Distributed File Systems

CS432: Distributed Systems
Spring 2015

Reading

Chapter 12.1, 21 [Coulouris "11]
Chapter 11 [Tanenbaum ‘06]

Section 4.3, “Modern Operating Systems,
Fourth Ed.”, Andrew S. Tanenbaum

Section 11.4, “Operating Systems Concept,
Ninth Ed.”, Abraham Silberschatz, et al.

Objectives

e Learn about the following:

— Review file systems and the main requirements for
designing a distributed file system.

— Famous architecture models of distributed file systems.

e Study the design of three file systems NFS, AFS, and
GFS.

Outline

Introduction

— Non-Distributed File System (Review)

— File System Mounting

Distributed File System Requirements
File Service Architecture

Case Studies:

— Sun Network File System (NFS)
— Andrew File System (AFS)

— Google File System (GFS)

File Systems

* File systems, in centralized computer systems,
provide a convenient programming interface to disk

storage.
— blocks of disks = files, directories, ..
— storage allocation and layout.

e Components:
— Disk management: gathering disk blocks into files.

— Naming: help users find files by their name instead of
block identifiers.

— Security: layers of permissions to access and modify files.

— Durability: data written to files should not be tampered
with in case of failures.

File Components

* A file contains:

— data: sequence of data items that are accessible through read and
write operations.

— attributes: a single record containing information about the file.

File length

Managed by the file Creation timestamp
system.
Users do not typically —
update them.

Read timestamp

Write timestamp

Attribute timestamp

Reference count

Owner

File type

Access control list

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn.5
© Pearson Education 2012

Reading and Writing

e Reading from the file system (e.g. getc()):
— Fetch a block containing the required character.
— Return the requested character from the block.
e Writing to the file system (e.g. putc()):
— Modify existing data: fetch block, modify, and write.

— Append data: buffer data until a block size is completed,
then write.

Non-distributed File System
Modules

Each module depends only on the layers below it.

Note: the implementation of a distributed file service also
requires additional components to deal with: client-server
communication, distributed naming, and location of files.

Directory module: relates file names to file IDs

File module: relates file IDs to particular files

Access control module: checks permission for operation requested
File access module: reads or writes file data or attributes

Block module: accesses and allocates disk blocks

Device module: disk 1/0 and buffering

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn.5
© Pearson Education 2012

Unix File System Operations

filedes = open(name, mode)
filedes = creat(name, mode)

status = close(filedes)
count = read(filedes, buffer, n)
count = write(filedes, buffer, n)

pos = Iseek(filedes, offset,
whence)

status = unlink(name)

status = link(namel, name2)
status = stat(name, buffer)

Opens an existing file with the given name.

Creates a new file with the given name.

Both operations deliver a file descriptor referencing the open
file. The mode is read, write or both.

Closes the open file filedes.

Transfers n bytes from the file referenced by filedes to buffer.
Transfers n bytes to the file referenced by filedes from buffer.
Both operations deliver the number of bytes actually
transferred and advance the read-write pointer.

Moves the read-write pointer to offset (relative or absolute,
depending on whence).

Removes the file name from the directory structure. If the file
has no other names, it is deleted.

Adds a new name (name2) for a file (name1).
Gets the file attributes for file name into buffer.

File System Layout

* File systems are stored on disk.

* Disks are divided into one or more partitions,
independent file system on each partition.

e Master Boot Record (MBR)
— Sector 0 of the disk.

— Used to boot the computer.
— The end of the MBR contains the partition table.

System Booting

The partition table gives the starting and ending
addresses of each partition.

One of the partitions in the table is marked as active.

When the computer is booted, the BIOS reads it and
executes the MBR.

The MBR program locates the active partition, read
in its first block (boot block) and executes it.

The program in the boot block loads the operating
system contained in that partition.

Note: each partition starts with a boot block, even if
it does not contain a bootable operating system.

Example: File System Layout

- Entire disk o

Partition table Disk partition \

MBR

Boot bloc Super block |@ree space mgmt |-nodes Root dir Files and directories

e Super block contains all the key parameters about the file system

e Read into memory when the computer is booted or the file
system is first touched.

e Typical information: magic number to identify the file system
type, the number of blocks in the file system, and other key

Sprin CS432: Distributed Systems 12

administrative information.

Example: File System Layout

i Entire disk o
Partition table Disk partition \
MBR
Boot block | Super bloc |-nodes Root dir Files and directories

e Information about the free blocks in the file system.
e Example: bitmap, file pointers.

Spring 2015

CS432: Distributed Systems

13

Example: File System Layout

- Entire disk o

Partition table Disk partition \

MBR

Boot block | Super block | Free space ngoot dir Files and directories

e |-node: a data structure used to represent information about a
file system object (file, directory).

Spring 2015 CS432: Distributed Systems 14

Example: File System Layout

i Entire disk o
Partition table Disk partition \
MBR
Boot block | Super block | Free space mgmt |-nodes iles and directories

 The top of the file-system tree.

Spring 2015

CS432: Distributed Systems

15

Example: File System Layout

i Entire disk o
Partition table Disk partition \
MBR
Boot block | Super block | Free space mgmt |-nodes Root dir Files and directories

e Directories and files contained in this partition.

Spring 2015

CS432: Distributed Systems

16

Implementing Files

l-nodes

e Associate with each file a data
structure called an i-node (index-
node), which lists the attributes
and disk addresses of the file’s

blocks.

e The i-node need to be in memory
only when the corresponding file
IS open.

File Attributes

Address of disk block 0

Address of disk block 1

Address of disk block 2

Address of disk block 3

Address of disk block 4

Address of disk block 5

Address of disk block &

Address of disk block 7

Address of block of pointers

Disk block

containing

additional
disk addresses

Implementing Directories

 The main function of the directory system is to map
the ASCII name of the file onto the information
needed to locate the data.

 The directory entry provides the information needed
to find the disk blocks.

— Number of the I-node.

e Storing files attributes:
— Directly in the directory entry.

— Store the attributes in the i-node. The directory entry can
be a file name and i-node number

Spring 2015

Implementing Directories:
File Names

Entry
for one
file

File 1 entry length

File 1 attributes

L. Pointer to file 1's name Entry
for one
File 1 attributes file

Pointer to file 2's name =~

File 2 attributes

|, Pointer to file 3's name

File 3 attributes

P r o j
e c t -
b u d g
e t X
File 2 entry length
File 2 attributes
p e r
o n n e
=
File 3 entry length
File 3 attributes
flo]o| X

(a)

In-line

CS432: Distributed Systems

p r o i
e c t -
b u d g
° L X B > Heap
e r s o

n e I

f o) o]
X

(b)
In a heap

19

File System Mounting

Just as a file must be opened before it is used, a file
system must be mounted before it can be available
to processes on the system.

Mount point: the location within the file structure
where the file system is to be attached.

— Usually and empty directory.

Mounting procedure: OS is given the name of the

device and the mount point, once mounted, it will be
able to traverse its directory structure

Example, mounting home directories in unix.

Mount Point Example

users

sue Jane

sue jane

(a) (b)

Existing file system Unmounted volume After mounting

Spring 2015 CS432: Distributed Systems 21

Outline

e Distributed File System Requirements.
— Transparency.
— Concurrent File Updates.
— File Replication.
— Hardware and Operating System Heterogeneity.
— Fault Tolerance.
— Consistency.
— Security.
— Efficiency.

e File Service Architecture.
e (Case Studies.

Distributed File Systems

Distributed file systems allow multiple processes to
share data over long periods of time in a secure and
reliable way.

A well designed file service provides access to files
stored at a server with performance and reliability
similar to, and in some cases better than, files stored
on local disks.

A file service enables programs to store and access
remote files exactly as they do local ones, allowing
users to access their files from any computer in an
Intranet.

A client-server architecture is typically used.

File System vs. Distributed File

System
File System Distributed File
System
Sharing x v
Persistence v v
Distributed cache/ x v
replicas

Consistency Strict-one-copy Weak guarantees

Spring 2015 CS432: Distributed Systems 24

Transparency

Access transparency: Client programs should be unaware of
the distribution of files.

Location transparency: Client programs should see a uniform
file name space.

Mobility transparency: Neither client programs nor system
administration tables in client nodes need to be changed
when files are moved.

Performance transparency: Client programs should continue
to perform satisfactorily while the load on the service varies
within a specified range.

Scaling transparency: The service can be expanded by
incremental growth to deal with a wide range of loads and
network sizes.

Concurrent File Updates

AKA Concurrency Control.

Changes to a file by one client should not interfere
with the operation of other clients simultaneously
accessing or changing the same file.

Levels of locking are required.

Techniques that provide concurrency control have
high costs.

File Replication

e Several copies of the same file at different locations.
 Advantages:

— Scalability of a service: multiple servers share the load of
providing a service to clients accessing the same set of
files.

— Fault tolerance: clients are able to locate another server
that holds a copy of the file when one has failed.

e Caching files (fully or partially) at clients can be
considered as a limited form of replication.

Hardware and Operating System
Heterogeneity

e Services allowing file access are accessible from
different operating systems and computers.

* File system server can be deployed on any operating
systems or hardware.

Fault Tolerance

The file service continues to operate in the face of
communication and server failures.

Coping with communication failures:

— At-most-once invocation semantics.

— At-least-once invocation semantics with a server protocol
designed in terms of idempotent operations. This semantic
ensures that duplicated requests do not result in invalid
updates to files.

Stateless servers: servers can be restarted and the
service restored after a failure without needing to
recover previous state.

File replication is required.

Consistency

e one-copy update semantics (e.g. Unix):

— all of the processes accessing or updating a given file see
identical contents as if only a single copy of the file existed.

— when files are replicated or cached at different sites,
modifications are propagated to all of the other sites that
hold copies.

Security

e Access control mechanism:
— uses access control lists.
e Authentication:

— access control at the server is based on correct user
identities.

* Encryption can be used to protect the contents of
request and reply messages.

Efficiency

e A distributed file service:

— offer facilities that are of at least the same power and
generality as those found in conventional file systems

— achieve a comparable level of performance.

 Trade-off:

— Scalability, reliability, availability, ...
— Latency because of accessing remote files.

Outline

* File Service Architecture.

e Case Studies:
— Sun Network File System (NFS).
— Andrew File System (AFS).
— Google File System (GFS).

Distributed File System Access
Models

Client Server

———»

<

—

—
Requests from \
client to access File stays

remote file on server

(a)

The remote access model.

1. File moved to client

Client / Server
A Old file

f T* New file
/

2. Accesses are

; 3. When client is done,
done on client

file is returned to
server

(b)

The upload/download model.

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002
Spring 2015 CS432: Distributed Systems

34

File Service Architecture

Client computer Server computer

- Y
——— N e
N

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012
Spring 2015 CS432: Distributed Systems 35

Flat File Service

* Implements operations on files.

e Unique file identifiers (UFIDs) are used to refer to
files. A UFID uniquely identifies a file in a distributed
file system.

e RPCinterface provides a comprehensive set of
operations for access to files.

Directory Service

* Provides a mapping between text names for files and
their UFIDs.

* Provide the following services:

— Generate directories.
— Add new file names to directories.
— Obtain UFIDs from directories.

e Can be considered as a client to the flat file service.

Client Module

A client module runs at each client.

Extends the operations of the flat file service and the
directory service under a single application
programming interface that is available to user-level
programs in client computers.

Holds information about the network locations of the
flat file server and directory server processes.

Can manage a cache of recently used file blocks at
the client.

Thank You

