Constructing the LALR(1) CFSM

Michal Young
University of Oregon

v0.2,2010.02.06

Abstract

Many textbooks describe construction of the LALR(1) context-free state
machine (CFSM) with detailed pseudocode that, while it may be a useful
guide to producing code, is less helpful than it ought to be for understand-
ing how and why the construction works. This is an attempt to explain the
construction well enough that you can actually work examples by hand, by
explaining both exactly how it works and why each step is the way it is.

1 Introduction

LR parsing, and specifically LALR(1) parsing, is one of the great success stories of
the interaction between theoretical computer science (languages and automata), al-
gorithm design, and a “systems” area of computer science research. LALR(1) parser
generators not only fundamentally changed the way compilers are constructed, but
they also changed the way languages are designed: Most language designers use
an LALR(1) parser generator as a design and debugging tool, treating its reports
of shift/reduce and reduce/reduce errors as if they were spelling errors reported by
their word processor.

LALR(1) parsing is also beautiful, but it’s hard to see the beauty through the
fog of a pseudocode presentation. The purpose of this short document is to try to
present LALR(1) parse table construction in a way that is clear enough to (a) fol-
low as a guide for performing the construction by hand, or implementing it with
a program, (b) understand why it works the way it does, and so remember it, and
(c) grasp and recall its beauty even after you've forgotten a few of its operational
details, so that you can invent similar algorithms for related problems.

2 PRELIMINARIES: GRAMMAR ANALYSIS

2 Preliminaries: Grammar Analysis

We will make use of two grammar analyses in the LALR(1) constructions below.
A non-terminal symbol is Nullable if it can derive the empty sequence (even if it
can also derive non-empty sequences). The First set of a non-terminal symbol is
the set of terminal symbols that can be at the beginning of a sequence derived from
the non-terminal symbol. The First set of a sequence of terminal and non-terminal
symbols is the set of terminal symbols that could be at the beginning of a sentence
derived from that sequence.

For all of these analyses, we assume that grammars are in a normal form without
disjunction. That is, while we might like to write a grammar with productions like

A—B |C
all the rules below assume that this will be written as two productions

A—B
A—C

The definitions of First and Nullable are the same as for LL(1) parsing. Their
clearest definitions are recursive.

2.1 Nullable

Rule 1 (Nullable). A terminal symbol is not nullable. If S is a non-terminal symbol
with productions

S>>«

S—8
where i, . . ., B are sequences of zero or more symbols, then, if for any one of the right
hand sides «, . . ., 3, all of the symbols in that right hand side are nullable, then S
itself is nullable.

Note that this rule applies vacuously when the right hand side of a production

S—a
is empty, i.e., S must be nullable if there are no symbols in c.

The recursive rule for nullable can be implemented in an iterative procedure.
Initially none of the non-terminal symbols are marked nullable. We check all of the
symbols to see if at least one is nullable, and on the first pass we mark those with
empty right hand sides. Then we make a second pass through all the non-terminals,
and we may mark some more non-terminals because all the symbols in a right hand

2.2 First 2 PRELIMINARIES: GRAMMAR ANALYSIS

Nullable? Nullable? Nullable?
Si=L$ Si=L$ Si=L$
L:=L; M La=L; M y L:=L; M y
L:=M L:=M L:=M
M:a=M, i M:i=M, i M:a=M, i
M ii= Y Ma=n |V Ma=nr |V
First pass: M is Second pass: L is Third pass: No
nullable because of nullable because of changes. We have
the production the production reached a fixed
M=\ L:=M point solution.

Figure 1: Computing Nullable

side have been marked nullable. We keep doing this until we make a pass through
the whole grammar without marking any more nullable non-terminals. When noth-
ing more can be changed by applying these rules, we have reached the solution.
(Faster versions of the algorithm apply the same logic but inspect productions in a
good order.)

2.2 First

We compute First sets on sequences of zero or more symbols.

Rule 2 (First). For the production

S— o

where « is sequence of zero or more symbols, we distingusih three cases for First(c),
depending on the form of c:

o If avis empty, then First(«) is the empty set.
o Ifais x 3, and x is a terminal symbol, then First(c) is { x }.

o If v is a single non-terminal symbol X, First(X) is the union of the First sets of
all the right-hand sides of its productions.

o Ifais XB3, and X is a non-terminal symbol, then

- If X is nullable, then First(«v) is First(X) U First(3)
- Otherwise First(«v) is First(X)

Like Nullable above, we can compute First with an iterative procedure. We keep
track of the First set associated with each non-terminal symbol, from which we can

3 BASIC PARTS OF THE CFSM

easily recompute the First set of any sequence of symbols, including the right hand
sides of individual productions.

We first compute Nullable for all the non-terminals of the grammar, so we will
know which of the two cases above to apply when we encounter a non-terminal
symbol on the right hand side of a production. Then we initialize the First set of
each non-terminal symbol to the empty set.

For the iteration, we look at each production and compute terminal symbols
that should be added to the First set of any non-terminal symbol. Adding terminal
symbols to the First set of one non-terminal may make it necessary to add terminal
symbols to another First set; we keep checking and applying the rule until no more
additions are possible. When no more changes are possible, the First sets are correct.

As for Nullable, fast algorithms for First follow the same logic but inspect pro-
ductions in a good order. The simple form that I have described them in are called
chaotic iteration to a fixed point. Algorithms that keep track of dependencies among
productions, and inspect only those that depend on a non-terminal that has just
changed, are called work set algorithms.

3 Basic Parts of the CFSM

3.1 Item

An item is a grammar production with a dot somewhere in its right hand side. Think
ofitas a record of where you are (or might be) in parsing a production. For example,
the item

E—>Ee + T
means that we are parsing an expression (), and have already matched one sub-
expression; we can finish parsing this production if we see a plus and then a term
(1).

A basic concept of LR or bottom-up parsing is that we don’t make up our mind
which production we are parsing too early, so in many cases we will construct states
that contain several items. Each item represents our progress in some possible parse
of the input so far. Some of the possibilities might represent different points in
parsing the same production, like this:

E—Fe + T
E—eE + T

These are two distinct items. They both describe parsing the input with the
same production. The first indicates that we might be past the first sub-expression,

3.2 Lookahead 4 CONSTRUCTING A CFSM STATE FROM A KERNEL

and about to see the plus. The second indicates that we might be at the beginning,
waiting to see the first sub-expression.

3.2 Lookahead

In LALR(1) parse tables, each item in a state is associated with a set of lookahead
tokens.! We'll see how to generate and propagate them below. For now, the impor-
tant thing to know is that the meaning of the lookeahead set is “if this item is the
correct parse for the input, then the next thing we should see after parsing the rest
of the production is one of these tokens.”

3.3 State

An CFSM state is a set of items with lookaheads. (Because several of the items will
typically have the same lookahead set, we often group them in drawing the state, but
in principle each item has its own lookahead set).

Technically, the state is just the set of items, and the lookaheads are extra infor-
mation. This is important because of the rule for merging states: Two states made
up of the same set of items are really the same state, and we draw it only once, even
if the lookaheads are different.> In case we merge two states with different sets of
lookaheads, we keep the lookaheads from both copies, and merge them. In other
words, the lookahead sets in a CFSM state are the unions of the what the lookahead
sets would be on all the possible paths to that state.

4 Constructing a CFSM State from a Kernel

A kernel, just like a CFSM state, is a set of items with their associated lookaheads. It’s
what we start with to build a state. We construct the whole state by repeated applica-
tion of a single rule. First we give a version of the rule for LR(0) state construction,
and then give a slightly more complicated version for LALR(1) state construction.

Rule 3 (LR(0) State Completion). If there is an item with the dot immediately before
a non-terminal symbol P, like

"The lookahead tokens are like the “follow” set in LL(1) parsing. You can test your understanding
by proving that the LALR(1) lookahead set for an item is always a subset of the LL(1) follow set for
the non-terminal symbol on the left-hand side of the production.

*This is the difference between LR(1) and LALR(1). In LR(1), we consider lookaheads to be part
of the state, so we would not merge two states with different lookaheads. This results in more states,
which are usually (but not always) just wasted expense, so most parser generators use LALR(1) rather
than LR(1).

4 CONSTRUCTING A CFSM STATE FROM A KERNEL

then for every production

in the grammar, add an item

P _> @ -
to the state.

If applying rule 3 creates an item that is already part of the state (with the dot
in the same place — otherwise it’s not the same item), then we merge them. We
simply apply rule 3 over and over, until all the items we can add are already present,
so nothing changes.

Why? Because if we could be about to parse a non-terminal P, wed better look
for all the ways a P could be built from the terminal symbols in the input stream.
Think of it as angelic non-determinism in a top-down parse: Instead of calling one
procedure to parse a P, and having to decide immediately which of the P produc-
tions is the right one to use, we add an item for each of the productions for P, and
keep track of all of them at once (marking our place with the dot). Later we may
discard some of them as the wrong production, but we don’t need to decide yet.

The LALR(1) version of rule 3 is almost the same, except that we need to con-
sider lookaheads at the same time we add items.

Rule 4 (LALR(1) State Completion). If there is an item with the dot immediately
before a non-terminal symbol P, like

§—---ePa {L}
(where { L } is the lookahead set, and « is the sequence of zero or more terminal and
non-terminal symbols that follow P in the production) then for every production

in the grammar, add an item
P—e--- {M}

to the state.
The new lookahead set M depends on the sequence of symbols . M includes
First(«v), and if o is nullable, then M also includes the elements of L.

We apply rule 4 repeatedly, just like rule 3 above, again stopping when nothing
changes. We merge items that are identical except for their lookahead sets, taking
the union of their lookahead sets. We are done when nothing changes ...and that
includes the lookahead sets. It is quite common to apply rule 4 a few times without
adding any new items, but adding a few symbols to lookahead sets.

6 PRIMING THE PUMP

5 Adding Transitions

So far we know how to construct a full LALR(1) state from a kernel. Now all we
need is to create that transitions from a state. The rule for creating transitions also
determines the kernel of the state the transition goes to, from which we can create
the rest of the state.

From a state with a set of items

S —»---ePa {L}

T—---eQp {M}
U—---ePy {N}

we will make one transition for each symbol directly following a dot. For example,
if there are two items with the dot just before P in the set of items shown here, so
we make a transition on symbol P to a state whose kernel is

S —---Pea {L}

U—---Pevy {N}
Note that the lookaheads are unchanged by the transition; only the dot has moved.
We complete the new state following the rules outlined above, and if it has the same
items as an existing state, we merge the states and their lookahead sets. Note that
we really only need to compare the kernel of the new state to the kernels of existing
states, since all the other items in a state depend on the kernel.?

If the symbol we moved the dot over was a terminal symbol, we call the transi-
tion a shift. If the symbol we moved the dot over was a non-terminal symbol, the
transition is a goto. The actual parse table data structure produced by a program
like Bison or Cup keeps shifts and gotos separate, but conceptually and also for con-
structing the CFSM, they are exactly the same.

6 Priming the Pump

The kernel of the first state in the CFSM is an item (or set of items) for the start
symbol of th grammar, with the dot at the beginning of the right hand side. Typically
it will be something like

*Also, if the kernels of two states are not the same, it is impossible for the completions of those
states to be the same. Can you prove this? It’s a simple argument, but if you see it, then you are
understanding LALR(1) parse table construction pretty well.

6 PRIMING THE PUMP

S—eES$

Complete this initial state, then generate its transitions, complete each of those
states and their transitions, and so on, and you will have the CESM.

