Data Management in the Cloud

PIG LATIN AND HIVE

THANKS TO M. GROSSNIKLAUS

The Google Stack

Sawzall

Map/Reduce

Bigtable

The Hadoop Stack

At your own risk: http://t.co/S5x6S1VA

Motivation for Pig Latin

e Disadvantages of parallel database products
— prohibitively expensive at Web scale
— programmers like to write scripts to analyze data (but see Facebook)
— SQL is “unnatural” and overly restrictive in this context

e Limitations of Map/Reduce

— one-input two-stage data flow is extremely rigid

— custom code has to be written for common operations such as
projection and filtering

— opaque nature of map and reduce function impedes ability of system to
perform optimization

e Pig Latin combines “best of both worlds”
— high-level declarative querying in SQL
— low-level procedural programming of Map/Reduce

A First Example

* Find average rank in large categories of high-rank pages

e SQL (tuple calculus)

SELECT category, AVG(pagerank)
FROM urls WHERE pagerank > 0.2
GROUP BY category HAVING COUNT(*) > 106

* Pig Latin (nested relational algebra)

good urls = FILTER urls BY pagerank > 0.2;
groups = GROUP good urls BY category;
big_groups =

FILTER groups BY COUNT(good urls) > 106°;
output =

FOREACH big_groups

GENERATE category, AVG(good urls.pagerank);

Pig Latin Programs

Embody “best of both worlds” approach
Sequence of steps

— similar to imperative language
— each step carries out a single data transformation
— appealing to many developers

High-level transformations
— bagsin, bag out
— high-level operations render low-level manipulations unnecessary

— potential for optimization

Similar to specifying a query execution plan

— “automatic query optimization has its limits, especially with
uncataloged data, prevalent user-defined functions, and parallel
execution”

Pig Latin Features

e “Unconventional features that are important for [..] casual ad-
hoc data analysis by programmers”
— flexible, fully nested data model
— extensive support for user-defined functions
— ability to operate over plain input files without any schema
— debugging environment to deal with enormous data sets

e Pig Latin programs are executed using Pig
— compiled into (ensembles of) map-reduce jobs
— executed using Hadoop

— could map to other execution environments

e Pigis an open-source project in the Apache incubator

Dataflow Language

e “While the SQL approach is good for non-programmers and/or
small data sets, experienced programmers who must
manipulate large data sets [..] prefer the Pig Latin approach.”

— “I much prefer writing in Pig [Latin] versus SQL. The step-by-step
method of creating a program in Pig [Latin] is much cleaner and simpler
to use than the single block method of SQL. It is easier to keep track of
what your variables are, and where you are in the process of analyzing
your data.” — Jasmine Novak, Engineer, Yahoo!

Optimizations

e Pig Latin programs supply explicit sequence of operations, but
are not necessarily executed in that order

e High-level relational-algebra-style operations enable
traditional database optimization

e Example

spam _urls = FILTER urls BY i1sSpam(url);
culprit urls = FILTER spam_urls BY pagerank > 0.8;

— if 1IsSSpam is an expensive function and the FILTER condition is
selective, it is more efficient to execute the second statement first

Optional Schemas

e Traditional database systems require importing data into
system-managed tables
— transactional consistency guarantees
— efficient point lookups (physical tuple identifiers)

— curate data on behalf of the user: schema enables other users to make
sense of the data

* Pig only supports read-only data analysis of data sets that are
often temporary

— stored schemas are strictly optional
— no need for time-consuming data import

— user-provided function converts input into tuples (and vice-versa)

Nested Data Model

e Motivation

— programmers often think in nested data models
term = Map<documentld, Set<positions>>

— in a traditional database, data must be normalized into flat table
term(termld, termString, ..)
term_position(termld, documentld, position)

e Pig Latin has a flexible, fully nested data model
— closer to how programmers think
— data is often already stored in nested fashion in source files on disk

— expressing processing tasks as sequences of steps where each step
performs a single transformation requires a nested data model, e.g.
GROUP returns a non-atomic result

— user-defined functions are more easily written

User-Defined Functions

e Pig Latin has extensive support for user-defined functions
(UDFs) for custom processing
— analysis of search logs
— crawl data

— click streams

e Input and output of UDF follow flexible, nested data model
— non-atomic input and output
— only one type of UDF that can be used in all constructs

e UDFs are implemented in Java

12

Parallelism

e Pig Latin is geared towards Web-scale data
— requires parallelism

— does not make sense to consider non-parallel evaluation

e Pig Latin includes a small set of carefully chosen primitives that
can easily be parallelized

— “language primitives that do not lend themselves to efficient parallel
evaluation have been deliberately excluded”

— NO non-equi-joins
— no correlated sub-queries
e Backdoor

— UDFs can be written to carry out tasks that require this functionality

— this approach makes user aware of how efficient their programs will be
and which parts will be parallelized

Data Model

e Atom: contains a simple atomic value

— string, number, ...

e Tuple: sequence of fields
— each field can be any of the data types

e Bag: collection of tuple with possible duplicates

— schema of constituent tuples is flexible

e Map: collection of data items, where each data item has a key
— data items can be looked up by key
— schema of constituent tuples is flexible

— useful to model data sets where schemas change over time, i.e.
attribute names are modeled as keys and attribute values as values

Data Model

4 J
I AP (‘lakers’, 1) c
t (alice ,{ (‘iPod’, 2) [age —>20}
Let fields of tuple t be called f1, f2, £3
Expression Type Example Value for t
Constant ‘bob’ Independent of t
Field by position $0 ‘alice’
Field by name £3 ‘age’ — 20
L (‘lakers’)
Projection £2.$0 { (‘iPod?)
Map Lookup f3#‘age’ 20
Function Evaluation SUM(£2.$1) 1+2=23
Conditional f3#‘age’ >187 (:
Expression ‘adult’: ‘minor’ adult
Flattenir FLATTEN (£2) lakers?, 1
attening ‘iPod’, 2

Figure Credit: “Pig Latin: A Not-So-Foreign Language for Data Processing” by C. Olston et al., 2008

Data Loading

* First step in a Pig Latin program
— what are the data files?
— how are file contents deserialized, i.e. converted into Pig’s data model
— data files are assumed to contain a bag of tuples

e Example
queries = LOAD “query_log.txt’
USING myLoad()
AS (userld, queryString, timestamp);
— query_log.txtis the input file
— file contents are converted into tuples using the custom myLoad
deserializer
— the tuples have three attributes named userld, queryString,
timestamp

— Note: If you are explaining about queries, don’t have your example be
about queries (or at least call them “searches”).

Per-Tuple Processing

e Command FOREACH applies some processing to every tuple of
the data sets

e Example

expanded _queries = FOREACH queries GENERATE
userld, expandQuery(queryString);

— every tuple in the quer1ies bag is processed independently
— attribute userld is projected
— UDF expandQuery is applied to the queryString attribute

e Since there can be no dependence between the processing of
different tuples, FOREACH can be easily parallelized

Per-Tuple Processing

queries:
(userld, queryString, timestamp)
' FOREACH queries GENERATE (alice, (E{'Eﬁ:isrﬁl’ﬁ:;)} _ _ (alice, lakers rumors)
(alice, lakers, 1) expandQuery(queryString) with flattening “rq1ice, lakers news)

(bob, iPod, 3) . . > . I > (bob, iPod nano)
h]
(without flattening) (bob, {(.i_c;o?dshnﬂ‘ﬁ)e)}) (bob, iPod shuffle)

« GENERATE clause is followed by a list of expressions as
supported by Pig Latin’s data model

e For example, FLATTEN can be used to unnest data

expanded_qgueries FOREACH queries GENERATE
userld, FLATTEN(expandQuery(queryString));

Figure Credit: “Pig Latin: A Not-So-Foreign Language for Data Processing” by C. Olston et al., 2008 18

Selection

Tuples are selected using the FILTER command

Example
real_queries = FILTER queries BY userld neq “bot’;

Filtering conditions involve a combination of expressions
— equality: == (numeric), eq (strings)

— inequality: 1= (numeric), neq (strings)

— logical connectors: AND, OR, and NOT

— user-defined functions

Example

real _queries =
FILTER queries BY NOT i1sBot(userld);

Grouping

Command COGROUP groups tuples from one or more data sets

Example

grouped data = COGROUP results BY queryString,
revenue BY queryString;

— assume (queryString, url, rank) for results
— assume (queryString, adSlot, amount) for revenue
— gouped_data will be (queryString, results, revenue)

Difference from JOIN

— JOIN is equivalent to COGROUP followed by taking the cross-product
of the tuples in the nested bags

— COGROUP gives access to “intermediate result” (example on next slide)

Nested data model enables COGROUP as independent
operation

Grouping versus Joining

grouped_data: (group, results, revenue)
results:

(queryString, url, rank) lakers. J Clakers, nba.com, 1) (lakers, top, 50)
> 3 (lakers, espn.com, 2) (lakers, side, 20)
COGROUP

(lakers, nba.com, 1)

(lakers, espn.com, 2)
i —y >
(kings, nhl.com, 1) y ki
. . ings, nhl.com, 1) (kings, top, 3@)
(kings, nba.com, 2) (: Kings, (kings, nba.com, 2) (kings, side, 10)
revenue: distributeRevenue
(queryString, adSlot, amount)
(lakers, nba.com, 1, top , 50)
(lakers, top, 50) — (lakers, nba.com, 1, side, 2@) (nba.com, 60)
(lakers, side, 20)) 4 (lakers, espn.com, 2, top, 50) (espn.com, 10)
(kings, top, 30) JOIN (lakers, espn.com, 2, side, 20) (nhl.com, 35)
... (nba.com, 5)

(kings, side, 10)

e Example
url_revenues = FOREACH grouped _data GENERATE
FLATTEN(distributeRevenue(results, revenue));

— distributeRevenue attributes revenue from top slot entirely to
first result, while revenue from side slot is attributed to all results

— Since this processing task is difficult to express in SQL, COGROUP is a
key difference between Pig Latin and SQL

Figure Credit: “Pig Latin: A Not-So-Foreign Language for Data Processing” by C. Olston et al., 2008

21

Syntactic Sugar

e Special case of COGROUP is when only one data set is involved
— can use more intuitive keyword GROUP
— similar to typical group-by/aggregate queries

e Example

grouped_revenue = GROUP revenue BY queryString;
query_revenues = FOREACH grouped_revenue GENERATE
queryString,
SUM(revenue.amount) AS totalRevenue;

— revenue.amount refers to a projection of the nested bag in the
tuples of grouped_revenue

More Syntactic Sugar

e Pig Latin provides a JOIN key word for equi-joins

e Example

join_result = JOIN results BY queryString,
revenue BY queryString;

is equivalent to
temp_var

COGROUP results BY queryString,
revenue BY queryString;
join_result = FOREACH temp_var GENERATE
FLATTEN(results), FLATTEN(revenue);

23

We Gotta Have Map/Reduce!

e Based on FOREACH, GROUP, and UDFs, map-reduce programs
can be expressed

e Example

map_result = FOREACH 1nput
GENERATE FLATTEN(map(*));
key groups = GROUP map_result BY $0;
output = FOREACH key groups GENERATE reduce(*);

24

More Pig Latin Commands

e Pig Latin commands that are similar to SQL counterparts
— UNION: returns the union of two or more bags
— CROSS: returns the cross-product of two or more bags
— ORDER: orders a bag by the specified fields
— DISTINCT: eliminates duplicate tuples in the bag (syntactic sugar for
grouping the bag by all fields and projecting out the groups)
 Nested operations

— process nested bags within tuples
— FILTER, ORDER, and DISTINCT can be nested within FOREACH

* Qutput
— command STORE materializes results to a file
— as in LOAD, default serializer can be replaced in the USING clause

25

Implementation

Pig is the execution platform of Pig Latin
— different systems can be plugged in as data processing backend
— currently implemented using Hadoop

Lazy execution
— processing is only triggered when STORE command is invoked

— enables in-memory pipelining and filter reordering across multiple Pig
Latin commands

Logical query plan builder

— checks that input files and bags being referred to are valid
— builds a plan for every bag the user defines

— isindependent of data processing backend

Physical query plan compiler

— compiles a Pig Latin program into map-reduce jobs (see next slide)

Mapping Pig Latin to Map/Reduce

map, reduce, map; reduce;map,,, reduce;,,
load » filter » gmup ,.. cggr-éoup i cogfp_éoup _...
S 0 e W

1oad;§

e Each (CO)GROUP command is converted into a separate map-
reduce job, i.e. a dedicated map and reduce function

e Commands between (CO)GROUP commands are appended to
the preceding reduce function

e For (CO)GROUP commands with more than one data set, the
map function adds an extra attribute to identify the data set

Figure Credit: “Pig Latin: A Not-So-Foreign Language for Data Processing” by C. Olston et al., 2008 27

More Nuts and Bolts

 Two map-reduce jobs are required for the ORDER command

— first job samples input to determine statistics of sort key
— map of second job range partitions input according to statistics
— reduce of second job performs the sort

e Parallelism
— LOAD: parallelism due to data residing in HDFS
— FILTER and FOREACH: automatic parallelism due to Hadoop

— (CO)GROUP: output from multiple map instances is repartitioned in
parallel to multiple reduce instances

28

Hadoop as a Data Processing Backend

e Pros: Hadoop comes with free
— parallelism
— load-balancing
— fault-tolerance

e Cons: Map-reduce model introduces overheads
— data needs to be materialized and replicated between successive jobs
— additional attributes need to be inserted to identify multiple data sets
e Conclusion

— overhead is often acceptable, given the Pig Latin productivity gains
— Pig does not preclude use of an alternative data-processing backend

29

Debugging Environment

e Using an iterative development and debugging cycle is not
efficient in the context of long-running data processing tasks
* Pig Pen
— interactive Pig Latin development
— sandbox data set visualizes result of each step

e Sandbox data set

— must meet objectives of realism, conciseness, and completeness

— generated by random sampling, synthesizing “missing” data, and
pruning redundant tuples

30

Debugging Environment

Operators
LOAD || GROUP || COGROUP || FILTER || FOREACH | ORDER
| -LOADl USING | Default ~| As(|)

Generate Query

visits = LOAD ‘visits.txt' AS (user, url, time);

pages = LOAD 'pages.txt' AS (url, pagerank),

v_p = JOIN visits BY url, pages BY url;

users = GROUP v_p BY user;

useravg = FOREACH users GENERATE group, AVG(v_p.pagerank) AS avgpr;

answer = FILTER useravg BY avgpr > '0.5

visits:

pages:

v_p:

users:

useravg:

answer:

(Amy, cnn.com, 8am)
(Amy, frogs.com, 9am)
(Fred, snails.com, 11am)

(cnn.com, 0.8)
(frogs.com, 0.8)
(snails.com, 0.3)

(Amy, cnn.com, 8am, cnn.com, 0.8)
(Amy, frogs.com, 9am, frogs.com, 0.8)
(Fred, snails.com, 11am, snails.com, 0.3)

(Amy, { (Amy, cnn.com, 8am, cnn.com, 0.8),

(Amy, frogs.com, 9am, frogs.com, 0.8) })
(Fred, { (Fred, snails.com, 11am, snails.com, 0.3) })
(Amy, 0.8)
(Fred, 0.3)

(Amy, 0.8)

Figure Credit: “Pig Latin: A Not-So-Foreign Language for Data Processing” by C. Olston et al., 2008

31

Use Cases at Yahoo!

e Rollup aggregates

— frequency of search terms aggregated over days, week, or months, and
also geographical location

— number of searches per user and average number of searches per user
— Pig Point: data is too big and transient to justify curation in database
e Temporal analysis
— how do search query distributions change over time?
— Pig Point: good use case for the COGROUP command
e Session analysis
— how long is the average user session?
— how many links does a user click before leaving a page?
— how do click patterns vary over time?

— Pig Point: sessions are easily expressed in the nested data model

Use Cases Elsewhere

AOL

— Hadoop is used by MapQuest, Ad, Search, Truveo, and Media groups.
— Jobs are written in Pig or native map reduce

LinkedIn

— Hadoop and Pig used for discovering People You May Know and other fun
facts

Salesforce.com

— Pig used for log processing and Search, and to generate usage reports for
several products and features at SFDC

— goal is to allow Hadoop/Pig to be used across Data Warehouse, Analytics
and other teams making it easier for folks outside engineering to use data

Twitter
— Pig used extensively to process usage logs, mine tweet data, and more
— Twitter maintains an extension Pig function library (elephant-bird)

33

Motivation for Hive

e Growth of the Facebook data warehouse

— 2007: 15TB of net data
— 2010: 700TB of net data
— 2011: >30PB of net data
— 2012: >100PB of net data

e Scalable data analysis used across the company
— ad hoc analysis
— business intelligence
— Insights for the Facebook Ad Network
— analytics for page owners

— system monitoring

Motivation for Hive (continued)

e Original Facebook data processing infrastructure
— built using a commercial RDBMS prior to 2008
— became inadequate as daily data processing jobs took longer than a day

e Hadoop was selected as a replacement
— pros: petabyte scale and use of commodity hardware
— cons: using it was not easy for end user not familiar with map-reduce

— “Hadoop lacked the expressiveness of [..] query languages like SQL and
users ended up spending hours (if not days) to write programs for even
simple analysis.”

35

Motivation for Hive (continued)

e Hive is intended to address this problem by bridging the gap
between RDBMS and Hadoop

“Our vision was to bring the familiar concepts of tables, columns,
partitions and a subset of SQL to the unstructured world of Hadoop”

e Hive provides:

tools to enable easy data extract/transform/load (ETL)
a mechanism to impose structure on a variety of data formats

access to files stored either directly in HDFS or in other data storage
systems such as Hbase, Cassandra, MongoDB, and Google Spreadsheets

a simple SQL-like query language (compare to Pig Latin)
query execution via MapReduce

36

Hive Architecture

e Clients use command line
interface (CLI), Web UlI, or
JDBC/ODBC driver

e HiveServer provides Thrift
and JDBC/ODBC interfaces

* Metastore stores system
catalogue and metadata
about tables, columns,
partitions etc.

Driver
(Compiler, Optimizer, Executor)

HADOOP
(MAP-REDUCE + HDFS)

e Driver manages lifecycle of
HiveQL statement as it
moves through Hive

Figure Credit: “Hive — A Petabyte Scale Data Warehouse Using Hadoop” by A. Thusoo et al., 2010 37

Data Model

e Unlike Pig Latin, schemas are not optional in Hive

e Hive structures data into well-understood database concepts
like tables, columns, rows, and partitions

* Primitive types
— Integers: bigint (8 bytes), int (4 bytes), smallint (2 bytes), tinyint (1 byte)
— Floating point: float (single precision), double (double precision)
— String

Complex Types

e Complex types
— Associative arrays: map<key-type, value-type>
— Lists: list<element-type>
— Structs: struct<field-name: field-type, ...>

e Complex types are templated and can be composed to create

types of arbitrary complexity
— 11 list<map<string, struct<pl:int, p2:int>>

39

Complex Types

e Complex types
— Associative arrays: map<key-type, value-type>
— Lists: list<element-type>
— Structs: struct<field-name: field-type, ...>
* Accessors
— Associative arrays: m[‘key’]
— Lists: li[0]
— Structs: s.field-name
e Example:
— 11 list<map<string, struct<pl:int, p2:int>>

— t1.1i1[O][“key”]-plgives the pl field of the struct associated
with the key of the first array of the list 11

Query Language

e HiveQL is a subset of SQL plus some extensions

from clause sub-queries

various types of joins: inner, left outer, right outer and outer joins
Cartesian products

group by and aggregation

union all

create table as select

e Limitations

only equality joins

— joins need to be written using ANSI join syntax (not in WHERE clause)

no support for inserts in existing table or data partition
all inserts overwrite existing data

41

Query Language

e Hive supports user defined functions written in java
 Three types of UDFs

— UDF: user defined function
* |Input: single row
e Qutput: single row
— UDAF: user defined aggregate function
* Input: multiple rows
e Qutput: single row
— UDTF: user defined table function
* |Input: single row
e OQutput: multiple rows (table)

42

Creating Tables

e Tables are created using the CREATE TABLE DDL statement

e Example:

CREATE TABLE t1(
st string,
Tl float,
I1 list<map<string, struct<pl:int, p2:i1nt>>

);
e Tables may be partitioned or non-partitioned (we’ll see more
about this later)

e Partitioned tables are created using the PARTITIONED BY

statement
CREATE TABLE test part(cl string, c2 string)
PARTITIONED BY (ds string, hr int);

Inserting Data

e Example

INSERT OVERWRITE TABLE t2
SELECT €3.c2, COUNT(1)
FROM €3

WHERE t3.cl <= 20

GROUP BY t3.c2;

— OVERWRITE (instead of INTO) keyword to make semantics of insert
statement explicit

e Lack of INSERT INTO, UPDATE, and DELETE enable simple
mechanisms to deal with reader and writer concurrency
e At Facebook, these restrictions have not been a problem

— data is loaded into warehouse daily or hourly
— each batch is loaded into a new partition of the table that corresponds
to that day or hour

Inserting Data

e Hive supports inserting data into HDFS, local directories, or
directly into partitions (more on that later)

* |Inserting into HDFS

INSERT OVERWRITE DIRECTORY “/output dir”
SELECT t3.c2, AVG(t3.cl)

FROM t3

WHERE €3.cl > 20 AND t3.cl <= 30

GROUP BY t3.c2;

e |nserting into local directory

INSERT OVERWRITE LOCAL DIRECTORY “/home/dir”’
SELECT t3.c2, SuM(t3.cl)

FROM €3

WHERE t3.cl > 30

GROUP BY t3.c2;

45

Inserting Data

e Hive supports inserting data into multiple tables/files from a single
source given multiple transformations

e Example (corrected from paper):
FROM tl

INSERT OVERWRITE TABLE t2
SELECT t1.c2, count(l)
WHERE tl.cl <= 20

GROUP BY tl.c2;

INSERT OVERWRITE DIRECTORY “/output dir?’
SELECT t1.c2, AVG(tl.cl)

WHERE t1.cl > 20 AND tl-cl <= 30

GROUP BY tl1.c2;

INSERT OVERWRITE LOCAL DIRECTORY “/home/dir’
SELECT t1.c2, SUM(tl.cl)

WHERE t1.cl > 30

GROUP BY tl1.c2;

46

Loading Data

e Hive also supports syntax that can load the data from a file in
the local files system directly into a Hive table where the input
data format is the same as the table format

e Example:
— Assume we have previously issued a CREATE TABLE statement for
page_view
LOAD DATA INPATH */user/data/pv_2008-06-08 us.txt"
INTO TABLE page view

e Alternatively we can create a table directly from the file (as we
will see a little bit later)

We Gotta Have Map/Reduce!

* HiveQL has extensions to express map-reduce programs

e Example
FROM (

)

MAP doctext USING “python wc_mapper.py’
AS (word, cnt)

FROM docs CLUSTER BY word

a

REDUCE word, cnt USING “python wc_reduce.py’;

MAP clause indicates how the input columns are transformed by the
mapper UDF (and supplies schema)

CLUSTER BY clause specifies output columns that are hashed and
distributed to reducers

REDUCE clause specifies the UDF to be used by the reducers

48

We Gotta Have Map/Reduce!

e Distribution criteria between mappers and reducers can be
fine tuned using DISTRIBUTE BY and SORT BY

e Example

FROM (
FROM session_table

SELECT sessionid,tstamp,data

DISTRIBUTE BY sessionid SORT BY tstamp

) a
REDUCE sessionid, tstamp, data USING
“session_reducer.sh”;

* |f no transformation is necessary in the mapper or reducer the
UDF can be omitted

« CLUSTER BY =DISTRIBUTE BY + SORT BY onsame key

We Gotta Have Map/Reduce!

FROM (
FROM session_table

SELECT sessionid,tstamp,data

DISTRIBUTE BY sessionid SORT BY tstamp

) a
REDUCE sessionid, tstamp, data USING
“session_reducer.sh’;

Users can interchange the order of the FROM and
SELECT/MAP/REDUCE clauses within a given subquery

Mappers and reducers can be written in numerous languages

50

Hive Architecture

* Metastore stores system
catalogue and metadata
about tables, columns,
partitions etc.

HADOOP
(MAP-REDUCE + HDFS)

e Driver manages lifecycle of
HiveQL statement as it
moves through Hive

Figure Credit: “Hive — A Petabyte Scale Data Warehouse Using Hadoop” by A. Thusoo et al., 2010

51

Metastore

Stores system catalog and metadata about tables, columns,
partitions, etc.

Uses a traditional RDBMS “as this information needs to be
served fast”

Backed up regularly (since everything depends on this)

Needs to be able to scale with the number of submitted
queries (we don’t won’t thousands of Hadoop workers hitting
this DB for every task)

Only Query Compiler talks to Metastore (metadata is then sent
to Hadoop workers in XML plans at runtime)

Data Storage

 Table metadata associates data in a table to HDFS directories
— tables: represented by a top-level directory in HDFS
— table partitions: stored as a sub-directory of the table directory

— buckets: stores the actual data and resides in the sub-directory that
corresponds to the bucket’s partition, or in the top-level directory if
there are no partitions

e Tables are stored under the Hive root directory
CREATE TABLE test table (.);
— Creates a directory like
<warehouse_root_directory>/test_table

where <warehouse_root_directory> is determined by the Hive
configuration

Partitions

e Partitioned tables are created using the PARTITIONED BY
clause in the CREATE TABLE statement

CREATE TABLE test part(cl string, c2 int)
PARTITIONED BY (ds string, hr int);

* Note that partitioning columns are not part of the table data

 New partitions can be created through an INSERT statement
or an ALTER statement that adds a partition to a table

Partition Example

INSERT OVERWRITE TABLE test part
PARTITION(ds=“2009-01-01", hr=12)
SELECT * FROM t;

ALTER TABLE test part
ADD PARTITION(ds=“2009-02-027, hr=11);

e Each of these statements creates a new directory
— /.../test_part/ds=2009-01-01/hr=12
— /.../test_part/ds=2009-02-02/hr=11
e HiveQL compiler uses this information to prune directories that
need to be scanned to evaluate a query
SELECT * FROM test part WHERE ds=°“2009-01-017;

SELECT * FROM test part
WHERE ds=°“2009-02-02” AND hr=11;

55

Buckets

e A bucket is a file in the leaf level directory of a table or
partition

e Users specify number of buckets and column on which to
bucket data using the CLUSTERED BY clause

CREATE TABLE test part(cl string, c2 int)
PARTITIONED BY (ds string, hr int)

CLUSTERED BY (cl1l) INTO 32 BUCKETS;

56

Buckets

e Bucket information is then used to prune data in the case the
user runs queries on a sample of data

e Example:
SELECT * FROM test_part TABLESAMPLE (2 OUT OF 32);

— This query will only use 1/32 of the data as a sample from the second
bucket in each partition

57

Serialization/Deserialization (SerDe)

e Tables are serialized and deserialized using serializers and
deserializers provided by Hive or as user defined functions

e Default Hive SerDe is called the LazySerDe

Data stored in files
Rows delimited by newlines
Columns delimited by ctrl-A (ascii code 13)

Deserializes columns lazily only when a column is used in a query
expression

Alternate delimiters can be used

CREATE TABLE test _delimited(cl string, c2 iInt)

ROW FORMAT DELIMITED
FIELDS TERMINATED BY “\002~
LINES TERMINATED BY “\012~;

58

Additional SerDes

e Facebook maintains additional SerDes including the RegexSerDe for
regular expressions

e RegexSerDe can be used to interpret apache logs
add jar "hive_contrib.jar-;
CREATE TABLE apachelog(host string,

identity string,user string,time string,

request string,status string,size string,

referer string,agent string)

ROW FORMAT SERDE

"org.apache.hadoop.hive.contrib.serde2.RegexSerDe*
WITH SERDEPROPERTIES(

“input.regex® = "([™ 1) ([™ 1) (" 17) (-
INNEEANNTINND (I TEINT LN TANY) (-]110-91*) (-]1[0-
A (™ \"1TFINIANTNYD) AN T INTLINTIN)) 27,

"output.format.string®™ = "%1$s %2%s %3%s %4Ps %U5%s
%6$s%7Ps %8Ps %9Ps“

)

Custom SerDes

e Legacy data or data from other applications is supported
through custom serializers and deserializers
— SerDe framework
— Objectlnspector interface

e Example

ADD JAR /jars/myformat. jar
CREATE TABLE t2
ROW FORMAT SERDE “com.myformat.MySerDe~ ;

60

File Formats

e Hadoop can store files in different formats (text, binary,
column-oriented, ...)

e Different formats can provide performance improvements

e Users can specify file formats in Hive using the STORED AS
clause

— Example:
CREATE TABLE destl(key INT, value STRING)
STORED AS
INPUTFORMAT
"org.apache.hadoop.mapred.SequenceFilelnputFormat”

OUTPUTFORMAT
"org.apache.hadoop.mapred.SequenceFileOutputFormat*

e File format classes can be added as jar files in the same fashion
as custom SerDes

External Tables

e Hive also supports using data that does not reside in the HDFS
directories of the warehouse using the EXTERNAL statement
— Example:

CREATE EXTERNAL TABLE test extern(cl string, c2 int)
LOCATION ®"/user/mytables/mydata“;

* |f no custom SerDes the data in the ‘mydata’ file is assumed to
be Hive’s internal format

e Difference between external and normal tables occurs when
DROP commands are performed

— Normal table: metadata is dropped from Hive catalogue and data is
dropped as well

— External table: only metadata is dropped from Hive catalogue, no data
is deleted

Custom Storage Handlers

e Hive supports using storage handlers besides HDFS
— e.g. HBase, Cassandra, MongoDB, ...

e A storage handler builds on existing features
— Input formats
— Output formats
— SerDe libraries

e Additionally storage handlers must implement a metadata
interface so that the Hive metastore and the custom storage
catalogs are maintained simultaneously and consistently

63

Custom Storage Handlers

e Hive supports using custom storage and HDFS storage
simultaneously

e Tables stored in custom storage are created using the STORED
BY statement

— Example:

CREATE TABLE hbase table 1(key int, value string)
STORED BY
"org.apache.hadoop.hive.hbase.HBaseStorageHandler“;

64

Custom Storage Handlers

As we saw earlier Hive has normal (managed) and external

tables

Now we have native (stored in HDFS) and non-native (stored in

custom storage) tables

non-native may also use external tables

Four possibilities for base tables
— managed native: CREATE TABLE ..

— external native: CREATE EXTERNAL TABLE ..

— managed non-native: CREATE TABLE .. STORED BY ..

— external non-native: CREATE EXTERNAL TABLE ..

STORED BY ..

65

Hive Architecture

e Clients use command line
interface, Web Ul, or
JDBC/ODBC driver

e HiveServer provides Thrift
and JDBC/ODBC interfaces

e Metastore stores system
catalogue and metadata
about tables, columns,
partitions etc.

HADOOP
(MAP-REDUCE + HDFS)

Job
Tracker

= I I

il

e Driver manages lifecycle of
HiveQL statement as it
moves through Hive

Figure Credit: “Hive — A Petabyte Scale Data Warehouse Using Hadoop” by A. Thusoo et al., 2010 o

Query Compiler

Parses HiveQL using Antlr to generate an abstract syntax tree

Type checks and performs semantic analysis based on
Metastore information

Naive rule-based optimizations

Compiles HiveQL into a directed acyclic graph of MapReduce
tasks

67

Optimizations

e Column Pruning

— Ensures that only columns needed in query expressions are deserialized
and used by the execution plan

* Predicate Pushdown

— Filters out rows in the first scan if possible

e Partition Pruning

— Ensures that only partitions needed by the query plan are used

68

Optimizations

e Map side joins
— If one table in a join is very small it can be replicated in all of the
mappers and joined with other tables

— User must know ahead of time which are the small tables and provide
hints to Hive

SELECT /*+ MAPJOIN(t2) */ tl.cl, t2.cl
FROM t1 JOIN t2 ON(tl.c2 = t2.c2);

e Join reordering

— Smaller tables are kept in memory and larger tables are streamed in
reducers ensuring that the join does not exceed memory limits

69

Optimizations

e GROUP BY repartitioning
— |If data is skewed in GROUP BY columns the user can specify hints like
MAPJOIN
set hive.groupby.skewindata=true;
SELECT tl1l.cl, sum(tl.c2)
FROM tl
GROUP BY t1;

 Hashed based partial aggregations in mappers

— Hive enables users to control the amount of memory used on mappers
to hold rows in a hash table

— As soon as that amount of memory is used, partial aggregates are sent
to reducers.

MapReduce Generation

e Example:
FROM (SELECT a.status, b.school, b.gender
FROM status updates a JOIN profiles b
ON (a.userid = b.userid
AND a.ds="2009-03-20")) subql

INSERT OVERWRITE TABLE gender_summary
PARTITION(ds="2009-03-20")

SELECT subgl.gender, COUNT(1)

GROUP BY subqgl.gender

INSERT OVERWRITE TABLE school summary
PARTITION(ds="2009-03-20")

SELECT subqgl.school, COUNT(1)

GROUP BY subqgl.school

71

MapReduce Generation

SELECT a.status, b.school, b.gender
FROM status_updates a JOIN profiles b

ON (a.userid = b.userid
AND a.ds="2009-03-20"

) g

Figure Credit: “Hive — A Petabyte Scale Data
Warehouse Using Hadoop” by A. Thusoo et al., 2010

- — —

MapReduce Generation

SELECT a.status, b.school, b.gender
FROM status_updates a JOIN profiles b
ON (a.userid = b.userid
AND a.ds="2009-03-207)

Figure Credit: “Hive — A Petabyte Scale Data
Warehouse Using Hadoop” by A. Thusoo et al., 2010 73

MapReduce Generation

SELECT a.status, b.school, b.gender
FROM status_updates a JOIN profiles b
ON (a.userid = b.userid
AND a.ds="2009-03-207)

* Note that we’ve already
started doing some of the
processing for the
following INSERT

statements duce 1

Figure Credit: “Hive — A Petabyte Scale Data
Warehouse Using Hadoop” by A. Thusoo et al., 2010

74

INSERT OVERWRITE TABLE school_summary
PARTITION(ds="2009-03-20")
SELECT subgl.school, COUNT(1)

Figure Credit: “Hive — A
Petabyte Scale Data
Warehouse Using
Hadoop” by A. Thusoo et
al., 2010

Reduce 2

MapReduce Generation

GROUP BY subqgl.gender

e e e e e e e e e e e e e e e e e e e
e -

Map 2 Map 3

B e e
r

Reduce 3

B e e e e e e

INSERT OVERWRITE TABLE gender_summary
PARTITION(ds="2009-03-20%)
SELECT subqgl.gender, COUNT(1)

75

INSERT OVERWRITE TABLE school_summary

MapReduce Generation

PARTITION(ds="2009-03-20")
SELECT subql.school, COUNT(1)
GROUP BY subgl.school

ReduceSinkOperator
partition cols: col[0]
[0: string, 1: bigint]

A

TableScanOperator
table: tmp1
[0: string, 1: bigint]

=
=

(Y

Figure Credit: “Hive — A

Petabyte Scale Data
Warehouse Using

Hadoop” by A. Thusoo et

al., 2010

INSERT OVERWRITE TABLE gender_summary

PARTITION(ds="2009-03-20")
SELECT subgl.gender, COUNT(1)
GROUP BY subgl.gender

ReduceSinkOperator
partition cols: col[0]
[0:int, 1: bigint]

¥

TableScanQOperator
table: tmp2
[0:int, 1: bigint]

F i

Map 3

76

MapReduce Generation

INSERT OVERWRITE TABLE school_summary INSERT OVERWRITE TABLE gender_summary
PARTITION(ds="2009-03-207) PARTITION(ds="2009-03-207)

SELECT subqgl.school, COUNT(1) SELECT subqgl.gender, COUNT(1)

GROUP BY subqgl.school GROUP BY subqgl.gender

Reduce 2 Reduce 3

Figure Credit: “Hive — A
Petabyte Scale Data
Warehouse Using
Hadoop” by A. Thusoo et

al,, 2010 7

Execution Engine

e MapReduce tasks are executed in the order of their
dependencies

* Independent tasks can be executed in parallel

78

Hive Usage at Facebook

e Data processing task
— more than 50% of the workload are ad-hoc queries
— remaining workload produces data for reporting dashboards
— range from simple summarization tasks to generate rollups and cubes
to more advanced machine learning algorithms

e Hive is used by novice and expert users
e Types of Applications:

— Summarization

e Eg: Daily/Weekly aggregations of impression/click counts
— Ad hoc Analysis

e Eg: how many group admins broken down by state/country
— Data Mining (Assembling training data)

* Eg: User Engagement as a function of user attributes

79

Hive Usage Elsewhere

CNET

— Hive used for data mining, internal log analysis and ad hoc queries

eHarmony

— Hive used as a source for reporting/analytics and machine learning

Grooveshark

— Hive used for user analytics, dataset cleaning, and machine learning
R&D

Last.fm

— Hive used for various ad hoc queries

Scribd

— Hive used for machine learning, data mining, ad-hoc querying, and both
internal and user-facing analytics

80

Hive and Pig Latin
Featre | Hve | Pg

Language SQL-like PigLatin
Schemas/Types Yes (explicit) Yes (implicit)
Partitions Yes No
Server Optional (Thrift) No
User Defined Functions (UDF) Yes (Java) Yes (Java)
Custom Serializer/Deserializer Yes Yes

DFS Direct Access Yes (implicit) Yes (explicit)
Join/Order/Sort Yes Yes
Shell Yes Yes
Streaming Yes Yes
Web Interface Yes No
JDBC/ODBC Yes (limited) No

Source: Lars George (http.://www.larsgeorge.com) 8l

References

e C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins: Pig
Latin: A Not-So-Foreign Language for Data Processing. Proc.
Intl. Conf. on Management of Data (SIGMOD), pp. 1099-1110,
2008.

e A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S.
Anthony, H. Liu, R. Murthy: Hive — A Petabyte Scale Data
Warehouse Using Hadoop. Proc. Intl. Conf. on Data
Engineering (ICDE), pp. 996-1005, 2010.

