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Markov Decision Processes 
Infinite Horizon Problems 

Alan Fern * 

* Based in part on slides by Craig Boutilier and Daniel Weld 
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What is a solution to an MDP?  

MDP Planning Problem: 

   Input:  an MDP (S,A,R,T) 

   Output:  a policy that achieves an “optimal value” 
 

 This depends on how we define the value of a policy 

 

 There are several choices and the solution algorithms 

depend on the choice 

 

 We will consider two common choices 

 Finite-Horizon Value 

 Infinite Horizon Discounted Value 
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Discounted Infinite Horizon MDPs 

Defining value as total reward is problematic with 

infinite horizons (r1 + r2 + r3 + r4 + …..) 

many or all policies have infinite expected reward 

some MDPs are ok (e.g., zero-cost absorbing states) 

 “Trick”: introduce discount factor 0 ≤ β < 1 

 future rewards discounted by β per time step 

 

 

 

Note: 

 

 Motivation: economic? prob of death? convenience? 
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Notes: Discounted Infinite Horizon 

Optimal policies guaranteed to exist (Howard, 1960) 

 I.e. there is a policy that maximizes value at each state 

Furthermore there is always an optimal stationary 

policy 

 Intuition: why would we change action at s at a new time 

when there is always forever ahead 

We define              to be the optimal value function. 

That is,                               for some optimal stationary π 
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Computational Problems 

Policy Evaluation 

Given 𝜋 and an MDP compute 𝑉𝜋  

 

Policy Optimization 

Given an MDP, compute an optimal policy 𝜋∗ and 𝑉∗. 

We’ll cover two algorithms for doing this: value iteration 

and policy iteration 
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Policy Evaluation 

Value equation for fixed policy 

 

 

 

 

 

 

 

Equation can be derived from original definition of 

infinite horizon discounted value 
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discounted expected value 

of following policy in the future 
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Policy Evaluation 

Value equation for fixed policy 

 

 

How can we compute the value function for a fixed 

policy? 

we are given R, T, and Β and want to find 𝑉𝜋 𝑠  for each s 

 linear system with n variables and n constraints 

 Variables are values of states: V(s1),…,V(sn) 

 Constraints: one value equation (above) per state 

Use linear algebra to solve for V (e.g. matrix inverse) 
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Policy Evaluation via Matrix Inverse 

Vπ and R are n-dimensional column vector (one 

element for each state) 

T is an  nxn matrix s.t.  

RIV

RVI

VRV
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Computing an Optimal Value Function 

 

Bellman equation for optimal value function 

 

 
 

 

 

 

Bellman proved this is always true for an optimal 

value function 
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immediate reward 
discounted expected value 

of best action assuming we 

we get optimal value in future 
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Computing an Optimal Value Function 

Bellman equation for optimal value function 

 

 

How can we solve this equation for V*? 
 The MAX operator makes the system non-linear, so the problem is 

more difficult than policy evaluation 

 

 Idea: lets pretend that we have a finite, but very, very 

long, horizon and apply finite-horizon value iteration  

Adjust Bellman Backup to take discounting into account. 
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Bellman Backups (Revisited) 

a1 

a2 
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Value Iteration 

Can compute optimal policy using value iteration 

based on Bellman backups, just like finite-horizon 

problems (but include discount term) 

 

 

 

 

Will it converge to optimal value function as k gets 

large?  

Yes.  

Why? 
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Convergence of Value Iteration 

Bellman Backup Operator:  define B to be an 

operator that takes a value function V as input and 

returns a new value function after a Bellman backup 

 

 

 

Value iteration is just the iterative application of B: 
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Convergence: Fixed Point Property 

Bellman equation for optimal value function 

 

 

 

Fixed Point Property:  The optimal value function is 

a fixed-point of the Bellman Backup operator B. 

That is B[V*]=V* 
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Convergence: Contraction Property 

Let ||V|| denote the max-norm of V, which returns 

the maximum element of the vector.  

E.g.  ||(0.1  100  5  6)|| = 100  

 

B[V] is a contraction operator wrt max-norm 

For any V and V’,  || B[V] – B[V’] || ≤ β || V – V’ || 

 You will prove this.  

That is, applying B to any two value functions 

causes them to get closer together in the max-

norm sense! 
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Convergence 

 Using the properties of B we can prove convergence of 

value iteration. 

Proof: 

1. For any V:   || V* - B[V] || = || B[V*] – B[V] || ≤ β|| V* - V||  

 

2. So applying Bellman backup to any value function V 

brings us closer to V* by a constant factor β 

||V* - Vk+1 ||  = ||V* - B[Vk ]||  ≤ β || V* - Vk || 

 

3. This means that ||Vk – V*|| ≤ βk || V* - V0 || 

 

4. Thus  
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Value Iteration: Stopping Condition 

Want to stop when we can guarantee the value 

function is near optimal. 

Key property: (not hard to prove) 

 

If  ||Vk - Vk-1||≤ ε then ||Vk – V*|| ≤ εβ /(1-β) 

 

 

Continue iteration until ||Vk - Vk-1||≤ ε  

Select small enough ε for desired error 

guarantee  
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How to Act 

Given a Vk from value iteration that closely 
approximates V*, what should we use as our 
policy? 

 

Use greedy policy: (one step lookahead) 

 

 

 

Note that the value of greedy policy may not 
be equal to Vk 

Why? 
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How to Act 

Use greedy policy: (one step lookahead) 

 

 

 

We care about the value of the greedy policy 
which we denote by Vg 
This is how good the greedy policy will be in practice. 

 

How close is Vg to V*? 
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Value of Greedy Policy 

 

 

 Define Vg to be the value of this greedy policy 
 This is likely not the same as Vk 

 

 Property: If ||Vk – V*|| ≤ λ then ||Vg - V*|| ≤  2λβ /(1-β)  
 Thus, Vg is not too far from optimal if Vk is close to optimal 

 

 Our previous stopping condition allows us to bound λ based 
on ||Vk+1 – Vk|| 

 

 Set stopping condition so that ||Vg - V*|| ≤ Δ 

How?  
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Property: If ||Vk – V*|| ≤ λ then ||Vg - V*|| ≤  2λβ /(1-β)  

Property: If  ||Vk - Vk-1||≤ ε then ||Vk – V*|| ≤ εβ /(1-β) 

 

Goal: ||Vg - V*|| ≤ Δ 

Answer:  If ||Vk - Vk-1||≤ 1 − Β 2Δ/(2Β2) then ||Vg - V*|| ≤ Δ 



Policy Evaluation Revisited 

Sometimes policy evaluation is expensive due to 

matrix operations 

Can we have an iterative algorithm like value 

iteration for policy evaluation?  

 Idea: Given a policy π and MDP M, create a new 

MDP M[π] that is identical to M, except that in 

each state s we only allow a single action π(s) 

What is the optimal value function V* for M[π] ?  

Since the only valid policy for M[π] is π, V* = Vπ.  
 



Policy Evaluation Revisited 

Running VI on M[π] will converge to V* = Vπ. 

What does the Bellman backup look like here?  

 

The Bellman backup now only considers one 

action in each state, so there is no max 

We are effectively applying a backup restricted by π 
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Iterative Policy Evaluation 
 

Running VI on M[π] is equivalent to iteratively 

applying the restricted Bellman backup.  

 

 

 

 

 

 

Often become close to Vπ for small k 
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Iterative Policy Evaluation: 

Convergence:  
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Optimization via Policy Iteration 

Policy iteration uses policy evaluation as a sub 

routine for optimization 

 It iterates steps of policy evaluation and policy 

improvement 

1. Choose a random policy π 

2. Loop: 

   (a) Evaluate Vπ 

   (b) π’ = ImprovePolicy(Vπ) 

   (c) Replace π with π’ 

Until no improving action possible at any state 

Given Vπ  returns a strictly 

better policy if π isn’t  
optimal 
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Policy Improvement 

Given Vπ  how can we compute a policy π’ that is 

strictly better than a sub-optimal π? 

 Idea: given a state s, take the action that looks the 

best assuming that we following policy π thereafter 

That is, assume the next state s’ has value Vπ (s’)  

 

 

Proposition: Vπ’  ≥ Vπ  with strict inequality for sub-

optimal π.    

For each s in S, set  )'(
'

)',,(maxarg)(' s
s

VsasTs

a

  



30 

Proposition: Vπ’  ≥ Vπ  with strict inequality for sub-optimal π. 
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For any two value functions 𝑉1 and 𝑉2, we write 𝑉1 ≥ 𝑉2 to 

indicate that for all states s, 𝑉1 𝑠 ≥ 𝑉2 𝑠 .  

 

Useful Properties for Proof: 

1) 𝑉𝜋 = B𝜋[V𝜋] 

2) For any 𝑉1, 𝑉2 and 𝜋, if 𝑉1 ≥ 𝑉2 then 𝐵𝜋 𝑉1 ≥ 𝐵𝜋[𝑉2]  
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Proposition: Vπ’  ≥ Vπ  with strict inequality for sub-optimal π. 
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Proof: 
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Proposition: Vπ’  ≥ Vπ  with strict inequality for sub-optimal π. 
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Proof: 
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Optimization via Policy Iteration 

1. Choose a random policy π 

2. Loop: 

   (a) Evaluate Vπ 

   (b) For each s in S, set  

   (c) Replace π with π’ 

Until no improving action possible at any state 
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Proposition: Vπ’  ≥ Vπ  with strict inequality for sub-optimal π. 

  
Policy iteration goes through a sequence of improving policies 
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Policy Iteration: Convergence 

Convergence assured in a finite number of 

iterations 

Since finite number of policies and each step 

improves value, then must converge to optimal 

Gives exact value of optimal policy 
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Policy Iteration Complexity 

Each iteration runs in polynomial time in the 
number of states and actions 

There are at most |A|n policies and PI never 
repeats a policy 
So at most an exponential number of iterations 

Not a very good complexity bound 

Empirically O(n) iterations are required often 
it seems like O(1) 
Challenge: try to generate an MDP that requires 

more than that n iterations 

Still no polynomial bound on the number of PI 
iterations (open problem)! 
But may have been solved recently ????…..  
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Value Iteration vs. Policy Iteration 

Which is faster? VI or PI 
 It depends on the problem 

VI takes more iterations than PI, but PI 
requires more time on each iteration 
PI must perform policy evaluation on each 

iteration which involves solving a linear system 

VI is easier to implement since it does not 
require the policy evaluation step 
But see next slide 

We will see that both algorithms will serve as 
inspiration for more advanced algorithms 
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Modified Policy Iteration 

Modified Policy Iteration: replaces exact 
policy evaluation step with inexact iterative 
evaluation 
Uses a small number of restricted Bellman 

backups for evaluation 

 

Avoids the expensive policy evaluation step 

Perhaps easier to implement.  

Often is faster than PI and VI 

Still guaranteed to converge under mild 
assumptions on starting points 

 



Modified Policy Iteration 

1. Choose initial value function V 

2. Loop: 

   (a) For each s in S, set  
    

   (b) Partial Policy Evaluation  

         Repeat K times:  

 

Until change in V is minimal 
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Policy Iteration 

][VBV 
Approx. 

evaluation 
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Recap: things you should know 

What is an MDP? 

What is a policy?  
Stationary and non-stationary 

What is a value function?  
Finite-horizon and infinite horizon 

How to evaluate policies?  
Finite-horizon and infinite horizon 

Time/space complexity? 

How to optimize policies?  
Finite-horizon and infinite horizon 

Time/space complexity? 

Why they are correct?  


