
1

Markov Decision Processes
Infinite Horizon Problems

Alan Fern *

* Based in part on slides by Craig Boutilier and Daniel Weld

2

What is a solution to an MDP?

MDP Planning Problem:

 Input: an MDP (S,A,R,T)

 Output: a policy that achieves an “optimal value”

 This depends on how we define the value of a policy

 There are several choices and the solution algorithms

depend on the choice

 We will consider two common choices

 Finite-Horizon Value

 Infinite Horizon Discounted Value

3

Discounted Infinite Horizon MDPs

Defining value as total reward is problematic with

infinite horizons (r1 + r2 + r3 + r4 + …..)

many or all policies have infinite expected reward

some MDPs are ok (e.g., zero-cost absorbing states)

 “Trick”: introduce discount factor 0 ≤ β < 1

 future rewards discounted by β per time step

Note:

 Motivation: economic? prob of death? convenience?

],|[)(
0

sREsV
t

tt  






max

0

max

1

1
][)(RREsV

t

t





 





Bounded Value

5

Notes: Discounted Infinite Horizon

Optimal policies guaranteed to exist (Howard, 1960)

 I.e. there is a policy that maximizes value at each state

Furthermore there is always an optimal stationary

policy

 Intuition: why would we change action at s at a new time

when there is always forever ahead

We define to be the optimal value function.

That is, for some optimal stationary π

)(* sV

)()(* sVsV 

6

Computational Problems

Policy Evaluation

Given 𝜋 and an MDP compute 𝑉𝜋

Policy Optimization

Given an MDP, compute an optimal policy 𝜋∗ and 𝑉∗.

We’ll cover two algorithms for doing this: value iteration

and policy iteration

7

Policy Evaluation

Value equation for fixed policy

Equation can be derived from original definition of

infinite horizon discounted value

)'(
'

)'),(,(β)()(s
s

VsssTsRsV    

immediate reward
discounted expected value

of following policy in the future

8

Policy Evaluation

Value equation for fixed policy

How can we compute the value function for a fixed

policy?

we are given R, T, and Β and want to find 𝑉𝜋 𝑠 for each s

 linear system with n variables and n constraints

 Variables are values of states: V(s1),…,V(sn)

 Constraints: one value equation (above) per state

Use linear algebra to solve for V (e.g. matrix inverse)

)'(
'

)'),(,(β)()(s
s

VsssTsRsV    

10

Policy Evaluation via Matrix Inverse

Vπ and R are n-dimensional column vector (one

element for each state)

T is an nxn matrix s.t.

RIV

RVI

VRV

1-βT)(

βT)(

βT



















)),(,T(s j)T(i, i ji ss

11

Computing an Optimal Value Function

Bellman equation for optimal value function

Bellman proved this is always true for an optimal

value function

)'(
'

)',,(maxβ)()(s
s

VsasTsRsV
a
 

immediate reward
discounted expected value

of best action assuming we

we get optimal value in future

12

Computing an Optimal Value Function

Bellman equation for optimal value function

How can we solve this equation for V*?
 The MAX operator makes the system non-linear, so the problem is

more difficult than policy evaluation

 Idea: lets pretend that we have a finite, but very, very

long, horizon and apply finite-horizon value iteration

Adjust Bellman Backup to take discounting into account.

)'(
'

)',,(maxβ)()(s
s

VsasTsRsV
a
 

Bellman Backups (Revisited)

a1

a2
s4

s1

s3

s2

 Vk

0.7

0.3

0.4

0.6

Compute

Expectations

Vk+1(s) s

Compute

Max

)'(
'

)',,(max)()(1 s
s

VsasTsRsV kk

a
  

14

Value Iteration

Can compute optimal policy using value iteration

based on Bellman backups, just like finite-horizon

problems (but include discount term)

Will it converge to optimal value function as k gets

large?

Yes.

Why?

)'(
'

)',,(max)()(

0)(

1

0

s
s

VsasTsRsV

sV

kk

a
 





*lim VV k

k 

;; Could also initialize to R(s)

15

Convergence of Value Iteration

Bellman Backup Operator: define B to be an

operator that takes a value function V as input and

returns a new value function after a Bellman backup

Value iteration is just the iterative application of B:

)'(
'

)',,(maxβ)()]([s
s

VsasTsRsVB
a
 

][

0

1

0





kk VBV

V

16

Convergence: Fixed Point Property

Bellman equation for optimal value function

Fixed Point Property: The optimal value function is

a fixed-point of the Bellman Backup operator B.

That is B[V*]=V*

)'(
'

)',,(maxβ)()(s
s

VsasTsRsV
a
 

)'(
'

)',,(maxβ)()]([s
s

VsasTsRsVB
a
 

17

Convergence: Contraction Property

Let ||V|| denote the max-norm of V, which returns

the maximum element of the vector.

E.g. ||(0.1 100 5 6)|| = 100

B[V] is a contraction operator wrt max-norm

For any V and V’, || B[V] – B[V’] || ≤ β || V – V’ ||

 You will prove this.

That is, applying B to any two value functions

causes them to get closer together in the max-

norm sense!

19

Convergence

 Using the properties of B we can prove convergence of

value iteration.

Proof:

1. For any V: || V* - B[V] || = || B[V*] – B[V] || ≤ β|| V* - V||

2. So applying Bellman backup to any value function V

brings us closer to V* by a constant factor β

||V* - Vk+1 || = ||V* - B[Vk]|| ≤ β || V* - Vk ||

3. This means that ||Vk – V*|| ≤ βk || V* - V0 ||

4. Thus

0lim * 

k

k VV

20

Value Iteration: Stopping Condition

Want to stop when we can guarantee the value

function is near optimal.

Key property: (not hard to prove)

If ||Vk - Vk-1||≤ ε then ||Vk – V*|| ≤ εβ /(1-β)

Continue iteration until ||Vk - Vk-1||≤ ε

Select small enough ε for desired error

guarantee

21

How to Act

Given a Vk from value iteration that closely
approximates V*, what should we use as our
policy?

Use greedy policy: (one step lookahead)

Note that the value of greedy policy may not
be equal to Vk

Why?

)'(
'

)',,(maxarg)]([s
s

VsasTsVgreedy kk

a

 

22

How to Act

Use greedy policy: (one step lookahead)

We care about the value of the greedy policy
which we denote by Vg
This is how good the greedy policy will be in practice.

How close is Vg to V*?

)'(
'

)',,(maxarg)]([s
s

VsasTsVgreedy kk

a

 

23

Value of Greedy Policy

 Define Vg to be the value of this greedy policy
 This is likely not the same as Vk

 Property: If ||Vk – V*|| ≤ λ then ||Vg - V*|| ≤ 2λβ /(1-β)
 Thus, Vg is not too far from optimal if Vk is close to optimal

 Our previous stopping condition allows us to bound λ based
on ||Vk+1 – Vk||

 Set stopping condition so that ||Vg - V*|| ≤ Δ

How?

)'(
'

)',,(maxarg)]([s
s

VsasT

a

sVgreedy kk  

Property: If ||Vk – V*|| ≤ λ then ||Vg - V*|| ≤ 2λβ /(1-β)

Property: If ||Vk - Vk-1||≤ ε then ||Vk – V*|| ≤ εβ /(1-β)

Goal: ||Vg - V*|| ≤ Δ

Answer: If ||Vk - Vk-1||≤ 1 − Β 2Δ/(2Β2) then ||Vg - V*|| ≤ Δ

Policy Evaluation Revisited

Sometimes policy evaluation is expensive due to

matrix operations

Can we have an iterative algorithm like value

iteration for policy evaluation?

 Idea: Given a policy π and MDP M, create a new

MDP M[π] that is identical to M, except that in

each state s we only allow a single action π(s)

What is the optimal value function V* for M[π] ?

Since the only valid policy for M[π] is π, V* = Vπ.

Policy Evaluation Revisited

Running VI on M[π] will converge to V* = Vπ.

What does the Bellman backup look like here?

The Bellman backup now only considers one

action in each state, so there is no max

We are effectively applying a backup restricted by π

)'(
'

)'),(,(β)()]([s
s

VsssTsRsVB   

Restricted Bellman Backup:

27

Iterative Policy Evaluation

Running VI on M[π] is equivalent to iteratively

applying the restricted Bellman backup.

Often become close to Vπ for small k

][

0

1

0





kk VBV

V



VV k

k lim

Iterative Policy Evaluation:

Convergence:

28

Optimization via Policy Iteration

Policy iteration uses policy evaluation as a sub

routine for optimization

 It iterates steps of policy evaluation and policy

improvement

1. Choose a random policy π

2. Loop:

 (a) Evaluate Vπ

 (b) π’ = ImprovePolicy(Vπ)

 (c) Replace π with π’

Until no improving action possible at any state

Given Vπ returns a strictly

better policy if π isn’t
optimal

29

Policy Improvement

Given Vπ how can we compute a policy π’ that is

strictly better than a sub-optimal π?

 Idea: given a state s, take the action that looks the

best assuming that we following policy π thereafter

That is, assume the next state s’ has value Vπ (s’)

Proposition: Vπ’ ≥ Vπ with strict inequality for sub-

optimal π.

For each s in S, set)'(
'

)',,(maxarg)(' s
s

VsasTs

a

  

30

Proposition: Vπ’ ≥ Vπ with strict inequality for sub-optimal π.

)'(
'

)',,(maxarg)(' s
s

VsasTs

a

  

For any two value functions 𝑉1 and 𝑉2, we write 𝑉1 ≥ 𝑉2 to

indicate that for all states s, 𝑉1 𝑠 ≥ 𝑉2 𝑠 .

Useful Properties for Proof:

1) 𝑉𝜋 = B𝜋[V𝜋]

2) For any 𝑉1, 𝑉2 and 𝜋, if 𝑉1 ≥ 𝑉2 then 𝐵𝜋 𝑉1 ≥ 𝐵𝜋[𝑉2]

31

Proposition: Vπ’ ≥ Vπ with strict inequality for sub-optimal π.

)'(
'

)',,(maxarg)(' s
s

VsasTs

a

  

Proof:

32

Proposition: Vπ’ ≥ Vπ with strict inequality for sub-optimal π.

)'(
'

)',,(maxarg)(' s
s

VsasTs

a

  

Proof:

33

Optimization via Policy Iteration

1. Choose a random policy π

2. Loop:

 (a) Evaluate Vπ

 (b) For each s in S, set

 (c) Replace π with π’

Until no improving action possible at any state

)'(
'

)',,(maxarg)(' s
s

VsasTs

a

  

Proposition: Vπ’ ≥ Vπ with strict inequality for sub-optimal π.

Policy iteration goes through a sequence of improving policies

34

Policy Iteration: Convergence

Convergence assured in a finite number of

iterations

Since finite number of policies and each step

improves value, then must converge to optimal

Gives exact value of optimal policy

35

Policy Iteration Complexity

Each iteration runs in polynomial time in the
number of states and actions

There are at most |A|n policies and PI never
repeats a policy
So at most an exponential number of iterations

Not a very good complexity bound

Empirically O(n) iterations are required often
it seems like O(1)
Challenge: try to generate an MDP that requires

more than that n iterations

Still no polynomial bound on the number of PI
iterations (open problem)!
But may have been solved recently ????…..

36

Value Iteration vs. Policy Iteration

Which is faster? VI or PI
 It depends on the problem

VI takes more iterations than PI, but PI
requires more time on each iteration
PI must perform policy evaluation on each

iteration which involves solving a linear system

VI is easier to implement since it does not
require the policy evaluation step
But see next slide

We will see that both algorithms will serve as
inspiration for more advanced algorithms

37

Modified Policy Iteration

Modified Policy Iteration: replaces exact
policy evaluation step with inexact iterative
evaluation
Uses a small number of restricted Bellman

backups for evaluation

Avoids the expensive policy evaluation step

Perhaps easier to implement.

Often is faster than PI and VI

Still guaranteed to converge under mild
assumptions on starting points

Modified Policy Iteration

1. Choose initial value function V

2. Loop:

 (a) For each s in S, set

 (b) Partial Policy Evaluation

 Repeat K times:

Until change in V is minimal

)'(
'

)',,(maxarg)(s
s

VsasTs

a

 

Policy Iteration

][VBV 
Approx.

evaluation

39

Recap: things you should know

What is an MDP?

What is a policy?
Stationary and non-stationary

What is a value function?
Finite-horizon and infinite horizon

How to evaluate policies?
Finite-horizon and infinite horizon

Time/space complexity?

How to optimize policies?
Finite-horizon and infinite horizon

Time/space complexity?

Why they are correct?

