
1

Markov Decision Processes
Infinite Horizon Problems

Alan Fern *

* Based in part on slides by Craig Boutilier and Daniel Weld

2

What is a solution to an MDP?

MDP Planning Problem:

 Input: an MDP (S,A,R,T)

 Output: a policy that achieves an “optimal value”

 This depends on how we define the value of a policy

 There are several choices and the solution algorithms

depend on the choice

 We will consider two common choices

 Finite-Horizon Value

 Infinite Horizon Discounted Value

3

Discounted Infinite Horizon MDPs

Defining value as total reward is problematic with

infinite horizons (r1 + r2 + r3 + r4 + …..)

many or all policies have infinite expected reward

some MDPs are ok (e.g., zero-cost absorbing states)

 “Trick”: introduce discount factor 0 ≤ β < 1

 future rewards discounted by β per time step

Note:

 Motivation: economic? prob of death? convenience?

],|[)(
0

sREsV
t

tt

max

0

max

1

1
][)(RREsV

t

t

Bounded Value

5

Notes: Discounted Infinite Horizon

Optimal policies guaranteed to exist (Howard, 1960)

 I.e. there is a policy that maximizes value at each state

Furthermore there is always an optimal stationary

policy

 Intuition: why would we change action at s at a new time

when there is always forever ahead

We define to be the optimal value function.

That is, for some optimal stationary π

)(* sV

)()(* sVsV

6

Computational Problems

Policy Evaluation

Given 𝜋 and an MDP compute 𝑉𝜋

Policy Optimization

Given an MDP, compute an optimal policy 𝜋∗ and 𝑉∗.

We’ll cover two algorithms for doing this: value iteration

and policy iteration

7

Policy Evaluation

Value equation for fixed policy

Equation can be derived from original definition of

infinite horizon discounted value

)'(
'

)'),(,(β)()(s
s

VsssTsRsV

immediate reward
discounted expected value

of following policy in the future

8

Policy Evaluation

Value equation for fixed policy

How can we compute the value function for a fixed

policy?

we are given R, T, and Β and want to find 𝑉𝜋 𝑠 for each s

 linear system with n variables and n constraints

 Variables are values of states: V(s1),…,V(sn)

 Constraints: one value equation (above) per state

Use linear algebra to solve for V (e.g. matrix inverse)

)'(
'

)'),(,(β)()(s
s

VsssTsRsV

10

Policy Evaluation via Matrix Inverse

Vπ and R are n-dimensional column vector (one

element for each state)

T is an nxn matrix s.t.

RIV

RVI

VRV

1-βT)(

βT)(

βT

)),(,T(s j)T(i, i ji ss

11

Computing an Optimal Value Function

Bellman equation for optimal value function

Bellman proved this is always true for an optimal

value function

)'(
'

)',,(maxβ)()(s
s

VsasTsRsV
a

immediate reward
discounted expected value

of best action assuming we

we get optimal value in future

12

Computing an Optimal Value Function

Bellman equation for optimal value function

How can we solve this equation for V*?
 The MAX operator makes the system non-linear, so the problem is

more difficult than policy evaluation

 Idea: lets pretend that we have a finite, but very, very

long, horizon and apply finite-horizon value iteration

Adjust Bellman Backup to take discounting into account.

)'(
'

)',,(maxβ)()(s
s

VsasTsRsV
a

Bellman Backups (Revisited)

a1

a2
s4

s1

s3

s2

 Vk

0.7

0.3

0.4

0.6

Compute

Expectations

Vk+1(s) s

Compute

Max

)'(
'

)',,(max)()(1 s
s

VsasTsRsV kk

a

14

Value Iteration

Can compute optimal policy using value iteration

based on Bellman backups, just like finite-horizon

problems (but include discount term)

Will it converge to optimal value function as k gets

large?

Yes.

Why?

)'(
'

)',,(max)()(

0)(

1

0

s
s

VsasTsRsV

sV

kk

a

*lim VV k

k

;; Could also initialize to R(s)

15

Convergence of Value Iteration

Bellman Backup Operator: define B to be an

operator that takes a value function V as input and

returns a new value function after a Bellman backup

Value iteration is just the iterative application of B:

)'(
'

)',,(maxβ)()]([s
s

VsasTsRsVB
a

][

0

1

0

kk VBV

V

16

Convergence: Fixed Point Property

Bellman equation for optimal value function

Fixed Point Property: The optimal value function is

a fixed-point of the Bellman Backup operator B.

That is B[V*]=V*

)'(
'

)',,(maxβ)()(s
s

VsasTsRsV
a

)'(
'

)',,(maxβ)()]([s
s

VsasTsRsVB
a

17

Convergence: Contraction Property

Let ||V|| denote the max-norm of V, which returns

the maximum element of the vector.

E.g. ||(0.1 100 5 6)|| = 100

B[V] is a contraction operator wrt max-norm

For any V and V’, || B[V] – B[V’] || ≤ β || V – V’ ||

 You will prove this.

That is, applying B to any two value functions

causes them to get closer together in the max-

norm sense!

19

Convergence

 Using the properties of B we can prove convergence of

value iteration.

Proof:

1. For any V: || V* - B[V] || = || B[V*] – B[V] || ≤ β|| V* - V||

2. So applying Bellman backup to any value function V

brings us closer to V* by a constant factor β

||V* - Vk+1 || = ||V* - B[Vk]|| ≤ β || V* - Vk ||

3. This means that ||Vk – V*|| ≤ βk || V* - V0 ||

4. Thus

0lim *

k

k VV

20

Value Iteration: Stopping Condition

Want to stop when we can guarantee the value

function is near optimal.

Key property: (not hard to prove)

If ||Vk - Vk-1||≤ ε then ||Vk – V*|| ≤ εβ /(1-β)

Continue iteration until ||Vk - Vk-1||≤ ε

Select small enough ε for desired error

guarantee

21

How to Act

Given a Vk from value iteration that closely
approximates V*, what should we use as our
policy?

Use greedy policy: (one step lookahead)

Note that the value of greedy policy may not
be equal to Vk

Why?

)'(
'

)',,(maxarg)]([s
s

VsasTsVgreedy kk

a

22

How to Act

Use greedy policy: (one step lookahead)

We care about the value of the greedy policy
which we denote by Vg
This is how good the greedy policy will be in practice.

How close is Vg to V*?

)'(
'

)',,(maxarg)]([s
s

VsasTsVgreedy kk

a

23

Value of Greedy Policy

 Define Vg to be the value of this greedy policy
 This is likely not the same as Vk

 Property: If ||Vk – V*|| ≤ λ then ||Vg - V*|| ≤ 2λβ /(1-β)
 Thus, Vg is not too far from optimal if Vk is close to optimal

 Our previous stopping condition allows us to bound λ based
on ||Vk+1 – Vk||

 Set stopping condition so that ||Vg - V*|| ≤ Δ

How?

)'(
'

)',,(maxarg)]([s
s

VsasT

a

sVgreedy kk

Property: If ||Vk – V*|| ≤ λ then ||Vg - V*|| ≤ 2λβ /(1-β)

Property: If ||Vk - Vk-1||≤ ε then ||Vk – V*|| ≤ εβ /(1-β)

Goal: ||Vg - V*|| ≤ Δ

Answer: If ||Vk - Vk-1||≤ 1 − Β 2Δ/(2Β2) then ||Vg - V*|| ≤ Δ

Policy Evaluation Revisited

Sometimes policy evaluation is expensive due to

matrix operations

Can we have an iterative algorithm like value

iteration for policy evaluation?

 Idea: Given a policy π and MDP M, create a new

MDP M[π] that is identical to M, except that in

each state s we only allow a single action π(s)

What is the optimal value function V* for M[π] ?

Since the only valid policy for M[π] is π, V* = Vπ.

Policy Evaluation Revisited

Running VI on M[π] will converge to V* = Vπ.

What does the Bellman backup look like here?

The Bellman backup now only considers one

action in each state, so there is no max

We are effectively applying a backup restricted by π

)'(
'

)'),(,(β)()]([s
s

VsssTsRsVB

Restricted Bellman Backup:

27

Iterative Policy Evaluation

Running VI on M[π] is equivalent to iteratively

applying the restricted Bellman backup.

Often become close to Vπ for small k

][

0

1

0

kk VBV

V

VV k

k lim

Iterative Policy Evaluation:

Convergence:

28

Optimization via Policy Iteration

Policy iteration uses policy evaluation as a sub

routine for optimization

 It iterates steps of policy evaluation and policy

improvement

1. Choose a random policy π

2. Loop:

 (a) Evaluate Vπ

 (b) π’ = ImprovePolicy(Vπ)

 (c) Replace π with π’

Until no improving action possible at any state

Given Vπ returns a strictly

better policy if π isn’t
optimal

29

Policy Improvement

Given Vπ how can we compute a policy π’ that is

strictly better than a sub-optimal π?

 Idea: given a state s, take the action that looks the

best assuming that we following policy π thereafter

That is, assume the next state s’ has value Vπ (s’)

Proposition: Vπ’ ≥ Vπ with strict inequality for sub-

optimal π.

For each s in S, set)'(
'

)',,(maxarg)(' s
s

VsasTs

a

30

Proposition: Vπ’ ≥ Vπ with strict inequality for sub-optimal π.

)'(
'

)',,(maxarg)(' s
s

VsasTs

a

For any two value functions 𝑉1 and 𝑉2, we write 𝑉1 ≥ 𝑉2 to

indicate that for all states s, 𝑉1 𝑠 ≥ 𝑉2 𝑠 .

Useful Properties for Proof:

1) 𝑉𝜋 = B𝜋[V𝜋]

2) For any 𝑉1, 𝑉2 and 𝜋, if 𝑉1 ≥ 𝑉2 then 𝐵𝜋 𝑉1 ≥ 𝐵𝜋[𝑉2]

31

Proposition: Vπ’ ≥ Vπ with strict inequality for sub-optimal π.

)'(
'

)',,(maxarg)(' s
s

VsasTs

a

Proof:

32

Proposition: Vπ’ ≥ Vπ with strict inequality for sub-optimal π.

)'(
'

)',,(maxarg)(' s
s

VsasTs

a

Proof:

33

Optimization via Policy Iteration

1. Choose a random policy π

2. Loop:

 (a) Evaluate Vπ

 (b) For each s in S, set

 (c) Replace π with π’

Until no improving action possible at any state

)'(
'

)',,(maxarg)(' s
s

VsasTs

a

Proposition: Vπ’ ≥ Vπ with strict inequality for sub-optimal π.

Policy iteration goes through a sequence of improving policies

34

Policy Iteration: Convergence

Convergence assured in a finite number of

iterations

Since finite number of policies and each step

improves value, then must converge to optimal

Gives exact value of optimal policy

35

Policy Iteration Complexity

Each iteration runs in polynomial time in the
number of states and actions

There are at most |A|n policies and PI never
repeats a policy
So at most an exponential number of iterations

Not a very good complexity bound

Empirically O(n) iterations are required often
it seems like O(1)
Challenge: try to generate an MDP that requires

more than that n iterations

Still no polynomial bound on the number of PI
iterations (open problem)!
But may have been solved recently ????…..

36

Value Iteration vs. Policy Iteration

Which is faster? VI or PI
 It depends on the problem

VI takes more iterations than PI, but PI
requires more time on each iteration
PI must perform policy evaluation on each

iteration which involves solving a linear system

VI is easier to implement since it does not
require the policy evaluation step
But see next slide

We will see that both algorithms will serve as
inspiration for more advanced algorithms

37

Modified Policy Iteration

Modified Policy Iteration: replaces exact
policy evaluation step with inexact iterative
evaluation
Uses a small number of restricted Bellman

backups for evaluation

Avoids the expensive policy evaluation step

Perhaps easier to implement.

Often is faster than PI and VI

Still guaranteed to converge under mild
assumptions on starting points

Modified Policy Iteration

1. Choose initial value function V

2. Loop:

 (a) For each s in S, set

 (b) Partial Policy Evaluation

 Repeat K times:

Until change in V is minimal

)'(
'

)',,(maxarg)(s
s

VsasTs

a

Policy Iteration

][VBV
Approx.

evaluation

39

Recap: things you should know

What is an MDP?

What is a policy?
Stationary and non-stationary

What is a value function?
Finite-horizon and infinite horizon

How to evaluate policies?
Finite-horizon and infinite horizon

Time/space complexity?

How to optimize policies?
Finite-horizon and infinite horizon

Time/space complexity?

Why they are correct?

