Markov Decision Processes
Infinite Horizon Problems

Alan Fern *

* Based in part on slides by Craig Boutilier and Daniel Weld

What is a solution to an MDP?

MDP Planning Problem:

Input: an MDP (S,A,R,T)
Output: a policy that achieves an “optimal value”

* This depends on how we define the value of a policy

* There are several choices and the solution algorithms
depend on the choice

* We will consider two common choices
-~ Finite-Horizon Value
-~ Infinite Horizon Discounted Value

Discounted Infinite Horizon MDPs
* Defining value as total reward is problematic with
infinite horizons (r1 +r2+r3+rd +)
-~ many or all policies have infinite expected reward
-~ some MDPs are ok (e.g., zero-cost absorbing states)

* “Trick”: introduce discount factor 0 < 3 < 1
~ future rewards discounted by 3 per time step

Vﬂ- (S) - E [Zﬂt Rt ﬂ-’ S] Bounded Value
t=0 /
* Note: V;[(S) < E [Z/BtRmaX] _ 1 R Max
t=0 1-4

° Motivation: economic? prob of death? convenience?

Notes: Discounted Infinite Horizon

* Optimal policies guaranteed to exist (Howard, 1960)

~ |.e. there Is a policy that maximizes value at each state

° Furthermore there Is always an optimal stationary
policy

~ Intuition: why would we change action at s at a new time
when there is always forever ahead

* We define V *(s) to be the optimal value function.
“Thatis, V *(S)=V_(S) for some optimal stationary

Computational Problems

* Policy Evaluation

~ Given T and an MDP compute 1,

* Policy Optimization
~ Glven an MDP, compute an optimal policy #* and V*.

~ We’'ll cover two algorithms for doing this: value iteration
and policy iteration

Policy Evaluation

* Value equation for fixed policy

Ve (8) = R(S) +BY T (5, 72(5),) -Vig (5)
/ \ }

Immediate reward . !
discounted expected value

of following policy in the future

° Equation can be derived from original definition of
infinite horizon discounted value

Policy Evaluation

* Value equation for fixed policy

V (8) = R(8) +BY T (5. 7(5).8") Ve (5)

°* How can we compute the value function for a fixed
policy?
-~ we are given R, T, and B and want to find V_(s) for each s
~ linear system with n variables and n constraints
m Variables are values of states: V(s1),...,V(sn)
= Constraints: one value equation (above) per state
~ Use linear algebra to solve for V (e.g. matrix inverse)

Policy Evaluation via Matrix Inverse

V ,and R are n-dimensional column vector (one
element for each state)

Tis an nxn matrix s.t. T(l,])=T(s;, 7(S;),S:)

V_=R+pTV,
U

(1 -BT\V, =R
U

V7z = (I _BT)_lR

10

Computing an Optimal Value Function

* Bellman equation for optimal value function
V *(s) = R(S) + p max ZS.T (s,a,s')-V *(s")
a
] }

Immediate reward . !
discounted expected value
of best action assuming we

we get optimal value in future

* Bellman proved this is always true for an optimal
value function

11

Computing an Optimal Value Function
* Bellman equation for optimal value function

V *(s) = R(S) + p max ZS.T (s,a,s')-V *(s")

a

* How can we solve this equation for V*?

-~ The MAX operator makes the system non-linear, so the problem is
more difficult than policy evaluation

° |dea: lets pretend that we have a finite, but very, very
long, horizon and apply finite-horizon value iteration

~ Adjust Bellman Backup to take discounting into account.

12

Bellman Backups (Revisited)

Compute VK
Expectations

O st

Compute

Max /

V¥ (s) = R(s) + £ max ZS.T(S, a,s')-V (s

Value lteration

° Can compute optimal policy using value iteration
based on Bellman backups, just like finite-horizon
problems (but include discount term)

VP(s)=0 : Could also initialize to R(s)
V¥(s) = R(s) + B max ZS.T(S, a,s')-V*i(s")
d

* WIll it converge to optimal value function as k gets
large?
~Yes. lim, _V¥=V

K—00
* Why?

*

14

Convergence of Value Iteration

* Bellman Backup Operator: define B to be an
operator that takes a value function V as input and
returns a new value function after a Bellman backup

B[V](s) = R(s) + p max ZS.T (s,a,s')-V(s')

° Value iteration is just the iterative application of B:
V®=0
V K _ B[\/ k—l]

15

Convergence: Fixed Point Property

* Bellman equation for optimal value function

V *(s) = R(S) + p max ZS.T (s,a,5")-V *(s")

a

* Fixed Point Property: The optimal value function is
a fixed-point of the Bellman Backup operator B.
~ That is B[V*]=V*

B[V](s) =R(s)+pmax } .T(s,a,s)-V(s')

16

Convergence: Contraction Property

° Let ||V]|| denote the max-norm of V, which returns
the maximum element of the vector.

~E.g. [|(0.1 100 5 6)|| = 100

° B[V] Is a contraction operator wrt max-norm

* ForanyVand V', || B[V]-B[V]|[sB]|[V-V"]

~ You will prove this.

* That Is, applying B to any two value functions
causes them to get closer together in the max-
norm sense!

17

Convergence

* Using the properties of B we can prove convergence of
value iteration.

* Proof:
1. ForanyV: |[|V*-B[V]||l=]| B[V*]-B[V] | =B V*-V|

2. So applying Bellman backup to any value function V
brings us closer to V* by a constant factor 3

IV - V| = [V* - BIVK]I] = B [V* - V¥

3. This means that [|V* = V*|| < BX || V* - VO ||

4 Thus lim,_, V"-V¥|=0

19

Value Iteration: Stopping Condition

* Want to stop when we can guarantee the value
function Is near optimal.

* Key property: (not hard to prove)

If ||Vk - VK-1||S £ then [|[Vk =V*|| < B /(1-B)

* Continue iteration until [|Vk - Vk-1||< €

~ Select small enough ¢ for desired error
guarantee

20

How to Act

* Given a V¥ from value iteration that closely
approximates V*, what should we use as our
policy?

* Use greedy policy: (one step lookahead)

greedy[V “1(s) = arg max ZS.T (s,a,s')-V*(s")

a

* Note that the value of greedy policy may not
be equal to VK
~ Why?

21

How to Act

* Use greedy policy: (one step lookahead)

greedy[V “](s) = arg max ZS.T (s,a,8")-V*(s")

a

* We care about the value of the greedy policy
which we denote by V,

~ This is how good the greedy policy will be in practice.

°* How close Is Vg to V*?

22

Value of Greedy Policy

greedy[V “1(s) = arg max ZS.T (s,a,s")-V*(s")
a

Define V, to be the value of this greedy policy
~ This is likely not the same as VX

Property: If [[Vk—V*|| < Athen ||V, - V*|| < 2AB /(1-B)

“ Thus, V,is not too far from optimal if VK is close to optimal

Our previous stopping condition allows us to bound A based

Set stopping condition so that [|[V,- V|| < A
~ How?

23

Goal: |[Vy- V]| =A
Property: If [[VK — V*|| < A then ||V, - V*|| < 2AB /(1-B)

Property: If ||Vk-Vk-1||< g then [|Vk—V*|| < B /(1-B)

Answer: If [[Vk - Vk-1||< (1 —B)*A/(2B%) then ||V, - V*|| <A

Policy Evaluation Revisited

° Sometimes policy evaluation Is expensive due to
matrix operations

° Can we have an iterative algorithm like value
iteration for policy evaluation?

° |dea: Given a policy m and MDP M, create a new
MDP M[m] that is identical to M, except that in
each state s we only allow a single action mt(s)

-~ What is the optimal value function V* for M[mt] ?

* Since the only valid policy for M[rt] is t, V* = V

Policy Evaluation Revisited

* Running VI on M[m] will converge to V* = V.

~ What does the Bellman backup look like here?

* The Bellman backup now only considers one
action in each state, so there Is no max

~ We are effectively applying a backup restricted by

Restricted Bellman Backup:

B,[V1($) =R(s) +BD_ T (s, 7(s),8") -V (s')

lterative Policy Evaluation

* Running VI on M[mt] is equivalent to iteratively
applying the restricted Bellman backup.

lterative Policy Evaluation:

V®=0
Vk _ Bﬂ[\/ k+1]
Convergence: lim,__V*=V_

> Often become close to V for small k

27

Optimization via Policy lteration

* Policy Iiteration uses policy evaluation as a sub
routine for optimization

° |t iterates steps of policy evaluation and policy
Improvement

1. Choose a random policy Given V; returns a strictly
2. Loop:

better policy if wisn't
(a) Evaluate V; / optimal
(b) ' = ImprovePolicy(Vy)
(c) Replace mwith

Until no improving action possible at any state

Policy Improvement

* Given V; how can we compute a policy 7' that is
strictly better than a sub-optimal 1?

° |dea: given a state s, take the action that looks the
best assuming that we following policy 1 thereafter

~ That is, assume the next state s’ has value V (s')

For each s in S, set 7'(S) = arg max ZS.T(S, a,s")-V_(s")
a

Proposition: V; =V, with strict inequality for sub-
optimal .

29

For any two value functions V; and V,, we write V; >V, to
indicate that for all states s, V,(s) = V,(s).

7' (s) = arg max ZS.T (s,a,8")-V,(s")

a

Proposition: Vg =V, with strict inequality for sub-optimal .

Useful Properties for Proof:
1) Vi = By [Vg]
2) ForanyV,,V, and m, if V; =V, then B.|V;] = B.[V,]

30

7' (S) = arg max ZS.T (s,a,8")-V,(s")

a

Proposition: V =V, with strict inequality for sub-optimal .

Proof:

31

7' (S) = arg max ZS.T (s,a,8")-V,(s")

a

Proposition: V =V, with strict inequality for sub-optimal .

Proof:

32

Optimization via Policy lteration

1. Choose a random policy T

2. Loop:
(a) Evaluate V
(b) For each s in S, set 7'(s) =arg maxZS.T(s,a,s')-V,, (s")
(c) Replace m with a

Until no improving action possible at any state

Proposition: V =V, with strict inequality for sub-optimal .

Policy iteration goes through a sequence of improving policies

Policy lteration: Convergence

* Convergence assured in a finite number of
iterations

~ Since finite number of policies and each step
Improves value, then must converge to optimal

* Gives exact value of optimal policy

34

Policy lteration Complexity

° Each iteration runs in polynomial time in the
number of states and actions

* There are at most |A|" policies and Pl never
repeats a policy
~ S0 at most an exponential number of iterations
~ Not a very good complexity bound

* Empirically O(n) iterations are required often
It seems like O(1)

~ Challenge: try to generate an MDP that requires
more than that n iterations

* Still no polynomial bound on the number of PI
iterations (open problem)!
~ But may have been solved recently ??77?.....

35

Value Iteration vs. Policy Iteration

* Which is faster? VI or Pl
~ |t depends on the problem

* VI takes more iterations than PI, but PI
requires more time on each iteration

~ PI must perform policy evaluation on each
iteration which involves solving a linear system

* VI Is easier to iImplement since it does not
require the policy evaluation step

-~ But see next slide

* We will see that both algorithms will serve as
iInspiration for more advanced algorithms

36

Modified Policy lteration

* Modified Policy Iteration: replaces exact
policy evaluation step with inexact iterative
evaluation

-~ Uses a small number of restricted Bellman
backups for evaluation

* Avoids the expensive policy evaluation step
° Perhaps easier to implement.
* Often is faster than Pl and VI

* Still guaranteed to converge under mild
assumptions on starting points

37

Modified Policy Iteration

Policy Iteration

1. Choose initial value function V
2. Loop:

(a) For each s in S, set 7(s)=argmax ZS.T(s,a,s')-V(S')
a

——

(b) Partial Policy Evaluation APProX.
Repeat K times: V «<— B [V] [evaluation

Until change in V is minimal

Recap: things you should know

* What is an MDP?

* What is a policy?
- Stationary and non-stationary

* What is a value function?
~ Finite-horizon and infinite horizon

* How to evaluate policies?
~ Finite-horizon and infinite horizon
~ Time/space complexity?

°* How to optimize policies?
~ Finite-horizon and infinite horizon
~ Time/space complexity?
~ Why they are correct?

39

