parameters.

— The server-side stub receives this message, un-marshaled the
parameters, and performs the procedure on the server.

154 Prof. Dr. Hussien Aly

Steps of a Remote Procedure Call

. Client procedure calls client stub in normal way
. Client stub builds message, calls local OS

. Client's OS sends message to remote OS

. Remote OS gives message to server stub

. Server stub unpacks parameters, calls server

. Server does work, returns result to the stub

. Server stub packs it in message, calls local OS
. Server's OS sends message to client's OS

. Client's OS gives message to client stub

0. Stub unpacks result, returns to client

= O 0O NO O~ WN-=-

155 Prof. Dr. Hussien Aly

RPCs Issues

» Parameter Passing

Parameter Passing in RPC (1)

Client machine Server maching
— call-by-value parameters _
— call-by-reference parameters Client process 1. Clientcall 1 Efm:b:‘:i J——
« Marshalling procedure of add local call to “adet”
Semver stub
. h { k=addli]) }— ~ { k=addij +
— atomic (simple) data structures ey | Chentste D _
i It val X i Nt vaily 5. Stub unpac|
— object (complex) data structures o] || % esege i megsoge
H H roc: "acd” rver
+ Exception handling Client 0 o | [severos | b e message
. Int: _val to server stub
— language dependent I —
lessage is sent
— asynchronous events across the neswork
156 Prof. Dr. Hussien Aly 157 Prof. Dr. Hussien Aly
Parameter Passing in RPC (2) N - Example
Writing a Client and a Server in DCE RPC
LITTLE ENDIAN BIG ENDIAN
13] 2] q] 1o fei [aif2) [3i | [oi [1i [2i]3]
integer |0 |0 |0 |5 5/ 0] 0] 0 0| 0] o] § defmiior e
7] i6] is| 4 |4 |5i |8 |Ti 41 |51 |61 |7 i
sting | L | L [l |J J] L| L L L] 1] 4 : P
r r S " - o r
Client code Client stub Header Server stub Server code
@ (&) il R g [inchie _—
[=] c ‘ [=] ' [=3 X
e ol o) T
+ a) Original message on the Pentium v Ly . v
. b) The message after receipt on the SPARC object file |_object file cbject file | object file
. . v -
» c) The message after being inverted. Unier T | Raime T
(The small numbers in boxes indicate the address of each byte) e .

158 Prof. Dr. Hussien Aly

159 Prof. Dr. Hussien Aly

Remote Method Invocation: RMI

RMI = RPC + Object-orientation
* Java RMI

* Microsoft DCOM/COM+

*+ CORBA

— Middleware that is language-independent

« SOAP
—RMlI on top of HTTP

160 Prof. Dr. Hussien Aly

Object Model

» Object references
— Objects accessed via object references

— Object references can be assigned to variables, passed as
arguments and returned as results

* Interfaces

— Provides a signature of a set of methods (types of
arguments, return values and exceptions) without
specifying their implementations

» Actions (invocations)
» Exceptions
» Garbage Collection

161 Prof. Dr. Hussien Aly

Distributed Objects (1)

Remote object references

— An identifier that can be used throughout a distributed system to refer to a
particular remote object

+ Remote interfaces
— CORBA provides an interface definition language (IDL) for specifying a remote
interface
— JAVA RMI: Java interface that extends the interface java.rmi.Remote.
» Actions: remote invocations: (Active and passive objects)
— Active object = instantiated in a running process
— Passive object = not currently active but can be made active

Distributed Objects(2)

Client machine Server machine

] obiect

Client Server s

Same ' : | State

Client interface L0 D Method
invokes | as object)
a method N =S

- Steleon | |k T interface

=] invokes Skelet
oy same method eleton
at object

: : e A
. I%segwte Exceptions: may arise for reasons such as partial failure or message Client OS ‘ Server OS
— In java RMI, each method of the interface declares java.rmi.RemoteException in IL _/ |
its throws clause in addition to any application-specific clauses. . >
. . . . Network \
Distributed Garbage Collection: cooperation between local garbage collectors Marshalled invocation
needed is passed across network
162 Prof. Dr. Hussien Aly 163 Prof. Dr. Hussien Aly

Issues in Implementing RMI

» Parameter Passing
— Local & remote object references.
» Handling failures at client and/or server
— Client unable to locate server
— Request message lost
— Reply message lost
— Server crashes after receiving a request
— Client crashes after sending a request
» Supporting persistent objects, object adapters,
dynamic invocations.
» Location service.

164 Prof. Dr. Hussien Aly

Message-Oriented Middleware (MOM)

* RPC and RMI (by default) support communication
between two processes that are executing at the
same time

— transient communication

» Typically, the client is blocked until the RPC/RMI
returns

— synchronous communication
» Not suitable for middleware that integrates

applications in widely dispersed and large-scale
distributed systems

— Message-oriented middleware

165 Prof. Dr. Hussien Aly

General MOM Architecture

Message-Queuing Model(1)

Sender A
Application __
Messaging interface Application
Sending host Communication server Communication server Receiving host C Receive
queue -
/ Buffer independent K —[1 171 - I|I |I Tk }
- f Routing lof communicating Routing . —
Application i program hgsts program Application 1] ||—— {
)? Y / I A T Send gqueue
— v To other (remote) v v — —
‘ ‘, — communication] u El
’_: | IE] | e N = = =%
os / os) ‘—A| ‘05 T \‘OS
an v NS T » L)
‘ e - \ — 111 o TTT -
Local buffer 0% MEIWOTK ¢ Internetwork S0 Local buffer % 1L H Receiver B
e . Incoming message - ™ [
Application
Router
166 Prof. Dr. Hussien Aly 167 Prof. Dr. Hussien Aly

Message-Queuing Model(2)

Primitive Meaning

Put Append a message to a specified queue

Get Block until the specified gueue is nonempty, and remove the first message
Poll Check a specified queue for messages, and remove the first. Never block.
Notify }qlsets:zl.a handler to be called when a message is put into the specified

Basic interface to a queue in a message-queuing system.

168 Prof. Dr. Hussien Aly

Message-queuing systems vs Email systems

» The architecture of message-queuing systems is
very similar to that for email services. However,

— email systems primarily provide support for end users.

— message-queuing systems enable persistent
communication between processes regardless of what the
process is doing.

« leads to different requirements, e.g., guaranteed
message delivery, message priorities, logging
facilities, load balancing, fault tolerance,
sequencing...

» Example of MQM is “Message Channel Agent”
(MCA) component of the IBM’s WebSphere.

169 Prof. Dr. Hussien Aly

