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Markov Decision Processes 
Infinite Horizon Problems 

Alan Fern * 

* Based in part on slides by Craig Boutilier and Daniel Weld 
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What is a solution to an MDP?  

MDP Planning Problem: 

   Input:  an MDP (S,A,R,T) 

   Output:  a policy that achieves an “optimal value” 
 

 This depends on how we define the value of a policy 

 

 There are several choices and the solution algorithms 

depend on the choice 

 

 We will consider two common choices 

 Finite-Horizon Value 

 Infinite Horizon Discounted Value 
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Discounted Infinite Horizon MDPs 

Defining value as total reward is problematic with 

infinite horizons (r1 + r2 + r3 + r4 + …..) 

many or all policies have infinite expected reward 

some MDPs are ok (e.g., zero-cost absorbing states) 

 “Trick”: introduce discount factor 0 ≤ β < 1 

 future rewards discounted by β per time step 

 

 

 

Note: 

 

 Motivation: economic? prob of death? convenience? 
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Notes: Discounted Infinite Horizon 

Optimal policies guaranteed to exist (Howard, 1960) 

 I.e. there is a policy that maximizes value at each state 

Furthermore there is always an optimal stationary 

policy 

 Intuition: why would we change action at s at a new time 

when there is always forever ahead 

We define              to be the optimal value function. 

That is,                               for some optimal stationary π 
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Computational Problems 

Policy Evaluation 

Given 𝜋 and an MDP compute 𝑉𝜋  

 

Policy Optimization 

Given an MDP, compute an optimal policy 𝜋∗ and 𝑉∗. 

We’ll cover two algorithms for doing this: value iteration 

and policy iteration 
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Policy Evaluation 

Value equation for fixed policy 

 

 

 

 

 

 

 

Equation can be derived from original definition of 

infinite horizon discounted value 
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Policy Evaluation 

Value equation for fixed policy 

 

 

How can we compute the value function for a fixed 

policy? 

we are given R, T, and Β and want to find 𝑉𝜋 𝑠  for each s 

 linear system with n variables and n constraints 

 Variables are values of states: V(s1),…,V(sn) 

 Constraints: one value equation (above) per state 

Use linear algebra to solve for V (e.g. matrix inverse) 
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Policy Evaluation via Matrix Inverse 

Vπ and R are n-dimensional column vector (one 

element for each state) 

T is an  nxn matrix s.t.  
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Computing an Optimal Value Function 

 

Bellman equation for optimal value function 

 

 
 

 

 

 

Bellman proved this is always true for an optimal 

value function 
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Computing an Optimal Value Function 

Bellman equation for optimal value function 

 

 

How can we solve this equation for V*? 
 The MAX operator makes the system non-linear, so the problem is 

more difficult than policy evaluation 

 

 Idea: lets pretend that we have a finite, but very, very 

long, horizon and apply finite-horizon value iteration  

Adjust Bellman Backup to take discounting into account. 
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Bellman Backups (Revisited) 
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Value Iteration 

Can compute optimal policy using value iteration 

based on Bellman backups, just like finite-horizon 

problems (but include discount term) 

 

 

 

 

Will it converge to optimal value function as k gets 

large?  

Yes.  

Why? 
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Convergence of Value Iteration 

Bellman Backup Operator:  define B to be an 

operator that takes a value function V as input and 

returns a new value function after a Bellman backup 

 

 

 

Value iteration is just the iterative application of B: 
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Convergence: Fixed Point Property 

Bellman equation for optimal value function 

 

 

 

Fixed Point Property:  The optimal value function is 

a fixed-point of the Bellman Backup operator B. 

That is B[V*]=V* 

)'(
'

*)',,(maxβ)()(* s
s

VsasTsRsV
a
 

)'(
'

)',,(maxβ)()]([ s
s

VsasTsRsVB
a
 



17 

Convergence: Contraction Property 

Let ||V|| denote the max-norm of V, which returns 

the maximum element of the vector.  

E.g.  ||(0.1  100  5  6)|| = 100  

 

B[V] is a contraction operator wrt max-norm 

For any V and V’,  || B[V] – B[V’] || ≤ β || V – V’ || 

 You will prove this.  

That is, applying B to any two value functions 

causes them to get closer together in the max-

norm sense! 
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Convergence 

 Using the properties of B we can prove convergence of 

value iteration. 

Proof: 

1. For any V:   || V* - B[V] || = || B[V*] – B[V] || ≤ β|| V* - V||  

 

2. So applying Bellman backup to any value function V 

brings us closer to V* by a constant factor β 

||V* - Vk+1 ||  = ||V* - B[Vk ]||  ≤ β || V* - Vk || 

 

3. This means that ||Vk – V*|| ≤ βk || V* - V0 || 

 

4. Thus  
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Value Iteration: Stopping Condition 

Want to stop when we can guarantee the value 

function is near optimal. 

Key property: (not hard to prove) 

 

If  ||Vk - Vk-1||≤ ε then ||Vk – V*|| ≤ εβ /(1-β) 

 

 

Continue iteration until ||Vk - Vk-1||≤ ε  

Select small enough ε for desired error 

guarantee  
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How to Act 

Given a Vk from value iteration that closely 
approximates V*, what should we use as our 
policy? 

 

Use greedy policy: (one step lookahead) 

 

 

 

Note that the value of greedy policy may not 
be equal to Vk 

Why? 
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How to Act 

Use greedy policy: (one step lookahead) 

 

 

 

We care about the value of the greedy policy 
which we denote by Vg 
This is how good the greedy policy will be in practice. 

 

How close is Vg to V*? 
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Value of Greedy Policy 

 

 

 Define Vg to be the value of this greedy policy 
 This is likely not the same as Vk 

 

 Property: If ||Vk – V*|| ≤ λ then ||Vg - V*|| ≤  2λβ /(1-β)  
 Thus, Vg is not too far from optimal if Vk is close to optimal 

 

 Our previous stopping condition allows us to bound λ based 
on ||Vk+1 – Vk|| 

 

 Set stopping condition so that ||Vg - V*|| ≤ Δ 

How?  

)'(
'

)',,(maxarg)]([ s
s

VsasT

a

sVgreedy kk  



Property: If ||Vk – V*|| ≤ λ then ||Vg - V*|| ≤  2λβ /(1-β)  

Property: If  ||Vk - Vk-1||≤ ε then ||Vk – V*|| ≤ εβ /(1-β) 

 

Goal: ||Vg - V*|| ≤ Δ 

Answer:  If ||Vk - Vk-1||≤ 1 − Β 2Δ/(2Β2) then ||Vg - V*|| ≤ Δ 



Policy Evaluation Revisited 

Sometimes policy evaluation is expensive due to 

matrix operations 

Can we have an iterative algorithm like value 

iteration for policy evaluation?  

 Idea: Given a policy π and MDP M, create a new 

MDP M[π] that is identical to M, except that in 

each state s we only allow a single action π(s) 

What is the optimal value function V* for M[π] ?  

Since the only valid policy for M[π] is π, V* = Vπ.  
 



Policy Evaluation Revisited 

Running VI on M[π] will converge to V* = Vπ. 

What does the Bellman backup look like here?  

 

The Bellman backup now only considers one 

action in each state, so there is no max 

We are effectively applying a backup restricted by π 
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Iterative Policy Evaluation 
 

Running VI on M[π] is equivalent to iteratively 

applying the restricted Bellman backup.  

 

 

 

 

 

 

Often become close to Vπ for small k 
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Convergence:  
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Optimization via Policy Iteration 

Policy iteration uses policy evaluation as a sub 

routine for optimization 

 It iterates steps of policy evaluation and policy 

improvement 

1. Choose a random policy π 

2. Loop: 

   (a) Evaluate Vπ 

   (b) π’ = ImprovePolicy(Vπ) 

   (c) Replace π with π’ 

Until no improving action possible at any state 

Given Vπ  returns a strictly 

better policy if π isn’t  
optimal 
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Policy Improvement 

Given Vπ  how can we compute a policy π’ that is 

strictly better than a sub-optimal π? 

 Idea: given a state s, take the action that looks the 

best assuming that we following policy π thereafter 

That is, assume the next state s’ has value Vπ (s’)  

 

 

Proposition: Vπ’  ≥ Vπ  with strict inequality for sub-

optimal π.    
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Proposition: Vπ’  ≥ Vπ  with strict inequality for sub-optimal π. 
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For any two value functions 𝑉1 and 𝑉2, we write 𝑉1 ≥ 𝑉2 to 

indicate that for all states s, 𝑉1 𝑠 ≥ 𝑉2 𝑠 .  

 

Useful Properties for Proof: 

1) 𝑉𝜋 = B𝜋[V𝜋] 

2) For any 𝑉1, 𝑉2 and 𝜋, if 𝑉1 ≥ 𝑉2 then 𝐵𝜋 𝑉1 ≥ 𝐵𝜋[𝑉2]  
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Proposition: Vπ’  ≥ Vπ  with strict inequality for sub-optimal π. 
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Proposition: Vπ’  ≥ Vπ  with strict inequality for sub-optimal π. 
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Optimization via Policy Iteration 

1. Choose a random policy π 

2. Loop: 

   (a) Evaluate Vπ 

   (b) For each s in S, set  

   (c) Replace π with π’ 

Until no improving action possible at any state 
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Proposition: Vπ’  ≥ Vπ  with strict inequality for sub-optimal π. 

  
Policy iteration goes through a sequence of improving policies 



34 

Policy Iteration: Convergence 

Convergence assured in a finite number of 

iterations 

Since finite number of policies and each step 

improves value, then must converge to optimal 

Gives exact value of optimal policy 



35 

Policy Iteration Complexity 

Each iteration runs in polynomial time in the 
number of states and actions 

There are at most |A|n policies and PI never 
repeats a policy 
So at most an exponential number of iterations 

Not a very good complexity bound 

Empirically O(n) iterations are required often 
it seems like O(1) 
Challenge: try to generate an MDP that requires 

more than that n iterations 

Still no polynomial bound on the number of PI 
iterations (open problem)! 
But may have been solved recently ????…..  
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Value Iteration vs. Policy Iteration 

Which is faster? VI or PI 
 It depends on the problem 

VI takes more iterations than PI, but PI 
requires more time on each iteration 
PI must perform policy evaluation on each 

iteration which involves solving a linear system 

VI is easier to implement since it does not 
require the policy evaluation step 
But see next slide 

We will see that both algorithms will serve as 
inspiration for more advanced algorithms 
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Modified Policy Iteration 

Modified Policy Iteration: replaces exact 
policy evaluation step with inexact iterative 
evaluation 
Uses a small number of restricted Bellman 

backups for evaluation 

 

Avoids the expensive policy evaluation step 

Perhaps easier to implement.  

Often is faster than PI and VI 

Still guaranteed to converge under mild 
assumptions on starting points 

 



Modified Policy Iteration 

1. Choose initial value function V 

2. Loop: 

   (a) For each s in S, set  
    

   (b) Partial Policy Evaluation  

         Repeat K times:  

 

Until change in V is minimal 
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Recap: things you should know 

What is an MDP? 

What is a policy?  
Stationary and non-stationary 

What is a value function?  
Finite-horizon and infinite horizon 

How to evaluate policies?  
Finite-horizon and infinite horizon 

Time/space complexity? 

How to optimize policies?  
Finite-horizon and infinite horizon 

Time/space complexity? 

Why they are correct?  


