Data Management in the Cloud

NEO4J): GRAPH DATA MODEL

Graph Data

Many types of data can be represented with nodes and edges
Variations

* Edges can be directed or undirected

* Nodes and edges can have types or labels

* Nodes and edges can have attributes

nodes (or vertices)
nodes (or vertices)

edges
(or links)
/

\

edges
(or links)
Sal

Undirected edges Directed edges

Credit: http://mathinsight.org/

Road Network

* Nodes: Intersections
* Edges: Road segments

ol P 1 T N N e
Road Nodes N
by Intersection Class q

) Freeway Connector

V/ Highway Ertrance/Exit
® Local Intersection
gf: Major Intersection
F Neighborhood Intersection
Single Direction Road Links
by Functional Class

3 Street
+———— Highway N
Double Direction Road Links
by Functional Class

Z &

Street

Local road 7
Major road
Regional road B
=—=——— National road
.) o =——= Highway o
-~ “ T B @

"Ly @ "9
\o/ Q’V// o, \%’/fﬁ"% A2 2o o

< ®/ = \\ TR g Lo o

e, \o 7 %ﬁg/‘ OO,TO’\ A2 A2 /q
* o

Credit: Marius Thériault et al., Journal of Geographic Information and Decision Analysis, vol. 3, no. 1, pp. 41-55, 1999

Computer Network

* Nodes: Computers
. Edges: Communication links

’

“OFFEYT
ALLL

ot UTAK
DXEROX GWC ARGONNE
m- Tmsnnt : mou
W ooce_
®
oo S T
e . SNC a
wrmt B/

“ SATELLITE CIRCUIT
O P

g T

& PLURIBUS IMP

{NOTE. THIS MAP DOES NOT SHOW ARPA'S EXPERIMENTAL
SATELLITE CONNECTIONS)

Power Transmission System

* Nodes: Substations
e Edges: Power transmission lines (possible attributes?)

CANEDE EPN Trarmmrinsion Focilties

Q{ N .\-v\/{ i A7 BPATrasmeson Lings
- \

|
F ol B Rbetrm
—li ‘:‘ %8 g A
J",f \}.\.‘) E ™ va
_11/"'"\[\\\/‘ G) §_m N &

10,) WasHiNGT

o
R - 5
- \ é A‘
2 S i
\3 2 '
i ' ek
J IDAHO \,\MONTA.\AL\’F—-—P‘
/ \(“*“W}Tf\..'
3 2 Al
[.lk‘-‘:-: A Mo Mo;f)f/?r
54 g ‘
Twin le'rs. ‘;j a —__-—J.,- -
e —

Credit: http://portlandwiki.org/

Social Network

* Nodes: People, Postings
* Edges: Friend, Like, Created, ...

Credit: http://mathinsight.org/

Discussion Question

Consider a graph of Twitter users (each node is a distinct user).

List some kinds of edges that might be in the graph
— Should the edge be directed or undirected?
— What attributes should the edge have?

See if you can come up with at least two kinds of edges.

Neodj Nodes and Relationships

* Nodes

— have a system-assigned id

— can have key/value properties

— there is a reference node (“starting point” into the node space)
» Relationships (Edges)

— have a system-assigned id

— are directed

— have a type

— can have key/value properties

» Key/value properties

— values always stored as strings
— support for basic types and arrays of basic types

Operations

* Nodes are managed using the GraphDatabaseService
interface
— createNode () creates and returns a new node
— getNodeById (id) returns the node with the given id
— getAllNodes () returns an iterator over all nodes (index is better)

* Relationships are managed using the Node interface
— createRelationshipTo (target, type) creates and returns a
relationship
— getRelationships (direction, types) returns an iterator
over a node’s relationships

— hasRelationship (type,direction) queries the existence of
a certain relationship

Operations

* Node and relationship properties are managed using the
PropertyContainer interface
— setProperty (key,value) sets (or creates) a property
— getProperty (key) returns a property value (or throws exception)
— hasProperty (key) checks if a key/value property exists
— removeProperty (key) deletes a key/value property
— getPropertyKeys () returns all the keys of a node’s properties

* Nodes and relationships are deleted using the corresponding
method in the Node and Relationship interfaces

Example

GraphDatabaseService db =
Transaction tx = db.beginTx() ;

try {
Node mike = db.createNode() ;
mike.setProperty ("'name”, “Michael”);

Node pdx = db.createNode() ;
Relationship edge = mike.createRelationshipTo (pdx, LIVES IN);
edge.setProperty(“"years”, new int[] { 2010, 2011, 2012 });
for (edge: pdx.getRelationship (LIVES IN, INCOMING)) ({

Node node = edge.getOtherNode (pdx) ;
}

tx.success () ;

} catch (Exception e) {
tx.fail () ;

} finally {
tx.finish() ;

Indexes

Neo4j does not support any value-based retrieval of nodes and
relationships without indexes

Interface IndexManager supports the creation of node and

relationship indexes

— forNodes (name, configuration) returns (or creates) a node
index

— forRelationships (name,configuration) returns (or
creates) a relationship index

Behind the scenes, Neo4j indexes is based on Apache Lucene
as an indexing service

Values are indexed as strings by default, but a so-called value
context can be used to support numeric indexing

Neodj also supports auto indexers for nodes and relationships

Node Indexes

* Index maintenance
— add (node, key,value) indexes the given node based on the given
key/value property
— remove (node) removes all index entries for the given node

— remove (node, key) removes all index entries for the given node
with the given key

— remove (node, key,value) removes a key/value property from
the index for the given node
* Index lookups
— get (key,value) supports equality index lookups
— query (key, query) does a query-based index lookup for one key
— query (query) does a query-based index lookup for arbitrary keys

Example

Index<Node> people = db.index() .forNodes ("people idx");

// do an exact lookup

Node mike = people.get("name”, "“Michael”) .getSingle() ;

// do a query-based lookup for one key
for (Node node: people.query(‘'name”, “"M*¥ OR m*”)) {
System.out.println (node.getProperty (“"name”) ;

// do a general query-based lookup
for (Node node: people.query(‘'name:M* AND title:Mr”) {
System.out.println (node.getId()) ;

14

Relationship Indexes

* Index maintenance is analogous to node indexes

e Additional index lookup functionality

— get (key,value, source, target) does an exact lookup for the
given key/value property, taking the given source and target node into
account

— query (key, query, source, target) does a query-based lookup
for the given key, taking the given source and target node into account

— query (query, source, target) does a general query-based
lookup, taking the given source and target node into account

* Note: There is now schema-level indexing

Example

Index<Node> homes = db.index() .forRelationships (“homes idx") ;

// do an exact lookup
Relationship r = homes.get("span”, “2”, mike, pdx) .getSingle()

// do a query-based lookup for one key
for (Relationship r: homes.query(“span”, “*”, mike, null)) ({
System.out.println (r.getOtherNode (mike)) ;

// do a general query-based lookup

for (Relationship r:
homes.query (" type:LIVES IN AND span:3”, mike, null) {
System.out.println (r.getOtherNode (mike)) ;

16

Traversal Framework

* Neodj provides a traversal interface to specify navigation
through a graph

based on callbacks
executed lazily on demand

* Main concepts

expanders define what to traverse, typically in terms of relationships
direction and type

the order guides the exploration, i.e. depth-first or breadth-first

uniqueness indicates whether nodes, relationships, or paths are visited
only once or multiple times

an evaluator decides what to return and whether to stop or continue
traversal beyond the current position

a starting node where the traversal will begin

Example: DFS in Finding Bridges

List<Relationship> result =
Set<Node> roots =

IndexManager manager = this.database.index() ;
Index<Node> dfsNodes = manager.forNodes ("'dfsNodes") ;
RelationshipIndex treeEdges = manager.forRelationships (" treeEdges") ;

TraversalDescription traversal = new TraversalDescriptionImpl () ;
traversal = traversal.order (Traversal.postorderDepthFirst()) ;
traversal = traversal.relationships (EDGE, OUTGOING) ;

int treeld = 0;
while ('roots.isEmpty()) ({
Node root = roots.iterator () .next() ;
Traverser traverser = traversal.traverse (root) ;
int pos = 0;
for (Node node : traverser.nodes()) {
dfsNodes.add (node, P_DFSPOS, treeIld + ":" + pos);
roots.remove (node) ;
pos++;
}
for (Relationship relationship : traverser.relationships()) {
treeEdges.add(relationship, P_ID, relationship.getId())
}
result.addAll (this. tarjan (dfsNodes, treeEdges, treeId)) ;
treeld++;

Graph Algorithms

 Some common graph algorithms are directly supported
— all shortest paths between two nodes up to a maximum length
— all paths between two nodes up to a maximum length
— all simple paths between two nodes up to a maximum length
— “cheapest” path based on Dijkstra or A*

* Class GraphAlgoFactory provides methods to create
PathFinders that implement these algorithms

Example: Shortest Path

// unweighted case

PathFinder<Path> pathFinder = GraphAlgoFactory.shortestPath (
Traversal .expanderForTypes (EDGE, OUTGOING) ,
Integer.MAX VALUE) ;

Path path = pathFinder.findSinglePath (source, target)
for (Node node: path.nodes()) {
System.out.println (node) ;

// weighted case

PathFinder<WeightedPath> pathFinder = GraphAlgoFactory.dijkstra (
Traversal.expanderForTypes (EDGE, OUTGOING), P_WEIGHT) ;

Path path = pathFinder.findSinglePath (source, target)
for (Relationship relationship: path.relationships()) ({
System.out.println (relationship) ;

Queries

Support for the Cypher graph query language has been added
to Neodj

Unlike the imperative graph scripting language Gremlin,
Cypher is a declarative language

Cypher is comprised of four main concepts

— START: starting points in the graph, obtained by element IDs or via
index lookups

— MATCH: graph pattern to match, bound to the starting points
— WHERE:.: filtering criteria
— RETURN: what to return

Implemented using the Scala programming language

Example: Director and Actor
with Same Last Name in a Musical

MATCH (a:PERSON)-[:IS-IN]->(m:MOVIE)<-[:DIRECTS]- (b:PERSON)
WHERE a.lLastName = b.LastName AND m.Genre = “musical”
RETURN a.LastName, m.Title

22

Deployments

Several deployment scenarios are supported
Embedded database

— wraps around a local directory
— implements the GraphDatabaseService interface
— runs in the same process as application, i.e. no client/server overhead

Client/server mode
— server runs as a standalone process
— provides Web-based administration
— communicates with clients through REST API
High availability setup
— one master and multiple slaves, coordinated by ZooKeeper
— supports fault tolerance and horizontal scaling
— implements the GraphDatabaseService interface

\
I

Cluster Manager <&

High Availability Setup

S 5 U U) 5\ I s g

App Server App Server

HA GraphDB HA GraphDB HA GraphDB
—_— —

App Server

HA GraphDB TS Vrpar
S ——-

App Server

Neo4jSlave 2 Neo4jSlave X

Neo4jSlave 1

ZooKeeper Service

ZooKeeper ZooKeeper
Server 1 Server 2

ZooKeeper
Server 3

Neo4j Highly Available Cluster

N S S S S D S S D S S D S S O S S O S S S S S S S S D S S S S o S & o e o o S o o S S S S S S S S D S S S S S O S D S S S S S S D S S S S S S S DS DS o=

24

High Availability Setup

* High availability

reads are highly available
updates to master are replicated asynchronously to slaves
updates to slaves are replicated synchronously to master

transactions are atomic, consistent and durable on the master, but
eventually consistent on slaves

* Fault tolerance

depending on ZooKeeper setup, Neo4dj can continue to operate from
any number of machines down to a single machine

machines will be reconnected automatically to the cluster whenever
the issue that caused the outage (network, maintenance) is resolved

if the master fails a new master will be elected automatically

if the master goes down any running write transaction will be rolled
back and during master election no write can take place

