Markov Decision Processes Infinite Horizon Problems

Alan Fern *

* Based in part on slides by Craig Boutilier and Daniel Weld

What is a solution to an MDP?

MDP Planning Problem:

Input: an MDP (S,A,R,T) **Output:** a policy that achieves an "optimal value"

• This depends on how we define the value of a policy

 There are several choices and the solution algorithms depend on the choice

- We will consider two common choices
 - Finite-Horizon Value
 - Infinite Horizon Discounted Value

Discounted Infinite Horizon MDPs

- Defining value as total reward is problematic with infinite horizons (r1 + r2 + r3 + r4 +)
 - many or all policies have infinite expected reward
 - some MDPs are ok (e.g., zero-cost absorbing states)
- "Trick": introduce discount factor $0 \le \beta < 1$
 - \clubsuit future rewards discounted by β per time step

$$V_{\pi}(s) = E\left[\sum_{t=0}^{\infty} \beta^{t} R^{t} \mid \pi, s\right]$$

Bounded Value
Note: $V_{\pi}(s) \leq E\left[\sum_{t=0}^{\infty} \beta^{t} R^{\max}\right] = \frac{1}{1-\beta} R^{\max}$

Motivation: economic? prob of death? convenience?

Notes: Discounted Infinite Horizon

- Optimal policies guaranteed to exist (Howard, 1960)
 - I.e. there is a policy that maximizes value at each state
- Furthermore there is always an optimal stationary policy
 - Intuition: why would we change action at s at a new time when there is always forever ahead
- We define $V^*(s)$ to be the optimal value function.
 - That is, $V^*(s) = V_{\pi}(s)$ for some optimal stationary π

Computational Problems

- Policy Evaluation
 - Given π and an MDP compute V_{π}

- Policy Optimization
 - Given an MDP, compute an optimal policy π^* and V^* .
 - We'll cover two algorithms for doing this: value iteration and policy iteration

Policy Evaluation

Value equation for fixed policy

$$V_{\pi}(s) = R(s) + \beta \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}(s')$$

mmediate reward
discounted expected value
of following policy in the future

 Equation can be derived from original definition of infinite horizon discounted value

Policy Evaluation

Value equation for fixed policy

$$V_{\pi}(s) = R(s) + \beta \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}(s')$$

- How can we compute the value function for a fixed policy?
 - we are given R, T, and B and want to find $V_{\pi}(s)$ for each s
 - Inear system with n variables and n constraints
 - Variables are values of states: V(s1),...,V(sn)
 - Constraints: one value equation (above) per state
 - Use linear algebra to solve for V (e.g. matrix inverse)

Policy Evaluation via Matrix Inverse

 V_{π} and **R** are n-dimensional column vector (one element for each state)

T is an nxn matrix s.t. $T(i, j) = T(s_i, \pi(s_i), s_j)$

Computing an Optimal Value Function

Bellman equation for optimal value function

$$V^{*}(s) = R(s) + \beta \max_{a} \sum_{s'} T(s, a, s') \cdot V^{*}(s')$$
immediate reward
discounted expected value
of best action assuming we
we get optimal value in future

Bellman proved this is always true for an optimal value function

Computing an Optimal Value Function

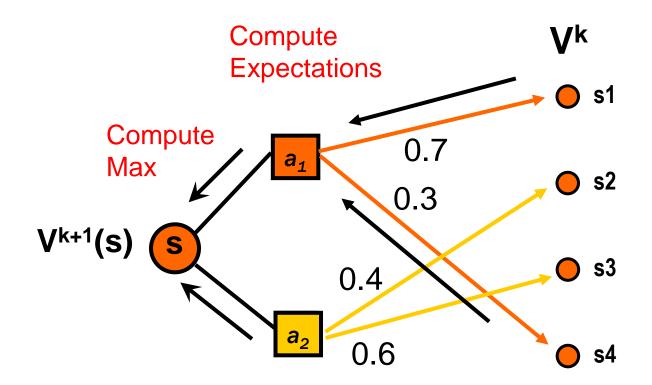
Bellman equation for optimal value function

$$V^{*}(s) = R(s) + \beta \max_{a} \sum_{s'} T(s, a, s') \cdot V^{*}(s')$$

- How can we solve this equation for V*?
 - The MAX operator makes the system non-linear, so the problem is more difficult than policy evaluation

- Idea: lets pretend that we have a finite, but very, very long, horizon and apply finite-horizon value iteration
 - Adjust Bellman Backup to take discounting into account.

Bellman Backups (Revisited)



$$V^{k+1}(s) = R(s) + \beta \max_{a} \sum_{s'} T(s, a, s') \cdot V^{k}(s')$$

Value Iteration

 Can compute optimal policy using value iteration based on Bellman backups, just like finite-horizon problems (but include discount term)

$$V^{0}(s) = 0 \qquad \text{;; Could also initialize to } \mathsf{R}(s)$$
$$V^{k}(s) = R(s) + \beta \max_{a} \sum_{s'} T(s, a, s') \cdot V^{k-1}(s')$$

 Will it converge to optimal value function as k gets large?

• Yes.
$$\lim_{k \to \infty} V^k = V^*$$

• Why?

Convergence of Value Iteration

 Bellman Backup Operator: define B to be an operator that takes a value function V as input and returns a new value function after a Bellman backup

$$B[V](s) = R(s) + \beta \max_{a} \sum_{s'} T(s, a, s') \cdot V(s')$$

Value iteration is just the iterative application of B:

$$V^{0} = 0$$
$$V^{k} = B[V^{k-1}]$$

Convergence: Fixed Point Property

Bellman equation for optimal value function

$$V^{*}(s) = R(s) + \beta \max_{a} \sum_{s'} T(s, a, s') \cdot V^{*}(s')$$

 Fixed Point Property: The optimal value function is a fixed-point of the Bellman Backup operator B.
 That is B[V*]=V*

$$B[V](s) = R(s) + \beta \max_{a} \sum_{s'} T(s, a, s') \cdot V(s')$$

Convergence: Contraction Property

 Let ||V|| denote the max-norm of V, which returns the maximum element of the vector.

▲ E.g. ||(0.1 100 5 6)|| = 100

- B[V] is a **contraction operator** wrt max-norm
- For any V and V', $|| B[V] B[V'] || \le \beta || V V' ||$
 - You will prove this.
- That is, applying B to any two value functions causes them to get closer together in the maxnorm sense!

Convergence

- Using the properties of B we can prove convergence of value iteration.
- Proof:
 - 1. For any V: $||V^* B[V]|| = ||B[V^*] B[V]|| \le \beta ||V^* V||$
 - 2. So applying Bellman backup to any value function V brings us closer to V* by a constant factor β $||V^* - V^{k+1}|| = ||V^* - B[V^k]|| \le \beta ||V^* - V^k||$
 - 3. This means that $||V^k V^*|| \le \beta^k ||V^* V^0||$

4. Thus
$$\lim_{k \to \infty} \| V^* - V^k \| = 0$$

Value Iteration: Stopping Condition

- Want to stop when we can guarantee the value function is near optimal.
- Key property: (not hard to prove)

If $||V^k - V^{k-1}|| \le \varepsilon$ then $||V^k - V^*|| \le \varepsilon\beta /(1-\beta)$

- Continue iteration until $||V^k V^{k-1}|| \le \varepsilon$
 - Select small enough ε for desired error guarantee

How to Act

 Given a V^k from value iteration that closely approximates V*, what should we use as our policy?

Use greedy policy: (one step lookahead)

greedy[V^k](s) = arg max
$$\sum_{s'} T(s, a, s') \cdot V^k(s')$$

- Note that the value of greedy policy may not be equal to V^k
 - Why?

How to Act

• Use *greedy* policy: (one step lookahead) $greedy[V^{k}](s) = \arg \max \sum_{s'} T(s, a, s') \cdot V^{k}(s')$ *a*

- We care about the value of the greedy policy which we denote by V_g
 - This is how good the greedy policy will be in practice.

• How close is V_g to V*?

Value of Greedy Policy

greedy[
$$V^k$$
](s) = arg max $\sum_{s'} T(s, a, s') \cdot V^k(s')$
a

- Define V_g to be the value of this greedy policy
 This is likely not the same as V^k
- Property: If ||V^k V^{*}|| ≤ λ then ||V_g V^{*}|| ≤ 2λβ /(1-β)
 Thus, V_g is not too far from optimal if V^k is close to optimal
- Our previous stopping condition allows us to bound λ based on ||V^{k+1} – V^k||
- Set stopping condition so that ||V_g V*|| ≤ Δ
 ▲ How?

Goal: $||V_g - V^*|| \le \Delta$

Property: If $||V^k - V^*|| \le \lambda$ then $||V_g - V^*|| \le 2\lambda\beta / (1-\beta)$

Property: If $||V^k - V^{k-1}|| \le \varepsilon$ then $||V^k - V^*|| \le \varepsilon\beta / (1-\beta)$

Answer: If $||V^{k} - V^{k-1}|| \le (1 - B)^{2} \Delta/(2B^{2})$ then $||V_{q} - V^{*}|| \le \Delta$

Policy Evaluation Revisited

- Sometimes policy evaluation is expensive due to matrix operations
- Can we have an iterative algorithm like value iteration for policy evaluation?
- Idea: Given a policy π and MDP M, create a new MDP M[π] that is identical to M, except that in each state s we only allow a single action π(s)
 - What is the optimal value function V* for M[π]?
- Since the only valid policy for M[π] is π , V* = V $_{\pi}$.

Policy Evaluation Revisited

- Running VI on M[π] will converge to V* = V $_{\pi}$.
 - What does the Bellman backup look like here?
- The Bellman backup now only considers one action in each state, so there is no max
 - \clubsuit We are effectively applying a backup restricted by π

Restricted Bellman Backup:

$$B_{\pi}[V](s) = R(s) + \beta \sum_{s'} T(s, \pi(s), s') \cdot V(s')$$

Iterative Policy Evaluation

• Running VI on M[π] is equivalent to iteratively applying the restricted Bellman backup.

Iterative Policy Evaluation: $V^0 = 0$ $V^k = B_{\pi}[V^{k+1}]$

Convergence:
$$\lim_{k\to\infty} V^k = V_{\pi}$$

• Often become close to V_{π} for small k

Optimization via Policy Iteration

- Policy iteration uses policy evaluation as a sub routine for optimization
- It iterates steps of policy evaluation and policy improvement
- 1. Choose a random policy π Given V_{π} returns a strictly2. Loop:
(a) Evaluate V_{π}
(b) $\pi' = \text{ImprovePolicy}(V_{\pi})$
(c) Replace π with π' Given V_{π} returns a strictly
better policy if π isn't
optimal(c) Replace π with π' Until no improving action possible at any state

Policy Improvement

- Given V_{π} how can we compute a policy π' that is strictly better than a sub-optimal π ?
- Idea: given a state s, take the action that looks the best assuming that we following policy π thereafter
 - That is, assume the next state s' has value V_{π} (s')

For each s in S, set
$$\pi'(s) = \arg \max \sum_{s'} T(s, a, s') \cdot V_{\pi}(s')$$

Proposition: $V_{\pi'} \ge V_{\pi}$ with strict inequality for suboptimal π . For any two value functions V_1 and V_2 , we write $V_1 \ge V_2$ to indicate that for all states s, $V_1(s) \ge V_2(s)$.

$$\pi'(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \cdot V_{\pi}(s')$$

Proposition: $V_{\pi'} \ge V_{\pi}$ with strict inequality for sub-optimal π .

Useful Properties for Proof:

1) $V_{\pi} = B_{\pi}[V_{\pi}]$

2) For any V_1, V_2 and π , if $V_1 \ge V_2$ then $B_{\pi}[V_1] \ge B_{\pi}[V_2]$

$$\pi'(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \cdot V_{\pi}(s')$$

Proposition: $V_{\pi'} \ge V_{\pi}$ with strict inequality for sub-optimal π .

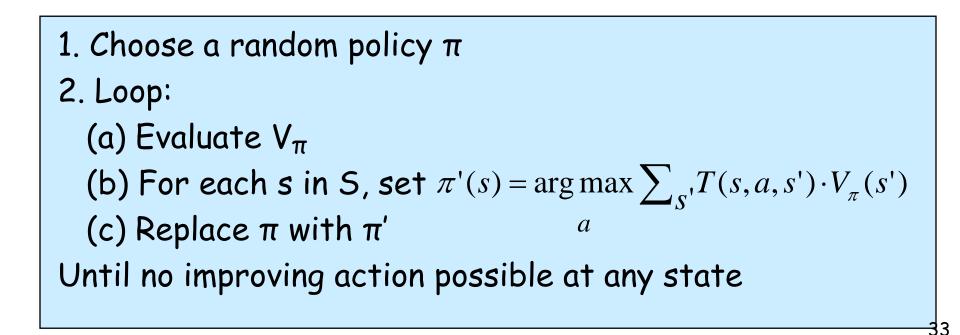
Proof:

$$\pi'(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \cdot V_{\pi}(s')$$

Proposition: $V_{\pi'} \ge V_{\pi}$ with strict inequality for sub-optimal π .

Proof:

Optimization via Policy Iteration



Proposition: $V_{\pi'} \ge V_{\pi}$ with strict inequality for sub-optimal π .

Policy iteration goes through a sequence of improving policies

Policy Iteration: Convergence

- Convergence assured in a finite number of iterations
 - Since finite number of policies and each step improves value, then must converge to optimal
- Gives exact value of optimal policy

Policy Iteration Complexity

- Each iteration runs in polynomial time in the number of states and actions
- There are at most |A|ⁿ policies and PI never repeats a policy
 - So at most an exponential number of iterations
 - Not a very good complexity bound
- Empirically O(n) iterations are required often it seems like O(1)
 - Challenge: try to generate an MDP that requires more than that n iterations
- Still no polynomial bound on the number of PI iterations (open problem)!
 - But may have been solved recently ????....

Value Iteration vs. Policy Iteration

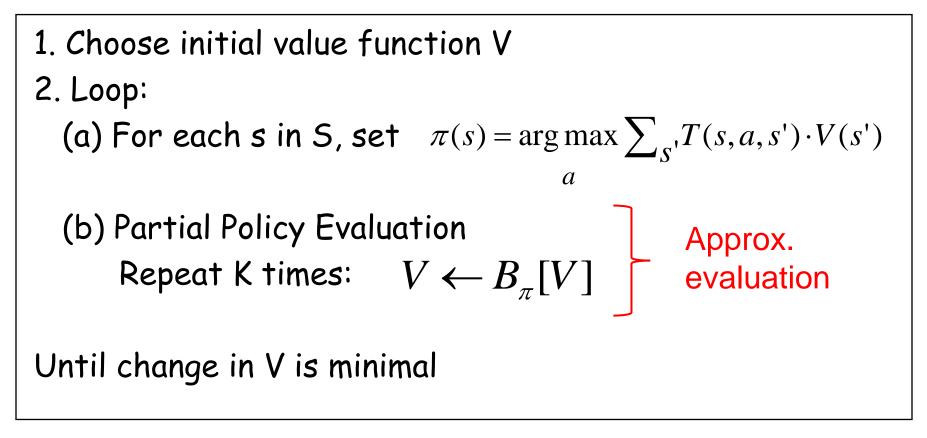
- Which is faster? VI or PI
 - It depends on the problem
- VI takes more iterations than PI, but PI requires more time on each iteration
 - PI must perform policy evaluation on each iteration which involves solving a linear system
- VI is easier to implement since it does not require the policy evaluation step
 - But see next slide
- We will see that both algorithms will serve as inspiration for more advanced algorithms

Modified Policy Iteration

- Modified Policy Iteration: replaces exact policy evaluation step with inexact iterative evaluation
 - Uses a small number of restricted Bellman backups for evaluation
- Avoids the expensive policy evaluation step
- Perhaps easier to implement.
- Often is faster than PI and VI
- Still guaranteed to converge under mild assumptions on starting points

Modified Policy Iteration

Policy Iteration



Recap: things you should know

- What is an MDP?
- What is a policy?
 - Stationary and non-stationary
- What is a value function?
 - Finite-horizon and infinite horizon
- How to evaluate policies?
 - Finite-horizon and infinite horizon
 - Time/space complexity?
- How to optimize policies?
 - Finite-horizon and infinite horizon
 - Time/space complexity?
 - Why they are correct?