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Figure 1: The results of a proton-proton collision at the Large Hadron Collider (LHC) at CERN.

The two proton beams beams travel perpendicular to the page, colliding at the origin of the tracks,

which are projected onto the plane of the page. Each of the curved tracks indicates a charged

particle in the final state. The tracks are curved because the detector is placed in a magnetic field;

the radius of the curvature of the path of a particle provides a means to determine its mass, and

therefore identify it.

1. Introduction

1.1 Relativistic Quantum Mechanics

Usually, additional symmetries simplify physical problems. For example, in non-relativistic

quantum mechanics (NRQM) rotational invariance greatly simplifies scattering problems.

Why does the addition of Lorentz invariance complicate quantum mechanics? The answer

is very simple: in relativistic systems, the number of particles is not conserved. In a

quantum system, this has profound implications.

Consider, for example, scattering a particle in potential. At low energies, E � mc2

where relativity is unimportant, NRQM provides a perfectly adequate description. The in-

cident particle is in some initial state, and one can fairly simply calculate the amplitude for

it to scatter into any final state. There is only one particle, before and after the scattering

process. At higher energies where relativity is important things gets more complicated, be-

cause if E ∼ mc2 there is enough energy to pop additional particles out of the vacuum (we

will discuss how this works at length in the course). For example, in p-p (proton-proton)

scattering with a centre of mass energy E > mπc
2 (where mπ ∼ 140 MeV is the mass of

the neutral pion) the process

p+ p→ p+ p+ π0

is possible. At higher energies, E > 2mpc
2, one can produce an additional proton-
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antiproton pair:

p+ p→ p+ p+ p+ p

and so on. Therefore, what started out as a simple two-body scattering process has turned

into a many-body problem, and it is necessary to calculate the amplitude to produce

a variety of many-body final states. The most energetic accelerator today is the Large

Hadron Collider at CERN, outside Geneva, which collides protons and antiprotons with

energies of several TeV, or several thousands times mpc
2, so typical collisions produce a

huge slew of particles (see Fig. 1).

Clearly we will have to construct a many-particle quantum theory to describe such a

process. However, the problems with NRQM run much deeper, as a brief contemplation of

the uncertainty principle indicates. Consider the familiar problem of a particle in a box.

In the nonrelativistic description, we can localize the particle in an arbitrarily small region,

as long as we accept an arbitrarily large uncertainty in its momentum. But relativity tells

us that this description must break down if the box gets too small. Consider a particle

of mass µ trapped in a container with reflecting walls of side L. The uncertainty in the

particle’s momentum is therefore of order ~/L. In the relativistic regime, this translates

to an uncertainty of order ~c/L in the particle’s energy. For L small enough, L <∼ ~/µc
(where ~/µc ≡ λc, the Compton wavelength of the particle), the uncertainty in the energy

of the system is large enough for particle creation to occur - particle anti-particle pairs can

pop out of the vacuum, making the number of particles in the container uncertain! The

physical state of the system is a quantum-mechanical superposition of states with different

particle number. Even the vacuum state - which in an interacting quantum theory is not

the zero-particle state, but rather the state of lowest energy - is complicated. The smaller

the distance scale you look at it, the more complex its structure.

Figure 2: A particle of mass µ cannot be localized in a region smaller than its Compton wavelength,

λc = ~/µ. At smaller scales, the uncertainty in the energy of the system allows particle production

to occur; the number of particles in the box is therefore indeterminate.

There is therefore no sense in which it is possible to localize a particle in a region
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smaller than its Compton wavelength. In atomic physics, where NRQM works very well,

this does not introduce any problems. The Compton wavelength of an electron (mass

µ = 0.511 MeV/c2), is 1/0.511 MeV × 197 MeV fm ∼ 4 × 10−11 cm, or about 10−3 Bohr

radii. So there is no problem localizing an electron on atomic scales, and the relativistic

corrections due to multi-particle states are small. On the other hand, the up and down

quarks which make up the proton have masses of order 10 MeV (λc ' 20 fm) and are

confined to a region the size of a proton, or about 1 fm. Clearly the internal structure of

the proton is much more complex than a simple three quark system, and relativistic effects

will be huge.

Thus, there is no such thing in relativistic quantum mechanics as the two, one, or even

zero body problem! In principle, one is always dealing with the infinite body problem.

Thus, except in very simple toy models (typically in one spatial dimension), it is impossi-

ble to solve any relativistic quantum system exactly. Even the nature of the vacuum state in

the real world, a horribly complex sea of quark-antiquark pairs, gluons, electron-positron

pairs as well as more exotic beasts like Higgs condensates and gravitons, is totally in-

tractable analytically. Nevertheless, as we shall see in this course, even incomplete (usually

perturbative) solutions will give us a great deal of understanding and predictive power.

As a general conclusion, you cannot have a consistent, relativistic, single particle quan-

tum theory. So we will have to set up a formalism to handle many-particle systems. Fur-

thermore, it should be clear from this discussion that our old friend the position operator ~X

from NRQM does not make sense in a relativistic theory: the {| ~x〉} basis of NRQM simply

does not exist, since particles cannot be localized to arbitrarily small regions. The first

casualty of relativistic QM is the position operator, and it will not arise in the formalism

which we will develop.

There is a second, intimately related problem which arises in a relativistic quantum

theory, which is that of causality. In both relativistic and nonrelativistic quantum mechan-

ics observables correspond to Hermitian operators. In NRQM, however, observables are

not attached to space-time points - one simply talks about the position operator, the mo-

mentum operator, and so on. However, in a relativistic theory we have to be more careful,

because making a measurement forces the system into an eigenstate of the corresponding

operator. Unless we are careful about only defining observables locally (i.e. having differ-

ent observables at each space-time point) we will run into trouble with causality, because

observables separated by spacelike separations will be able to interfere with one another.

Consider applying the NRQM approach to observables to a situation with two ob-

servers, One and Two, at space-time points x1 and x2, which are separated by a spacelike

interval. Observer One could be here and Observer Two in the Andromeda galaxy. Now

suppose that these two observers both decide to measure non-commuting observables. In

this case their measurements can interfere with one another. So imagine that Observer One

has an electron and measures the x−component of its spin, forcing it into an eigenstate of

the spin operator σx. If Observer Two measures a non-commuting observable such as σy,

the next time Observer One measures σx it has a 50% chance of being in the opposite spin

state, and so she can immediately tell that Observer Two has made a measurement. They

have communicated at faster than the speed of light. This of course violates causality, since
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Figure 3: Observers O1 and O2 are separated by a spacelike interval. A Lorentz boost will move

the observer O2 along the hyperboloid (∆t)2 − |∆~x|2 = constant, so the time ordering is frame

dependent, and they are not in causal contact. Therefore, measurements made at the two points

cannot interfere, so observables at point 1 must commute with all observables at point 2.

there are reference frames in which Observer One’s second measurement preceded Observer

Two’s measurement (recall that the time-ordering of spacelike separated events depends

on the frame of reference), and leads to all sorts of paradoxes (maybe Observer Two then

changes his mind and doesn’t make the measurement ...).

The problem with NRQM in this context is that it has action at a distance built in:

observables are universal, and don’t refer to particular space-time points. Classical physics

got away from action at a distance by introducing electromagnetic and gravitational fields.

The fields are defined at all spacetime points, and the dynamics of the fields are purely

local - the dynamics of the field at a point xµ are determined entirely by the physical

quantities (the various fields and their derivatives, as well as the charge density) at that

point. In relativistic quantum mechanics, therefore, we can get away from action at a

distance by promoting all of our operators to quantum fields: operator-valued functions

of space-time whose dynamics is purely local. Hence, relativistic quantum mechanics is

usually known as “Quantum Field Theory.” The requirement that causality be respected

then simply translates into a requirement that spacelike separated observables commute:

as our example demonstrates, if O1(x1) and O2(x2) are observables which are defined at

the space-time points x1 and x2, we must have

[O1(x1), O2(x2)] = 0 for (x1 − x2)2 < 0. (1.1)

Spacelike separated measurements cannot interfere with one another.

1.2 Conventions and Notation

Before delving into QFT, we will set a few conventions for the notation we will be using in

this course.
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1.2.1 Units

We will choose the “natural” system of units to simplify formulas and calculations, in which

~ = c = 1 (we do this by choosing units such that one unit of velocity is c and one unit of

action is ~.) This makes life much simpler. For example, by setting ~ = 1, we no longer

have to distinguish between wavenumber ~k and momentum ~P = ~~k, or between frequency

ω and energy E = ~ω. Indeed, in these units all dimensionful quantities may be expressed

in terms of a single unit, which we usually take to be mass, or, equivalently, energy (since

E = mc2 becomes E = m). In particle physics we usually take the choice of energy unit

to be the electron-Volt (eV), or more commonly MeV, GeV (=109 eV) or TeV (=1012)

eV. From the fact that velocity (L/T ) and action (ML2/T ) are dimensionless we find that

length and time have units of eV−1. When we refer to the dimension of a quantity in this

course we mean the mass dimension: if X has dimensions of (mass)d, we write [X] = d.

Consider the fine structure constant, which is a fundamental dimensionless number

characterizing the strength of the electromagnetic interaction to a single charged particle.

In the old units it is

α =
e2

4π~c
=

1

137.04
.

In the new units it is

α =
e2

4π
=

1

137.04
.

Thus the charge e has units of (~c)1/2 in the old units, but it is dimensionless in the new

units.

It is easy to convert a physical quantity back to conventional units by using the fol-

lowing.

~ = 6.58× 10−22 MeV sec

~c = 1.97× 10−11 MeV cm (1.2)

By multiplying or dividing by these factors you can convert factors of MeV into sec or cm.

A useful conversion is

~c = 197 MeV fm (1.3)

where 1 fm (femtometer, or “fermi”)= 10−13 cm is a typical nuclear scale. Some particle

masses in natural units are:

particle mass

e− (electron) 511 keV

µ− (muon) 105.7 MeV

π0 (pion) 134 MeV

p (proton) 938.3 MeV

n (neutron) 939.6 MeV

B (B meson) 5.279 GeV

W+ (W boson) 80.2 GeV

Z0 (Z boson 91.17 GeV
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1.2.2 Relativistic Notation

When dealing with non-orthogonal coordinates, it is of crucial importance to distinguish

between contravariant coordinates xµ and covariant coordinates xµ. Just to remind you

of the distinction, consider the set of two-dimensional non-orthogonal coordinates on the

plane shown in Fig. (4).

1

2

x

Figure 4: Non-orthogonal coordinates on the plane.

Now consider the coordinates of a point x in the (1, 2) basis. In terms of the unit

vectors ê1 and ê2 (where the (1, 2) subscripts are labels, not indices: ê1 and ê2 are vectors,

not coordinates), we can write

~x = x1ê1 + x2ê2 (1.4)

which defines the contravariant coordinates x1 and x2; these distances are marked on the

diagram.

The covariant coordinates (x1, x2) are defined by

x1,2 ≡ ~x · ê1,2 (1.5)

which are also shown on the figure. Note that for orthogonal axes in flat (Euclidean) space

there is no distinction between covariant and contravariant coordinates, which is how you

made it this far without worrying about the distinction. However, away from Euclidean

space (in particular, in Minkowski space-time) the distinction is crucial.

Given the two sets of coordinates, it is simple to take the scalar product of two vectors.

From the definitions above, we have

~x · ~y = ~x · (y1ê1 + y2ê2)

= y1~x · ê1 + y2~x · ê2

= y1x1 + y2x2 = y1x
1 + y2x

2 (1.6)

so scalar products are always obtained by pairing upper with lower indices. The relation

between contravariant and covariant coordinates is straightforward to derive:

xi = (x1ê1 + x2ê2) · êi
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= xj(êi · êj)
≡ gijx

j (1.7)

where we have defined the metric tensor

gij ≡ êi · êj . (1.8)

Note that we are also using the Einstein summation convention: repeated indices (always

paired - upper and lower) are implicitly summed over.

One can also define the metric tensor with raised and mixed indices via the relations

gij ≡ gikgkj ≡ gikgjlgkl (1.9)

(note that gji = δji , the Kronecker delta). The metric tensor gij raises indices in the natural

way,

xi = gijxj . (1.10)

Minkowskian space is a simple situation in which we use non-orthogonal basis vectors,

because time and space look different. The contravariant components of the four-vector xµ

are (t, r) = (t, x, y, z) where µ = 0, 1, 2, 3. The flat Minkowski space metric is

gµν = gµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (1.11)

Often the flat Minkowski space metric is denoted ηµν , but since we will always be working

in flat space in this course, we will use gµν and ηµν interchangeably. Note that some texts

define gµν as minus this (the so-called “east-coast convention”). Despite our location, we’ll

adopt the “west-coast convention”, above.

The metric tensor is used to raise and lower indices: xµ = gµνx
ν = (t,−r). The scalar

product of two four-vectors is written as

aµb
µ = aµbµ = aµgµνb

ν = a0b0 − a · b. (1.12)

It easily follows that this is Lorentz invariant, a′µb
′µ = aµb

µ.

Note that as before, repeated indices are summed over, and upper indices are always

paired with lower indices (see Fig. (5)). This ensures that the result of the contraction is a

Lorentz scalar. If you get an expression like aµbµ (this isn’t a scalar because the upper and

lower indices aren’t paired) or (worse) aµbµcµdµ (which indices are paired with which?)

you’ve probably made a mistake. If in doubt, it’s sometimes helpful to include explicit

summations until you get the hang of it. Remember, this notation was designed to make

your life easier!

Under a Lorentz transformation a four-vector transforms according to matrix multi-

plication:

x′
µ

= Λµνx
ν . (1.13)
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a�b�c�
Figure 5: Be careful with indices.

where the 4×4 matrix Λµν defines the Lorentz transformation. Special cases of Λµν include

space rotations and “boosts”, which look as follows:

Λµν(rotation about z−axis) =


1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1



Λµν(boost in x direction) =


γ −γv 0 0

−γv γ 0 0

0 0 1 0

0 0 0 1

 (1.14)

with γ = (1 − v2)−1/2. The set of all Lorentz transformations may be defined as those

transformations which leave gµν invariant:

gµν = gαβΛαµΛβν . (1.15)

To see how derivatives transform under Lorentz transformations, we note that the variation

δφ =
∂φ

∂xµ
δxµ (1.16)

is a scalar and we would therefore like to write it as δφ = ∂µφδx
µ. Thus we define

∂µ ≡
∂

∂xµ
=

(
∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
(1.17)

and

∂µ ≡ ∂

∂xµ
=

(
∂

∂t
,− ∂

∂x
,− ∂

∂y
,− ∂

∂z

)
. (1.18)

Thus, ∂/∂xµ transforms as a covariant (lower indices) four-vector. Note that

∂µA
µ = ∂0A

0 + ∂jA
j (1.19)

and

∂µ∂µ =
∂2

∂t2
−∇2 = 2. (1.20)
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The energy and momentum of a particle together form the components of its 4-

momentum Pµ = (E, ~p).

Finally, we will make use (particularly in the section of Dirac fields) of the completely

antisymmetric tensor εµναβ (often known as the Levi-Civita tensor). It is defined by

εµναβ =


1 if (µ, ν, α, β) is an even permutation of (0,1,2,3),

−1 if (µ, ν, α, β) is an odd permutation of (0,1,2,3),

0 if (µ, ν, α, β) is not a permutation of (0,1,2,3).

(1.21)

Note that you must be careful with raised or lowered indices, since ε0123 = −ε0123 = 1. You

should verify that (like the metric tensor gµν) εµναβ is a relativistically invariant tensor;

that is, that under a Lorentz transformation the properties (1.21) still hold.

1.2.3 Fourier Transforms

We will frequently need to go back and forth between the position (x) and momentum

(or wavenumber) (p or k) space descriptions of a function, via the Fourier transform. As

you should recall, the Fourier transform f̃(k) allows any function f(x) to be expanded

on a continuous basis of plane waves. In quantum mechanics, plane waves correspond to

eigenstates of momentum, so Fourier transforming a field will allow us to write it as a sum

of modes with definite momentum, which is frequently a very useful thing to do. In n

dimensions we therefore write

f(x) =

∫
dnk

(2π)n
f̃(k)eik·x. (1.22)

It is simple to show that f̃(k) is therefore given by

f̃(k) =

∫
dnxf(x)e−ik·x (1.23)

We have introduced two conventions here which we shall stick to in the rest of the course:

the sign of the exponentials (we could just as easily have reversed the signs of the ex-

ponentials in Eqs. (1.22) and (1.23)) and the placement of the factors of 2π. The latter

convention will prove to be convenient because it allows us to easily keep track of powers

of 2π - every time you see a dnk it comes with a factor of (2π)−n, while dnx’s have no such

factors. Also remember that in Minkowski space, k · x = Et − ~k · ~x, where E = k0 and

t = x0.

1.2.4 The Dirac Delta “Function”

We will frequently be making use in this course of the Dirac delta function δ(x), which

satisfies ∫ ∞
−∞

dx δ(x) = 1 (1.24)

and

δ(x) = 0, x 6= 0. (1.25)
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Similarly, in n dimensions we may define the n dimensional delta function

δ(n)(x) ≡ δ(x0)δ(x1)...δ(xn) (1.26)

which satisfies ∫
dnx δ(n)(x) = 1. (1.27)

The δ function can be written as the Fourier transform of a constant,

δ(n)(x) =
1

(2π)n

∫
dnp eip·x. (1.28)

We will also make use of the (one-dimensional) step function

θ(x) =

{
1, x > 0

0, x < 0
(1.29)

which satisfies
dθ(x)

dx
= δ(x). (1.30)

Note that the symbol x will sometimes denote an n-dimensional vector with components

xµ, as in Eq. (1.26), and sometimes a single coordinate, as in Eq. (1.29) - it should be

clear from context. For clarity, however, we will usually distinguish three-vectors (~x) from

four-vectors (x or xµ).

1.3 A Näıve Relativistic Theory

Having dispensed with the formalities, in this section we will illustrate with a simple

example the somewhat abstract worries about causality we had in the previous section.

We will construct a relativistic quantum theory as an obvious relativistic generalization of

NRQM, and discover that the theory violates causality: a single free particle will have a

nonzero amplitude to be found to have travelled faster than the speed of light.

Consider a free, spinless particle of mass µ. The state of the particle is completely

determined by its three-momentum ~k (that is, the components of momentum form a com-

plete set of commuting observables). We may choose as a set of basis states the set of

momentum eigenstates {|~k〉}:
~P |~k〉 = ~k|~k〉 (1.31)

where ~P is the momentum operator. (Note that in our notation, ~P is an operator on the

Hilbert space, while the components of ~k are just numbers.) These states are normalized

〈~k |~k′〉 = δ(3)(~k − ~k′) (1.32)

and satisfy the completeness relation∫
d3k |~k〉〈~k | = 1. (1.33)

An arbitrary state |ψ〉 is a linear combination of momentum eigenstates

|ψ〉 =

∫
d3k ψ(~k) |~k〉 (1.34)
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ψ(~k) ≡ 〈~k |ψ〉. (1.35)

The time evolution of the system is determined by the Schrödinger equation

i
∂

∂t
|ψ(t)〉 = H|ψ(t)〉. (1.36)

where the operator H is the Hamiltonian of the system. The solution to Eq. (1.36) is

|ψ(t′)〉 = e−iH(t′−t)|ψ(t)〉. (1.37)

In NRQM, for a free particle of mass µ,

H|~k〉 =
|~k|2
2µ
|~k〉. (1.38)

If we rashly neglect the warnings of the first section about the perils of single-particle

relativistic theories, it appears that we can make this theory relativistic simply by replacing

the Hamiltonian in Eq. (1.38) by the relativistic Hamiltonian

Hrel =

√
|~P |2 + µ2. (1.39)

The basis states now satisfy

Hrel|~k〉 = ωk|~k〉 (1.40)

where

ωk ≡
√
|~k|2 + µ2. (1.41)

is the energy of the particle.

This theory looks innocuous enough. We have already argued on general grounds that

it cannot be consistent with causality. Nevertheless, it is instructive to show this explicitly.

We will find that, if we prepare a particle localized at one position, there is a non-zero

probability of finding it outside of its forward light cone at some later time.

To measure the position of a particle, we introduce the position operator, ~X, satisfying

[Xi, Pj ] = iδij (1.42)

(remember, we are setting ~ = 1 in everything that follows). In the {|~k〉} basis, matrix

elements of ~X are given by

〈~k |Xi|ψ〉 = i
∂

∂ki
ψ(~k) (1.43)

and position eigenstates by

〈~k |~x〉 =
1

(2π)3/2
e−i

~k·~x. (1.44)

Now let us imagine that at t = 0 we have localized a particle at the origin:

|ψ(0)〉 = | ~x = 0〉. (1.45)

After a time t we can calculate the amplitude to find the particle at the position ~x. This

is just

〈~x |ψ(t)〉 = 〈~x |e−iHt| ~x = 0〉. (1.46)
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Figure 6: Contour integral for evaluating the integral in Eq. (1.48). The original path of integration

is along the real axis; it is deformed to the dashed path (where the radius of the semicircle is infinite).

The only contribution to the integral comes from integrating along the branch cut.

Inserting the completeness relation Eq. (1.33) and using Eqs. (1.44) and (1.40) we can

express this as

〈~x |ψ(t)〉 =

∫
d3k〈~x |~k〉〈~k |e−iHt| ~x = 0〉

=

∫
d3k

1

(2π)3
ei
~k·~xe−iωkt

=

∫ ∞
0

k2dk

(2π)3

∫ π

0
dθ sin θ

∫ 2π

0
dφ eikr cos θe−iωkt (1.47)

where we have defined k ≡ |~k| and r ≡ |~x|. The angular integrals are straightforward,

giving

〈~x |ψ(t)〉 = − i

(2π)2r

∫ ∞
−∞

k dk eikre−iωkt. (1.48)

For r > t, i.e. for a point outside the particle’s forward light cone, we can prove using

contour integration that this integral is non-zero.

Consider the integral Eq. (1.48) defined in the complex k plane. The integral is along

the real axis, and the integrand is analytic everywhere in the plane except for branch cuts

at k = ±iµ, arising from the square root in ωk. The contour integral can be deformed as

shown in Fig. (6). For r > t, the integrand vanishes exponentially on the circle at infinity

in the upper half plane, so the integral may be rewritten as an integral along the branch

cut. Changing variables to z = −ik,

〈~x |ψ(t)〉 = − i

(2π)2r

∫ ∞
µ

(iz)d(iz)e−zr
(
e
√
z2−µ2t − e−

√
z2−µ2t

)
=

i

2π2r
e−µr

∫ ∞
µ

dz ze−(z−µ)rsinh
(√

z2 − µ2 t
)
. (1.49)

The integrand is positive definite, so the integral is non-zero. The particle has a small but

non-zero probability to be found outside of its forward light-cone, so the theory is acausal.
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Note the exponential envelope, e−µr in Eq. (1.49) means that for distances r � 1/µ there

is a negligible chance to find the particle outside the light-cone, so at distances much

greater than the Compton wavelength of a particle, the single-particle theory will not lead

to measurable violations of causality. This is in accordance with our earlier arguments

based on the uncertainty principle: multi-particle effects become important when you are

working at distance scales of order the Compton wavelength of a particle.

How does the multi-particle element of quantum field theory save us from these diffi-

culties? It turns out to do this in a quite miraculous way. We will see in a few lectures

that one of the most striking predictions of QFT is the existence of antiparticles with the

same mass as, but opposite quantum numbers of, the corresponding particle. Now, since

the time ordering of two spacelike-separated events at points x and y is frame-dependent,

there is no Lorentz invariant distinction between emitting a particle at x and absorbing it

at y, and emitting an antiparticle at y and absorbing it at x: in Fig. (3), what appears

to be a particle travelling from O1 to O2 in the frame on the left looks like an antiparticle

travelling from O2 to O1 in the frame on the right. In a Lorentz invariant theory, both

processes must occur, and they are indistinguishable. Therefore, if we wish to determine

whether or not a measurement at x can influence a measurement at y, we must add the

amplitudes for these two processes. As it turns out, the amplitudes exactly cancel, so

causality is preserved.
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2. Constructing Quantum Field Theory

2.1 Multi-particle Basis States

2.1.1 Fock Space

Having killed the idea of a single particle, relativistic, causal quantum theory, we now

proceed to set up the formalism for a consistent theory. The first thing we need to do is

define the states of the system. The basis for our Hilbert space in relativistic quantum

mechanics consists of any number of spinless mesons (the space is called “Fock Space”.)

However, we saw in the last section that a consistent relativistic theory has no position

operator. In QFT, position is no longer an observable, but instead is simply a parameter,

like the time t. In other words, the unphysical question “where is the particle at time t”

is replaced by physical questions such as “what is the expectation value of the observable

O (the electric field, the energy density, etc.) at the space-time point (t, ~x).” Therefore,

we can’t use position eigenstates as our basis states. The momentum operator is fine;

momentum is a conserved quantity and can be measured in an arbitrarily small volume

element. Therefore, we choose as our single particle basis states the same states as before,

{|~k〉}, (2.1)

but now this is only a piece of the Hilbert space. The basis of two-particle states is

{| ~k1, ~k2〉}. (2.2)

Because the particles are bosons, these states are even under particle interchange1

| ~k1, ~k2〉 = | ~k2, ~k1〉. (2.3)

They also satisfy

〈 ~k1, ~k2 | ~k′1, ~k′2〉 = δ(3)( ~k1 − ~k′1)δ(3)( ~k2 − ~k′2) + δ(3)( ~k1 − ~k′2)δ(3)( ~k2 − ~k′1)

H| ~k1, ~k2〉 = (ωk1 + ωk2)| ~k1, ~k2〉
~P | ~k1, ~k2〉 = ( ~k1 + ~k2)| ~k1, ~k2〉. (2.4)

States with 2,3,4, ... particles are defined analogously. There is also a zero-particle state,

the vacuum | 0〉:

〈0 |0〉 = 1

H| 0〉 = 0, ~P | 0〉 = 0 (2.5)

and the completeness relation for the Hilbert space is

1 = | 0〉〈0 |+
∫
d3k|~k〉〈~k |+ 1

2!

∫
d3k1d

3k2| ~k1, ~k2〉〈 ~k1, ~k2 |+ ... (2.6)

1We will postpone the study of fermions until later on, when we discuss spinor fields.
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(The factor of 1/2! is there to avoid double-counting the two-particle states.) This is

starting to look unwieldy. An arbitrary state will have a wave function over the single-

particle basis which is a function of 3 variables (kx, ky, kz), a wave function over the

two-particle basis which is a function of 6 variables, and so forth. An interaction term in

the Hamiltonian which creates a particle will connect the single-particle wave-function to

the two-particle wave-function, the two-particle to the three-particle, ... . This will be a

mess. We need a better description, preferably one which has no explicit multi-particle

wave-functions.

As a pedagogical device, it will often be convenient in this course to consider systems

confined to a periodic box of side L. This is nice because the wavefunctions in the box are

normalizable, and the allowed values of ~k are discrete. Since translation by L must leave

the system unchanged, the allowed momenta must be of the form

~k =

(
2πnx
L

,
2πny
L

,
2πnz
L

)
(2.7)

for nx, ny, nz integers.

We can then write our states in the occupation number representation,

| ...n(~k), n(~k′), ...〉 (2.8)

where the n(~k)’s give the number of particles of each momentum in the state. Sometimes

the state (2.8) is written

|n(·)〉

where the (·) indicates that the state depends on the function n for all ~k’s, not any single
~k. The number operator N(~k) counts the occupation number for a given ~k,

N(~k)|n(·)〉 = n(~k)|n(·)〉. (2.9)

In terms of N(~k) the Hamiltonian and momentum operator are

H =
∑
~k

ωkN(~k) ~P =
∑
~k

~kN(~k). (2.10)

This is bears a striking resemblance to a system we have seen before, the simple harmonic

oscillator. For a single oscillator, HSHO = ω(N + 1
2), where N is the excitation level

of the oscillator. Fock space is in a 1-1 correspondence with the space of an infinite

system of independent harmonic oscillators, and up to an (irrelevant) overall constant, the

Hamiltonians for the two theories look the same. We can make use of that correspondence

to define a compact notation for our multiparticle theory.

2.1.2 Review of the Simple Harmonic Oscillator

The Hamiltonian for the one dimensional S.H.O. is

HSHO =
P 2

2µ
+

1

2
ω2µX2. (2.11)
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We can write this in a simpler form by performing the canonical transformation

P → p =
P√
µω

, X → q =
√
µωX (2.12)

(the transformation is canonical because it preserves the commutation relation [P,X] =

[p, q] = −i). In terms of p and q the Hamiltonian (2.11) is

HSHO =
ω

2
(p2 + q2). (2.13)

The raising and lowering operators a and a† are defined as

a =
q + ip√

2
, a† =

q − ip√
2

(2.14)

and satisfy the commutation relations

[a, a†] = 1, [H, a†] = ωa†, [H, a] = −ωa (2.15)

where H = ω(a†a+ 1/2) ≡ ω(N + 1/2). If H|E〉 = E|E〉, it follows from (2.15) that

Ha†|E〉 = (E + ω)a†|E〉
Ha|E〉 = (E − ω)a†|E〉. (2.16)

so there is a ladder of states with energies ..., E−ω,E,E+ω,E+2ω, .... Since 〈ψ |a†a|ψ〉 =

|a|ψ〉|2 ≥ 0, there is a lowest weight state | 0〉 satisfying N | 0〉 = 0 and a| 0〉 = 0. The higher

states are made by repeated applications of a†,

|n〉 = cn(a†)n| 0〉, N |n〉 = n|n〉. (2.17)

Since 〈n |aa†|n〉 = n+1, it is easy to show that the constant of proportionality cn = 1/
√
n!.

2.1.3 An Operator Formalism for Fock Space

Now we can apply this formalism to Fock space. Define creation and annihilation operators

ak and a†k for each momentum ~k (remember, we are still working in a box so the allowed

momenta are discrete). These obey the commutation relations

[ak, a
†
k′ ] = δkk′ , [ak, ak′ ] = [a†k, a

†
k′ ] = 0. (2.18)

The single particle states are

|~k〉 = a†k| 0〉, (2.19)

the two-particle states are

|~k,~k′〉 = a†ka
†
k′ | 0〉 (2.20)

and so on. The vacuum state, | 0〉, satisfies

ak| 0〉 = 0 (2.21)
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and the Hamiltonian is

H =
∑
~k

ωk a
†
kak. (2.22)

At this point we can remove the box and, with the obvious substitutions, define creation

and annihilation operators in the continuum. Taking

[ak, a
†
k′ ] = δ(3)(~k − ~k′), [ak, ak′ ] = [a†k, a

†
k′ ] = 0 (2.23)

it is easy to check that we recover the normalization condition 〈~k′|~k〉 = δ(3)(~k − ~k′) and

that H|~k〉 = ωk|~k〉, ~P |~k〉 = ~k|~k〉.
We have seen explicitly that the energy and momentum operators may be written in

terms of creation and annihilation operators. In fact, any observable may be written in

terms of creation and annihilation operators, which is what makes them so useful.

2.1.4 Relativistically Normalized States

The states {| 0〉, |~k〉, |~k1,~k2〉, ...} form a perfectly good basis for Fock Space, but will some-

times be awkward in a relativistic theory because they don’t transform simply under

Lorentz transformations. This is not unexpected, since the normalization and completeness

relations clearly treat spatial components of kµ differently from the time component. Since

multi-particle states are just tensor products of single-particle states, we can see how our

basis states transform under Lorentz transformations by just looking at the single-particle

states.

Let O(Λ) be the operator acting on the Hilbert space which corresponds to the Lorentz

transformation x′µ = Λµνx
ν . The components of the four-vector kµ = (ωk,~k) transform

according to

k′µ = Λµνk
ν . (2.24)

Therefore, under a Lorentz transformation, a state with three momentum ~k is obviously

transformed into one with three momentum ~k′. But this tells us nothing about the nor-

malization of the transformed state; it only tells us that

O(Λ)|~k〉 = λ(~k,~k′)| ~k′〉 (2.25)

where ~k′ is given by Eq. (2.24), and λ is a proportionality constant to be determined. Of

course, for states which have a nice relativistic normalization, λ would be one. Unfortu-

nately, our states don’t have a nice relativistic normalization. This is easy to see from the

completeness relation, Eq. (1.33), because d3k is not a Lorentz invariant measure. As we

will show in a moment, under the Lorentz transformation (2.24) the volume element d3k

transforms as

d3k → d3k′ =
ωk′

ωk
d3k. (2.26)

Since the completeness relation, Eq. (1.33), holds for both primed and unprimed states,∫
d3k |~k〉〈~k | =

∫
d3k′ |~k′〉〈~k′ | = 1 (2.27)
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we must have

O(Λ)|~k〉 =

√
ωk′

ωk
| ~k′〉 (2.28)

which is not a simple transformation law. Therefore we will often make use of the rela-

tivistically normalized states

| k〉 ≡
√

(2π)3
√

2ωk |~k〉 (2.29)

(The factor of (2π)3/2 is there by convention - it will make factors of 2π come out right in

the Feynman rules we derive later on.) The states | k〉 now transform simply under Lorentz

transformations:

O(Λ)| k〉 = | k′〉. (2.30)

The convention I will attempt to adhere to from this point on is states with three-vectors,

such as |~k〉, are non-relativistically normalized, whereas states with four-vectors, such as

| k〉, are relativistically normalized.

The easiest way to derive Eq. (2.26) is simply to note that d3k is not a Lorentz invariant

measure, but the four-volume element d4k is. Since the free-particle states satisfy k2 = µ2,

we can restrict kµ to the hyperboloid k2 = µ2 by multiplying the measure by a Lorentz

invariant function:

d4k δ(k2 − µ2) θ(k0)

= d4k δ((k0)2 − |~k|2 − µ2) θ(k0)

=
d4k

2k0
δ(k0 − ωk) θ(k0). (2.31)

(Note that the θ function restricts us to positive energy states. Since a proper Lorentz

transformation doesn’t change the direction of time, this term is also invariant under a

proper L.T.) Performing the k0 integral with the δ function yields the measure

d3k

2ωk
. (2.32)

Under a Lorentz boost our measure is now invariant:

d3k

ωk
=
d3k′

ωk′
(2.33)

which immediately gives Eq. (2.26).

Finally, whereas the nonrelativistically normalized states obeyed the orthogonality

condition

〈~k′ |~k〉 = δ(3)(~k − ~k′) (2.34)

the relativistically normalized states obey

〈k′ |k〉 = (2π)32ωkδ
(3)(~k − ~k′). (2.35)

The factor of ωk compensates for the fact that the δ function is not relativistically invariant.
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2.2 Canonical Quantization

Having now set up a slick operator formalism for a multiparticle theory based on the SHO,

we now have to construct a theory which determines the dynamics of observables. As we

argued in the last section, we expect that causality will require us to define observables

at each point in space-time, which suggests that the fundamental degrees of freedom in

our theory should be fields, φa(x). In the quantum theory they will be operator valued

functions of space-time. For the theory to be causal, we must have [φ(x), φ(y)] = 0 for

(x − y)2 < 0 (that is, for x and y spacelike separated). To see how to achieve this, let us

recall how we got quantum mechanics from classical mechanics.

2.2.1 Classical Particle Mechanics

In CPM, the state of a system is defined by generalized coordinates qa(t) (for example

{x, y, z} or {r, θ, φ}), and the dynamics are determined by the Lagrangian, a function of

the qa’s, their time derivatives q̇a and the time t: L(q1, q2, ...qn, q̇1, ..., q̇n, t) = T −V , where

T is the kinetic energy and V the potential energy. We will restrict ourselves to systems

where L has no explicit dependence on t (we will not consider time-dependent external

potentials). The action, S, is defined by

S ≡
∫ t2

t1

L(t)dt. (2.36)

Hamilton’s Principle then determines the equations of motion: under the variation qa(t)→
qa(t) + δqa(t), δqa(t1) = δqa(t2) = 0 the action is stationary, δS = 0.

Explicitly, this gives

δS =

∫ t2

t1

dt
∑
a

[
∂L

∂qa
δqa +

∂L

∂q̇a
δq̇a

]
. (2.37)

Define the canonical momentum conjugate to qa by

pa ≡
∂L

∂q̇a
. (2.38)

Integrating the second term in Eq. (2.37) by parts, we get

δS =

∫ t2

t1

dt
∑
a

[
∂L

∂qa
− ṗa

]
δqa + paδqa

∣∣∣t2
t1
. (2.39)

Since we are only considering variations which vanish at t1 and t2, the last term vanishes.

Since the δqa’s are arbitrary, Eq. (2.37) gives the Euler-Lagrange equations

∂L

∂qa
= ṗa. (2.40)

An equivalent formalism is the Hamiltonian formulation of particle mechanics. Define

the Hamiltonian

H(q1, ..., qn, p1, ..., pn) =
∑
a

paq̇a − L. (2.41)
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Note that H is a function of the p’s and q’s, not the q̇’s. Varying the p’s and q’s we find

dH =
∑
a

dpaq̇a + padq̇a −
∂L

∂qa
dqa −

∂L

∂q̇a
dq̇a

=
∑
a

dpaq̇a − ṗadqa (2.42)

where we have used the Euler-Lagrange equations and the definition of the canonical mo-

mentum. Varying p and q separately, Eq. (2.42) gives Hamilton’s equations

∂H

∂pa
= q̇a,

∂H

∂qa
= −ṗa. (2.43)

Note that when L does not explicitly depend on time (that is, its time dependence arises

solely from its dependence on the qa(t)’s and q̇a(t)’s) we have

dH

dt
=
∑
a

∂H

∂pa
ṗa +

∂H

∂qa
q̇a

=
∑
a

q̇aṗa − ṗaq̇a = 0 (2.44)

so H is conserved. In fact, H is the energy of the system (we shall show this later on when

we discuss symmetries and conservation laws.)

2.2.2 Quantum Particle Mechanics

Given a classical system with generalized coordinates qa and conjugate momenta pa, we

obtain the quantum theory by replacing the functions qa(t) and pa(t) by operator valued

functions q̂a(t), p̂a(t), with the commutation relations

[q̂a(t), q̂b(t)] = [p̂a(t), p̂b(t)] = 0

[p̂a(t), q̂b(t)] = −iδab (2.45)

(recall we have set ~ = 1). At this point let’s drop the ’̂s on the operators - it should be

obvious by context whether we are talking about quantum operators or classical coordinates

and momenta. Note that we have included explicit time dependence in the operators qa(t)

and pa(t). This is because we are going to work in the Heisenberg picture2,in which states

are time-independent and operators carry the time dependence, rather than the more

familiar Schrödinger picture, in which the states carry the time dependence. (In both

cases, we are considering operators with no explicit time dependence in their definition).

You are probably used to doing quantum mechanics in the “Schrödinger picture” (SP).

In the SP, operators with no explicit time dependence in their definition are time indepen-

dent. The time dependence of the system is carried by the states through the Schrödinger

equation

i
d

dt
|ψ(t)〉S = H|ψ(t)〉S =⇒ |ψ(t)〉S = e−iH(t−t0)|ψ(t0)〉S . (2.46)

2Actually, we will later be working in the “interaction picture”, but for free fields this is equivalent to

the Heisenberg picture. We will discuss this in a few lectures.
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However, there are many equivalent ways to define quantum mechanics which give the same

physics. This is simply because we never measure states directly; all we measure are the

matrix elements of Hermitian operators between various states. Therefore, any formalism

which differs from the SP by a transformation on both the states and the operators which

leaves matrix elements invariant will leave the physics unchanged. One such formalism is

the Heisenberg picture (HP). In the HP states are time independent

|ψ(t)〉H = |ψ(t0)〉H . (2.47)

Thus, Heisenberg states are related to the Schrödinger states via the unitary transformation

|ψ(t)〉H = eiH(t−t0)|ψ(t)〉S . (2.48)

Since physical matrix elements must be the same in the two pictures,

S〈ψ(t) |OS |ψ(t)〉S = S〈ψ(0) |eiHtOSe−iHt|ψ(0)〉S = H〈ψ(t) |OH(t)|ψ(t)〉H , (2.49)

from Eq. (2.48) we see that in the HP it is the operators, not the states, which carry the

time dependence:

OH(t) = eiHTOSe
−iHt = eiHTOH(0)e−iHt (2.50)

(since at t = 0 the two descriptions coincide, OS = OH(0)). This is the solution of the

Heisenberg equation of motion

i
d

dt
OH(t) = [OH(t), H]. (2.51)

Since we are setting up an operator formalism for our quantum theory (recall that we

showed in the first section that it was much more convenient to talk about creation and

annihilation operators rather than wave-functions in a multi-particle theory), the HP will

turn out to be much more convenient than the SP.

Notice that Eq. (2.51) gives

dqa(t)

dt
= i[H, qa(t)]. (2.52)

A useful property of commutators is that [qa, F (q, p)] = i∂F/∂pa where F is a function

of the p’s and q’s. Therefore [qa, H] = i∂H/∂pa and we recover the first of Hamilton’s

equations,
dqa
dt

=
∂H

∂pa
. (2.53)

Similarly, it is easy to show that ṗa = −∂H/∂qa. Thus, the Heisenberg picture has the

nice property that the equations of motion are the same in the quantum theory and the

classical theory. Of course, this does not mean the quantum and classical mechanics are

the same thing. In general, the Heisenberg equations of motion for an arbitrary operator

A relate one polynomial in p, q, ṗ and q̇ to another. We can take the expectation value of

this equation to obtain an equation relating the expectation values of observables. But in
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a general quantum state, 〈pnqm〉 6= 〈p〉n〈q〉m, and so the expectation values will NOT obey

the same equations as the corresponding operators.

However, in the classical limit, fluctuations are small, and expectation values of prod-

ucts in classical-looking states can be replaced by products of expectation values, and

this turns our equation among polynomials of quantum operators into an equation among

classical variables.

2.2.3 Classical Field Theory

In this quantum theory, observables are constructed out of the q’s and p’s. In a classical

field theory, such as classical electrodynamics, observables (in this case the electric and

magnetic field, or equivalently the vector and scalar potentials) are defined at each point in

space-time. The generalized coordinates of the system are just the components of the field

at each point x. We could label them just as before, qx,a where the index x is continuous

and a is discrete, but instead we’ll call our generalized coordinates φa(x). Note that x

is not a generalized coordinate, but rather a label on the field, describing its position in

spacetime. It is like t in particle mechanics. The subscript a labels the field; for fields

which aren’t scalars under Lorentz transformations (such as the electromagnetic field) it

will also denote the various Lorentz components of the field.

We will be rather cavalier about going to a continuous index from a discrete index

on our observables. Everything we said before about classical particle mechanics will go

through just as before with the obvious replacements∑
a

→
∫
d3x

∑
a

δab → δabδ
(3)(~x− ~x′). (2.54)

Since the Lagrangian for particle mechanics can couple coordinates with different labels

a, the most general Lagrangian we could write down for the fields could couple fields at

different coordinates x. However, since we are trying to make a causal theory, we don’t

want to introduce action at a distance - the dynamics of the field should be local in space

(as well as time). Furthermore, since we are attempting to construct a Lorentz invariant

theory and the Lagrangian only depends on first derivatives with respect to time, we will

only include terms with first derivatives with respect to spatial indices. We can write a

Lagrangian of this form as

L(t) =
∑
a

∫
d3xL(φa(x), ∂µφa(x)) (2.55)

where the action is given by

S =

∫ t2

t1

dtL(t) =

∫
d4xL(t, ~x). (2.56)

The function L(t, ~x) is called the “Lagrange density”; however, we will usually be sloppy

and follow the rest of the world in calling it the Lagrangian. Note that both L and S are

Lorentz invariant, while L is not.
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Once again we can vary the fields φa → φa + δφa to obtain the Euler-Lagrange equa-

tions:

0 = δS

=
∑
a

∫
d4x

(
∂L
∂φa

δφa +
∂L

∂(∂µφa)
δ∂µφa

)
=
∑
a

∫
d4x

([
∂L
∂φa
− ∂µΠµ

a

]
δφa + ∂µ [Πµ

aδφa]

)
=
∑
a

∫
d4x

(
∂L
∂φa
− ∂µΠµ

a

)
δφa (2.57)

where we have defined

Πµ
a ≡

∂L
∂(∂µφa)

(2.58)

and the integral of the total derivative in Eq. (2.57) vanishes since the δφa’s vanish on the

boundaries of integration. Thus we derive the equations of motion for a classical field,

∂L
∂φa

= ∂µΠµ
a . (2.59)

The analogue of the conjugate momentum pa is the time component of Πµ
a , Π0

a, and we

will often abbreviate it as Πa. The Hamiltonian of the system is

H =
∑
a

∫
d3x

(
Π0
a∂0φa − L

)
≡
∫
d3xH(x) (2.60)

where H(x) is the Hamiltonian density.

Now let’s construct a simple Lorentz invariant Lagrangian with a single scalar field.

The simplest thing we can write down that is quadratic in φ and ∂µφ is

L = 1
2a
[
∂µφ∂

µφ+ bφ2
]
. (2.61)

The parameter a is really irrelevant here; we can easily get rid of it by rescaling our fields

φ→ φ/
√
a. So let’s take instead

L = ±1
2

[
∂µφ∂

µφ+ bφ2
]
. (2.62)

What does this describe? Well, the conjugate momenta are

Πµ = ±∂µφ (2.63)

so the Hamiltonian is

H = ±1
2

∫
d3x

[
Π2 + (∇φ)2 − bφ2

]
. (2.64)

For the theory to be physically sensible, there must be a state of lowest energy. H must

be bounded below. Since there are field configurations for which each of the terms in
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Eq. (2.66) may be made arbitrarily large, the overall sign of H must be +, and we must

have b < 0. Defining b = −µ2, we have the Lagrangian (density)

L = 1
2

[
∂µφ∂

µφ− µ2φ2
]

(2.65)

and corresponding Hamiltonian

H = 1
2

∫
d3x

[
Π2 + (∇φ)2 + µ2φ2

]
. (2.66)

Each term in H is positive definite: the first corresponds to the energy required for the

field to change in time, the second to the energy corresponding to spatial variations, and

the last to the energy required just to have the field around in the first place. The equation

of motion for this theory is (
∂µ∂

µ + µ2
)
φ(x) = 0. (2.67)

This looks promising. In fact, this equation is called the Klein-Gordon equation, and

Eq. (2.65) is the Klein-Gordon Lagrangian. The Klein-Gordon equation was actually first

written down by Schrödinger, at the same time he wrote down

i
∂

∂t
ψ(x) = − 1

2µ
∇2ψ(x). (2.68)

In quantum mechanics for a wave ei(
~k·~x−ωt), we know E = ω, ~p = ~k, so this equation is just

E = ~p2/2µ. Of course, Schrödinger knew about relativity, so from E2 = ~p2 + µ2 he also

got [
− ∂2

∂t2
+∇2 − µ2

]
ψ = 0 (2.69)

or, in our notation, (
∂µ∂

µ + µ2
)
ψ(x) = 0. (2.70)

Unfortunately, this is a disaster if we want to interpret ψ(x) as a wavefunction as in

the Schrödinger Equation: this equation has both positive and negative energy solutions,

E = ±
√
~p2 + µ2. The energy is unbounded below and the theory has no ground state.

This should not be such a surprise, since we already know that single particle relativistic

quantum mechanics is inconsistent.

In Eq. (2.67), though, φ(x) is not a wavefunction. It is a classical field, and we just

showed that the Hamiltonian is positive definite. Soon it will be a quantum field which

is also not a wavefunction; it is a Hermitian operator. It will turn out that the positive

energy solutions to Eq. (2.67) correspond to the creation of a particle of mass µ by the field

operator, and the negative energy solutions correspond to the annihilation of a particle of

the same mass by the field operator. (It took eight years after the discovery of quantum

mechanics before the negative energy solutions of the Klein-Gordon equation were correctly

interpreted by Pauli and Weisskopf.) The Hamiltonian will still be positive definite. So

let’s quantize our classical field theory and construct the quantum field. Then we’ll try

and figure out what we’ve created.
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2.2.4 Quantum Field Theory

To quantize our classical field theory we do exactly what we did to quantize CPM, with

little more than a change of notation. Replace φ(x) and Πµ(x) by operator-valued functions

satisfying the commutation relations

[φa(~x, t), φb(~y, t)] = [Π0(~x, t),Π0(~y, t)] = 0

[φa(~x, t),Π
0
b(~y, t)] = iδab δ

(3)(~x− ~y). (2.71)

As before, φa(~x, t) and Πa(~y, t) are Heisenberg operators, satisfying

dφa(x)

dt
= i[H,φa(x)],

dΠa(x)

dt
= i[H,Πa(x)]. (2.72)

For the Klein-Gordon field it is easy to show using the explicit form of the Hamiltonian

Eq. (2.66) that the operators satisfy

φ̇a(x) = Π(x), Π̇(x) = ∇2φ− µ2φ (2.73)

and so the quantum fields also obey the Klein-Gordon equation.

Let’s try and get some feeling for φ(x) by expanding it in a plane wave basis. (Since

φ is a solution to the KG equation this is completely general.) The plane wave solutions

to Eq. (2.67) are exponentials eik·x where k2 = µ2. We can therefore write φ(x) as

φ(x) =

∫
d3k

[
αke

−ik·x + α†ke
ik·x
]

(2.74)

where the αk’s and α†k’s are operators. Since φ(x) is going to be an observable, it must be

Hermitian, which is why we have to have the α†k term. We can solve for αk and α†k. First

of all,

φ(~x, 0) =

∫
d3k

[
αke

i~k·~x + α†ke
−i~k·~x

]
∂0φ(~x, 0) =

∫
d3k(−iωk)

[
αke

i~k·~x − α†ke−i
~k·~x
]
. (2.75)

Recalling that the Fourier transform of e−i
~k·~x is a delta function:∫

d3x

(2π)3
e−i(

~k−~k′)·~x = δ(3)(~k − ~k′) (2.76)

we get ∫
d3x

(2π)3
φ(~x, 0)e−i

~k·~x = αk + α†−k∫
d3x

(2π)3
φ̇(~x, 0)e−i

~k·~x = (−iωk)(αk − α†−k) (2.77)
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and so

αk = 1
2

∫
d3x

(2π)3

[
φ(~x, 0) +

i

ωk
∂0φ(~x, 0)

]
e−i

~k·~x

α†k = 1
2

∫
d3x

(2π)3

[
φ(~x, 0)− i

ωk
∂0φ(~x, 0)

]
ei
~k·~x. (2.78)

Using the equal time commutation relations Eq. (2.71), we can calculate [αk, α
†
k′ ]:

[αk, α
†
k′ ] = −1

4

∫
d3xd3y

(2π)6

[
i

ωk′
[φ(~x, 0), φ̇(~y, 0)] +

i

ωk
[φ(~y, 0), φ̇(~x, 0)]

]
e−i

~k·~x+i~k′·~y

= −1

4

∫
d3xd3y

(2π)6

[
i

ωk′
[iδ(3)(~x− ~y)] +

i

ωk
[iδ(3)(~x− ~y)]

]
e−i

~k·~x+i~k′·~y

=
1

4

∫
d3x

(2π)6

[
1

ωk′
+

1

ωk

]
e−i(

~k−~k′)·~x

=
1

(2π)32ωk
δ(3)(~k − ~k′). (2.79)

This is starting to look familiar. If we define ak ≡ (2π)3/2
√

2ωkαk, then

[ak, a
†
k′ ] = δ(3)(~k − ~k′). (2.80)

These are just the commutation relations for creation and annihilation operators. So the

quantum field φ(x) is a sum over all momenta of creation and annihilation operators:

φ(x) =

∫
d3k

(2π)3/2
√

2ωk

[
ake
−ik·x + a†ke

ik·x
]
. (2.81)

Actually, if we are to interpret ak and a†k as our old annihilation and creation operators,

they had better have the right commutation relations with the Hamiltonian

[H, a†k] = ωka
†
k, [H, ak] = −ωkak (2.82)

so that they really do create and annihilate mesons. From the explicit form of the Hamil-

tonian (Eq. (2.66)), we can substitute the expression for the fields in terms of a†k and ak
and the commutation relation Eq. (2.80) to obtain an expression for the Hamiltonian in

terms of the a†k’s and ak’s. After some algebra (do it!), we obtain

H = 1
2

∫
d3k

2ωk

[
aka−ke

−2iωkt(−ω2
k + ~k2 + µ2)

+ a†kak(ω
2
k + ~k2 + µ2)

+ aka
†
k(ω

2
k + ~k2 + µ2)

+ a†ka
†
−ke

2iωkt(−ω2
k + ~k2 + µ2)

]
. (2.83)

Since ω2
k = ~k2 + µ2, the time-dependent terms drop out and we get

H = 1
2

∫
d3k ωk

[
aka
†
k + a†kak

]
. (2.84)
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This is almost, but not quite, what we had before,

H =

∫
d3k ωk a

†
kak. (2.85)

Commuting the ak and a†k in Eq. (2.84) we get

H =

∫
d3k ωk

[
a†kak + 1

2δ
(3)(0)

]
. (2.86)

δ(3)(0)? That doesn’t look right. Let’s go back to our box normalization for a moment.

Then

H = 1
2

∑
~k

ωk

[
aka
†
k + a†kak

]
=
∑
~k

[
a†kak + 1

2

]
(2.87)

so the δ(3)(0) is just the infinite sum of the zero point energies of all the modes. The energy

of each mode starts at 1
2ωk, not zero, and since there are an infinite number of modes we

got an infinite energy in the ground state.

This is no big deal. It’s just an overall energy shift, and it doesn’t matter where we

define our zero of energy. Only energy differences have any physical meaning, and these

are finite. However, since the infinity gets in the way, let’s use this opportunity to banish

it forever. We can do this by noticing that the zero point energy of the SHO is really

the result of an ordering ambiguity. For example, when quantizing the simple harmonic

oscillator we could have just as well written down the classical Hamiltonian

HSHO =
ω

2
(q − ip)(q + ip). (2.88)

When p and q are numbers, this is the same as the usual Hamiltonian ω
2 (p2 + q2). But

when p and q are operators, this becomes

HSHO = ω a†a (2.89)

instead of the usual ω(a†a + 1/2). So by a judicious choice of ordering, we should be

able to eliminate the (unphysical) infinite zero-point energy. For a set of free fields

φ1(x1), φ2(x2), ..., φn(xn), define the normal-ordered product

:φ1(x1)...φn(xn): (2.90)

as the usual product, but with all the creation operators on the left and all the annihi-

lation operators on the right. Since creation operators commute with one another, as do

annihilation operators, this uniquely specifies the ordering. So instead of H, we can use

:H: and the infinite energy of the ground state goes away:

:H:=

∫
d3k ωk a

†
kak. (2.91)

That was easy. But there is a lesson to be learned here, which is that if you ask a silly

question in quantum field theory, you will get a silly answer. Asking about absolute energies
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is a silly question3. In general in quantum field theory, if you ask an unphysical question

(and it may not be at all obvious that it’s unphysical) you will get infinity for your answer.

Taming these infinities is a major headache in QFT.

At this point it’s worth stepping back and thinking about what we have done. The

classical theory of a scalar field that we wrote down has nothing to do with particles; it

simply had as solutions to its equations of motion travelling waves satisfying the energy-

momentum relation of a particle of mass µ. The canonical commutation relations we

imposed on the fields ensured that the Heisenberg equation of motion for the operators in

the quantum theory reproduced the classical equations of motion, thus building the cor-

respondence principle into the theory. However, these commutation relations also ensured

that the Hamiltonian had a discrete particle spectrum, and from the energy-momentum

relation we saw that the parameter µ in the Lagrangian corresponded to the mass of the

particle. Hence, quantizing the classical field theory immediately forced upon us a particle

interpretation of the field: these are generally referred to as the quanta of the field. For

the scalar field, these are spinless bosons (such as pions, kaons, or the Higgs boson of the

Standard Model). As we will see later on, the quanta of the electromagnetic (vector) field

are photons, while fermions like the electron are the quanta of the corresponding fermi

field. In this latter case, however, there is not such a simple correspondence to a classical

field: the Pauli exclusion principle means that you can’t make a coherent state of fermions,

so there is no classical equivalent of an electron field.

At this stage, the field operator φ may still seem a bit abstract - an operator-valued

function of space-time from which observables are built. To get a better feeling for it, let

us consider the interpretation of the state φ(~x, 0)| 0〉. From the field expansion Eq. (2.81),

we have

φ(~x, 0)| 0〉 =

∫
d3k

(2π)3

1

2ωk
e−i

~k·~x| k〉. (2.92)

Thus, when the field operator acts on the vacuum, it pops out a linear combination of

momentum eigenstates. (Think of the field operator as a hammer which hits the vacuum

and shakes quanta out of it.) Taking the inner product of this state with a momentum

eigenstate | p〉, we find

〈p |φ(~x, 0)| 0〉 =

∫
d3k

(2π)3

1

2ωk
e−i

~k·~x〈p |k〉

= e−i~p·~x. (2.93)

Recalling the nonrelativistic relation between momentum and position eigenstates,

〈~p |~x〉 = e−i~p·~x (2.94)

we see that we can interpret φ(~x, 0) as an operator which, acting on the vacuum, creates

a particle at position ~x. Since it contains both creation and annihilation operators, when
3except if you want to worry about gravity. In general relativity the curvature couples to the absolute

energy, and so it is a physical quantity. In fact, for reasons nobody understands, the observed absolute

energy of the universe appears to be almost precisely zero (the famous cosmological constant problem - the

energy density is at least 56 orders of magnitude smaller than dimensional analysis would suggest). We

won’t worry about gravity in this course.
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it acts on an n particle state it has an amplitude to produce both an n + 1 and an n − 1

particle state.

2.3 Causality

Since the Lagrangian for our theory is Lorentz invariant and all interactions are local, we

expect there should be no problems with causality in our theory. However, because the

equal time commutation relations

[φ(~x, t),Π0(~y, t)] = iδ(3)(~x− ~y) (2.95)

treat time and space on different footings, it’s not obvious that the quantum theory is

Lorentz invariant.4 So let’s check this explicitly.

First of all, let’s revisit the question we asked at the end of Section 1 about the

amplitude for a particle to propagate outside its forward light cone. Suppose we prepare

a particle at some spacetime point y. What is the amplitude to find it at point x? From

Eq. (2.93), we create a particle at y by hitting it with φ(y); thus, the amplitude to find it

at x is given by the expectation value

〈0 |φ(x)φ(y)| 0〉. (2.96)

For convenience, we first split the field into a creation and an annihilation piece:

φ(x) = φ+(x) + φ−(x) (2.97)

where

φ+(x) =

∫
d3k

(2π)3/2
√

2ωk
ake
−ik·x,

φ−(x) =

∫
d3k

(2π)3/2
√

2ωk
a†ke

ik·x (2.98)

(the ± convention is opposite to what you might expect, but the convention was established

by Heisenberg and Pauli, so who are we to argue?). Then we have

〈0 |φ(x)φ(y)| 0〉 = 〈0 |(φ+(x) + φ−(x))(φ+(y) + φ−(y))| 0〉
= 〈0 |φ+(x)φ−(y)| 0〉
= 〈0 |[φ+(x), φ−(y)]| 0〉

=

∫
d3k d3k′

(2π)32
√
ωkωk′

〈0 |[ak, a†k′ ]| 0〉e−ik·x+ik′·y

=

∫
d3k

(2π)32ωk
e−ik·(x−y)

≡ D(x− y). (2.99)

4In the path integral formulation of quantum field theory, which you will study next semester, Lorentz

invariance of the quantum theory is manifest.
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Unfortunately, the function D(x − y) does not vanish for spacelike separated points. In

fact, it is related to the integral in Eq. (1.47) we studied in Section 1:

d

dt
D(x− y) =

∫
d3k

(2π)3
e−ik·(x−y). (2.100)

and hence, for two spacelike separated events at equal times, we have

D(x− y) ∼ e−µ|~x−~y|. (2.101)

outside the lightcone. How can we reconcile this with the result that space-like measure-

ments commute? Recall from Eq. (1.1) that in order for our theory to be causal, spacelike

separated observables must commute:

[O1(x1), O2(x2)] = 0 for (x1 − x2)2 < 0. (2.102)

Since all observables are constructed out of fields, we just need to show that fields commute

at spacetime separations; if they do, spacelike separated measurements can’t interfere and

the theory preserves causality. From Eq. (2.99), we have

[φ(x), φ(y)] = [φ+(x), φ−(y)] + [φ−(x), φ+(y)]

= D(x− y)−D(y − x). (2.103)

It is easy to see that, unlike D(x − y), this vanishes for spacelike separations. Because

d3k/ωk is a Lorentz invariant measure, D(x− y) is manifestly Lorentz invariant . Hence,

D(Λx) = D(x) (2.104)

where Λ is any connected Lorentz transformation. Now, by the equal time commutation

relations, we know that [φ(~x, t), φ(~y, t)] = 0 for any ~x and ~y. There is always a reference

frame in which spacelike separated events occur at equal times; hence, we can always use

the property (2.104) to boost x − y to equal times, so we must have [φ(x), φ(y)] = 0 for

all spacelike separated fields.5 This puts into equations what we said at the end of Section

1: causality is preserved, because in Eq. (2.103) the two terms represent the amplitude

for a particle to propagate from x to y minus the amplitude of the particle to propagate

from y to x. The two amplitudes cancel for spacelike separations! Note that this is for the

particular case of a real scalar field, which carries no charge and is its own antiparticle.

We will study charged fields shortly, and in that case the two amplitudes which cancel are

the amplitude for the particle to travel from x to y and the amplitude for the antiparticle

to travel from y to x. We will have much more to say about the function D(x) and the

amplitude for particles to propagate in Section 4, when we study interactions.

5Another way to see this is to note that a spacelike vector can always be turned into minus itself via a

connected Lorentz transformation. This means that for spacelike separations, D(x− y) = D(y−x) and the

commutator of the fields vanishes.
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2.4 Interactions

The Klein-Gordon Lagrangian Eq. (2.65) is a free field theory: it describes particles which

simply propagate with no interactions. There is no scattering, and in fact, no way to

measure anything. Classically, each normal mode evolves independently of the others,

which means that in the quantum theory particles don’t interact. A more general theory

describing real particles must have additional terms in the Lagrangian which describe

interactions. For example, consider adding the following potential energy term to the

Lagrangian:

L = L0 − λφ(x)4 (2.105)

where L0 is the free Klein-Gordon Lagrangian. The field now has self-interactions, so the

dynamics are nontrivial. To see how such a potential affects the dynamics of the field

quanta, consider the potential as a small perturbation (so that we can still expand the

fields in terms of solutions to the free-field Hamiltonian). Writing φ(x) in terms of a†k’s

and ak’s, we see that the interaction term has pieces with n creation operators and 4− n
annihilation operators. For example, there will be a piece which looks like a†k1a

†
k2
ak3ak4 ,

containing two annihilation and two creation operators. This will contribute to 2 → 2

scattering when acting on an incoming 2 meson state, and the amplitude for the scattering

process will be proportional to λ. At second order in perturbation theory we can get 2→ 4

scattering, or pair production, occurring with an amplitude proportional to λ2. At higher

order more complicated processes can occur. This is where we are aiming. But before we

set up perturbation theory and scattering theory, we are going to derive some more exact

results from field theory which will prove useful.
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3. Symmetries and Conservation Laws

The dynamics of interacting field theories, such as φ4 theory in Eq. (2.105), are extremely

complex. The resulting equations of motion are not analytically soluble. In fact, free

field theory (with the optional addition of a source term, as we will discuss) is the only

field theory in four dimensions which has an analytic solution. Nevertheless, in more

complicated interacting theories it is often possible to discover many important features

about the solution simply by examining the symmetries of the theory. In this chapter we

will look at this question in detail and develop some techniques which will allow us to

extract dynamical information from the symmetries of a theory.

3.1 Classical Mechanics

Let’s return to classical mechanics for a moment, where the Lagrangian is L = T − V . As

a simple example, consider two particles in one dimension in a potential

L = 1
2m1q̇

2
1 + 1

2m2q̇
2
2 − V (q1, q2). (3.1)

The momenta conjugate to the qi’s are pi = miq̇i, and from the Euler-Lagrange equations

ṗi = −∂V
∂qi

, Ṗ ≡ ṗ1 + ṗ2 = −
(
∂V

∂q1
+
∂V

∂q2

)
. (3.2)

If V depends only on q1 − q2 (that is, the particles aren’t attached to springs or anything

else which defines a fixed reference frame) then the system is invariant under the shift

qi → qi + α, and ∂V/∂q1 = −∂V/∂q2, so Ṗ = 0. The total momentum of the system is

conserved. A symmetry (L(qi + α, q̇i) = L(qi, q̇i)) has resulted in a conservation law.

We also saw earlier that when ∂L/∂t = 0 (that is, L depends on t only through

the coordinates qi and their derivatives), then dH/dt = 0. H (the energy) is therefore a

conserved quantity when the system is invariant under time translation.

This is a very general result which goes under the name of Noether’s theorem: for every

symmetry, there is a corresponding conserved quantity. It is useful because it allows you to

make exact statements about the solutions of a theory without solving it explicitly. Since

in quantum field theory we won’t be able to solve anything exactly, symmetry arguments

will be extremely important.

To prove Noether’s theorem, we first need to define “symmetry.” Given some general

transformation qa(t)→ qa(t, λ), where qa(t, 0) = qa(t), define

Dqa ≡
∂qa
∂λ

∣∣∣
λ=0

(3.3)

For example, for the transformation ~r → ~r + λê (translation in the ê direction), D~r = ê.

For time translation, qa(t)→ qa(t+ λ) = qa(t) + λdqa/dt+O(λ2), Dqa = dqa/dt.

You might imagine that a symmetry is defined to be a transformation which leaves

the Lagrangian invariant, DL = 0. Actually, this is too restrictive. Time translation, for

example, doesn’t satisfy this requirement: if L has no explicit t dependence,

L(t, λ) = L(qa(t+ λ), q̇a(t+ λ)) = L(0) + λ
dL

dt
+ ... (3.4)
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so DL = dL/dt. So more generally, a transformation is a symmetry iff DL = dF/dt for

some function F (qa, q̇a, t). Why is this a good definition? Consider the variation of the

action S:

DS =

∫ t2

t1

dtDL =

∫ t2

t1

dt
dF

dt
= F (qa(t2), q̇a(t2), t2)− F (qa(t1), q̇a(t1), t1). (3.5)

Recall that when we derived the equations of motion, we didn’t vary the qa’s and q̇a’s at

the endpoints, δqa(t1) = δqa(t2) = 0. Therefore the additional term doesn’t contribute to

δS and therefore doesn’t affect the equations of motion.

It is now easy to prove Noether’s theorem by calculating DL in two ways. First of all,

DL =
∑
a

∂L

∂qa
Dqa +

∂L

∂q̇a
Dq̇a

=
∑
a

ṗaDqa + paDq̇a

=
d

dt

∑
a

paDqa (3.6)

where we have used the equations of motion and the equality of mixed partials (Dq̇a =

d(Dqa)/dt). But by the definition of a symmetry, DL = dF/dt. So

d

dt

(∑
a

paDqa − F
)

= 0. (3.7)

So the quantity
∑

a paDqa − F is conserved.

Let’s apply this to our two previous examples.

1. Space translation: qi → qi + α. Then DL = 0, pi = miq̇i and Dqi = 1, so p1 +

p2 = m1q̇1 + m2q̇2 is conserved. We will call any conserved quantity associated

with spatial translation invariance momentum, even if the system looks nothing like

particle mechanics.

2. Time translation: t → t + λ. Then Dqa = dqa/dt, DL = dL/dt, F = L and so

the conserved quantity is
∑

a(paq̇a) − L. This is the Hamiltonian, justifying our

previous assertion that the Hamiltonian is the energy of the system. Again, we will

call the conserved quantity associated with time translation invariance the energy of

the system.

This works for classical particle mechanics. Since the canonical commutation relations are

set up to reproduce the E-L equations of motion for the operators, it will work for quantum

particle mechanics as well.

3.2 Symmetries in Field Theory

Since field theory is just the continuum limit of classical particle mechanics, the same

arguments must go through as well. In fact, stronger statements may be made in field
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theory, because not only are conserved quantities globally conserved, they must be locally

conserved as well. For example, in a theory which conserves electric charge we can’t have

two separated opposite charges simultaneously wink out of existence. This conserves charge

globally, but not locally. Recall from electromagnetism that the charge density satisfies

∂ρ

∂t
+∇ ·~ = 0. (3.8)

This just expresses current conservation. Integrating over some volume V , and defining

QV =
∫
V d

3xρ(x), we have

dQV
dt

= −
∫
v
∇ ·~ = −

∫
S
dS ·~ (3.9)

where S is the surface of V . This means that the rate of change of charge inside some

region is given by the flux through the surface. Taking the surface to infinity, we find

that the total charge Q is conserved. However, we have the stronger statement of current

conservation, Eq. (3.8). Therefore, in field theory conservation laws will be of the form

∂µJ µ = 0 for some four-current J µ.

As before, we consider the transformations φa(x) → φa(x, λ), φa(x, 0) = φa(x), and

define

Dφa =
∂φa
∂λ

∣∣∣
λ=0

. (3.10)

A transformation is a symmetry iff DL = ∂µF
µ for some Fµ(φa, φ̇a, x). I will leave it to

you to show that, just as in particle mechanics, a transformation of this form doesn’t affect

the equations of motion. We now have

DL =
∑
a

∂L

∂φa
Dφa + Πµ

aD(∂µφa)

=
∑
a

∂µΠµ
aDφa + Πµ

a∂µDφa

= ∂µ
∑
a

(Πµ
aDφa) = ∂µF

µ (3.11)

so the four components of

Jµ =
∑
a

Πµ
aDφa − Fµ (3.12)

satisfy ∂µJ
µ = 0. If we integrate over all space, so that no charge can flow out through the

boundaries, this gives the global conservation law

dQ

dt
≡ d

dt

∫
d3xJ0(x) = 0. (3.13)

3.2.1 Space-Time Translations and the Energy-Momentum Tensor

We can use the techniques from the previous section to calculate the conserved current

and charge in field theory corresponding to a space or time translation. Under a shift

x→ x+ λe, where e is some fixed four-vector, we have

φa(x) → φa(x+ λe)

= φa(x) + λeµ∂
µφa(x) + ... (3.14)
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so

Dφa(x) = eµ∂
µφa(x). (3.15)

Similarly, since L contains no explicit dependence on x but only depends on it through the

fields φa, we have DL = ∂µ(eµL), so F = eµL. The conserved current is therefore

Jµ =
∑
a

Πµ
aDφ− F

=
∑
a

Πµ
aeν∂

νφa − eµL

= eν

[∑
a

Πµ
a∂

νφa − gµνL
]

≡ eνT
µν (3.16)

where Tµν =
∑

a Πµ
a∂νφa−gµνL is called the energy-momentum tensor. Since ∂µJ

µ = 0 =

∂µT
µνeν for arbitrary e, we also have

∂µT
µν = 0. (3.17)

For time translation, eν = (1,~0). Tµ0 is therefore the “energy current”, and the corre-

sponding conserved quantity is

Q =

∫
d3xJ0 =

∫
d3xT 00 =

∫
d3x

∑
a

(
Π0
a∂0φa − L

)
=

∫
d3xH (3.18)

where H is the Hamiltonian density we had before. So the Hamiltonian, as we had claimed,

really is the energy of the system (that is, it corresponds to the conserved quantity associ-

ated with time translation invariance.)

Similarly, if we choose eµ = (0, x̂) then we will find the conserved charge to be the x-

component of momentum. For the Klein-Gordon field, a straightforward substitution of the

expansion of the fields in terms of creation and annihilation operators into the expression

for
∫
d3xT 01 gives the expression we obtained earlier for the momentum operator,

: ~P :=

∫
d3k~k a†kak (3.19)

where again we have normal-ordered the expression to remove spurious infinities.

Note that the physical momentum ~P , the conserved charge associated with space trans-

lation, has nothing to do with the conjugate momentum Πa of the field φa. It is important

not to confuse these two uses of the term “momentum.”

3.2.2 Lorentz Transformations

Under a Lorentz transformation

xµ → Λµνx
ν (3.20)

a four-vector transforms as

aµ → Λµνa
ν (3.21)
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as discussed in the first section. Since a scalar field by definition does not transform under

Lorentz transformations, it has the simple transformation law

φ(x)→ φ(Λ−1x). (3.22)

This simply states that the field itself does not transform at all; the value of the field at the

coordinate x in the new frame is the same as the field at that same point in the old frame.

Fields with spin have more complicated transformation laws, since the various components

of the fields rotate into one another under Lorentz transformations. For example, a vector

field (spin 1) Aµ transforms as

Aµ(x)→ ΛµνA
ν(Λ−1x). (3.23)

As usual, we will restrict ourselves to scalar fields at this stage in the course.

To use the machinery of the previous section, let us consider a one parameter subgroup

of Lorentz transformations parameterized by λ. This could be rotations about a specified

axis by an angle λ, or boosts in some specified direction with γ = λ. This will define a

family of Lorentz transformations Λ(λ)µν , from which we wish to get Dφ = ∂φ/∂λ|λ=0.

Let us define

εµν ≡ DΛµν . (3.24)

Then under a Lorentz transformation aµ → Λµνa
ν , we have

Daµ = εµνa
ν . (3.25)

It is straightforward to show that εµν is antisymmetric. From the fact that aµbµ is Lorentz

invariant, we have

0 = D(aµbµ) = (Daµ)bµ + aµ(Dbµ)

= εµνa
νbµ + aµεµ

νbν

= εµνa
νbµ + ενµa

νbµ

= (εµν + ενµ) aνbµ (3.26)

where in the third line we have relabelled the dummy indices. Since this holds for arbitrary

four vectors aµ and bν , we must have

εµν = −ενµ. (3.27)

The indices µ and ν range from 0 to 3, which means there are 4(4− 1)/2 = 6 independent

components of ε. This is good because there are six independent Lorentz transformations

- three rotations (one about each axis) and three boosts (one in each direction).

Let’s take a moment and do a couple of examples to demystify this. Take ε12 = −ε21

and all the other components zero. Then we have

Da1 = ε12a
2 = −ε12a

2 = −a2

Da2 = ε21a
1 = −ε21a

2 = +a1. (3.28)
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This just corresponds to the a rotation about the z axis,(
a1

a2

)
→
(

cosλ − sinλ

sinλ cosλ

)(
a1

a2

)
. (3.29)

On the other hand, taking ε01 = −ε10 = +1 and all other components zero, we get

Da0 = ε01a
1 = ε01a

1 = +a1

Da1 = ε10a
1 = −ε10a

2 = +a0. (3.30)

Note that the signs are different because lowering a 0 index doesn’t bring in a factor of −1.

This is just the infinitesimal version of(
a0

a1

)
→
(

coshλ sinhλ

sinhλ coshλ

)(
a0

a1

)
. (3.31)

which corresponds to a boost along the x axis.

Now we’re set to construct the six conserved currents corresponding to the six different

Lorentz transformations. Using the chain rule, we find

Dφ(x) =
∂

∂λ
φ(Λ−1 (λ)µνx

ν)
∣∣
λ=0

= ∂αφ(x)
∂

∂λ
(Λ−1(λ)(x)α

∣∣
λ=0

= ∂αφ(x)D
(

Λ−1(λ)αβx
β
)

= ∂αφ(x)
(
−εαβ

)
xβ

= −εαβxβ∂αφ(x). (3.32)

Since L is a scalar, it depends on x only through its dependence on the field and its

derivatives. Therefore we have

DL = εαβx
α∂βL

= ∂µ

(
εαβx

βgµα
)
L (3.33)

and so the conserved current Jµ is

Jµ =
∑
a

(
Πµεαβx

α∂βφ− εαβxαgµβL
)

= εαβ

(
Πµxα∂βφ− xαgµβL

)
. (3.34)

Since the current must be conserved for all six antisymmetric matrices εαβ, the part of the

quantity in the parentheses that is antisymmetric in α and β must be conserved. That is,

∂µM
µαβ = 0 (3.35)

where

Mµαβ = Πµxα∂βφ− xαgµβL − α↔ β

= xα
(

Πµ∂βφ− gµβL
)
− α↔ β

= xαTµβ − xβTµα (3.36)
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where Tµν is the energy-momentum tensor defined in Eq. (3.16). The six conserved charges

are given by the six independent components of

Jαβ =

∫
d3xM0αβ =

∫
d3x

(
xαT 0β − xβT 0α

)
. (3.37)

Just as we called the conserved quantity corresponding to space translation the momentum,

we will call the conserved quantity corresponding to rotations the angular momentum. So

for example J12, the conserved quantity coming from invariance under rotations about the

3 axis, is

J12 =

∫
d3x

(
x1T 02 − x2T 01

)
. (3.38)

This is the field theoretic analogue of angular momentum. We can see that this definition

matches our previous definition of angular momentum in the case of a point particle with

position ~r(t). In this case, the energy momentum tensor is

T 0i(~x, t) = piδ(3)(~x− ~r(t)) (3.39)

which gives

J12 = x1p2 − x2p1 = (~r × ~p)3 (3.40)

which is the familiar expression for the third component of the angular momentum. Note

that this is only for scalar particles. Particles with spin carry intrinsic angular momentum

which is not included in this expression - this is only the orbital angular momentum.

Particles with spin are described by fields with tensorial character, which is reflected by

additional terms in the J ij .

That takes care of three of the invariants corresponding to Lorentz transformations.

Together with energy and linear momentum, they make up the conserved quantities you

learned about in first year physics. What about boosts? There must be three more con-

served quantities. What are they? Consider

J0i =

∫
d3x

(
x0T 0i − xiT 00

)
. (3.41)

This has an explicit reference to x0, the time, which is something we haven’t seen before

in a conservation law. But there’s nothing in principle wrong with this. The x0 may be

pulled out of the spatial integral, and the conservation law gives

0 =
d

dt
J0i =

d

dt

[
t

∫
d3xT 0i −

∫
d3xxiT 00

]
= t

d

dt

∫
d3xT 0i +

∫
d3xT 0i − d

dt

∫
d3xxiT 00

= t
d

dt
pi + pi − d

dt

∫
d3xxiT 00. (3.42)

The first term is zero by momentum conservation, and the second term, pi, is a constant.

Therefore we get

pi =
d

dt

∫
d3xxiT 00 = constant. (3.43)
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This is just the field theoretic and relativistic generalization of the statement that the centre

of mass moves with a constant velocity. The centre of mass is replaced by the “centre of

energy.” Although you are not used to seeing this presented as a separate conservation

law from conservation of momentum, we see that in field theory the relation between the

T 0i’s and the first moment of T 00 is the result of Lorentz invariance. The three conserved

quantities
∫
d3xxiT 00(x) are the Lorentz partners of the angular momentum.

3.3 Internal Symmetries

Energy, momentum and angular momentum conservation are clearly properties of any

Lorentz invariant field theory. We could write down an expression for the energy-momentum

tensor Tµν without knowing the explicit form of L. However, there are a number of other

quantities which are experimentally known to be conserved, such as electric charge, baryon

number and lepton number which are not automatically conserved in any field theory. By

Noether’s theorem, these must also be related to continuous symmetries. Experimental

observation of these conservation laws in nature is crucial in helping us to figure out the

Lagrangian of the real world, since they require L to have the appropriate symmetry and

so tend to greatly restrict the form of L. We will call these transformations which don’t

correspond to space-time transformations internal symmetries.

3.3.1 U(1) Invariance and Antiparticles

Here is a theory with an internal symmetry:

L = 1
2

2∑
a=1

∂µφa∂
µφa − µ2φaφa − g

(∑
a

(φa)
2

)2

. (3.44)

It is a theory of two scalar fields, φ1 and φ2, with a common mass µ and a potential

g
(∑

a(φa)
2
)2

= g
(
(φ1)2 + (φ2)2

)2
. This Lagrangian is invariant under the transformation

φ1 → φ1 cosλ+ φ2 sinλ

φ2 → −φ1 sinλ+ φ2 cosλ. (3.45)

This is just a rotation of φ1 into φ2 in field space. It leaves L invariant (try it) because L
depends only on φ2

1 +φ2
2 and (∂µφ1)2 + (∂µφ2)2, and just as r2 = x2 + y2 is invariant under

real rotations, these are invariant under the transformation (3.45).

We can write this in matrix form:(
φ′1
φ′2

)
=

(
cosλ sinλ

− sinλ cosλ

)(
φ1

φ2

)
. (3.46)

In the language of group theory, this is known as an SO(2) transformation. The S stands

for “special”, meaning that the transformation matrix has unit determinant, the O for

“orthogonal” and the 2 because it’s a 2×2 matrix. We say that L has an SO(2) symmetry.

Once again we can calculate the conserved charge:

Dφ1 = φ2

Dφ2 = −φ1

DL = 0→ Fµ = constant. (3.47)
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Since Fµ is a constant, we can just forget about it (if Jµ is a conserved current, so is Jµ

plus any constant). So the conserved current is

Jµ = Πµ
1Dφ1 + Πµ

2Dφ2 = (∂µφ1)φ2 − (∂µφ2)φ1 (3.48)

and the conserved charge is

Q =

∫
d3xJ0 =

∫
d3x(φ̇1φ2 − φ̇2φ1). (3.49)

This isn’t very illuminating at this stage. At the level of classical field theory, this symmetry

isn’t terribly interesting. But in the quantized theory it has a very nice interpretation in

terms of particles and antiparticles. So let’s consider quantizing the theory by imposing the

usual equal time commutation relations. At this stage, let’s also forget about the potential

term in Eq. (3.44). Then we have a theory of two free fields and we can expand the fields

in terms of creation and annihilation operators. We will denote the corresponding creation

and annihilation operators by a†ki and aki, where i = 1, 2. They create and destroy two

different types of meson, which we denote by

a†k1| 0〉 = | k, 1〉, a†k2| 0〉 = | k, 2〉. (3.50)

Substituting the expansion

φi =

∫
d3k

(2π)3/2
√

2ωk

[
akie

−ik·x + a†kie
ik·x
]

(3.51)

into Eq. (3.49) gives, after some algebra,

Q = i

∫
d3k(a†k1ak2 − a†k2ak1). (3.52)

We are almost there. This looks like the expression for the number operator, except for the

fact that the terms are off-diagonal. Let’s fix that by defining new creation and annihilation

operators which are a linear combination of the old ones:

bk ≡
ak1 + iak2√

2
, b†k ≡

a†k1 − ia
†
k2√

2

ck ≡
ak1 − iak2√

2
, c†k ≡

a†k1 + ia†k2√
2

. (3.53)

It is easy to verify that the bk’s and ck’s also have the right commutation relations to be

creation and annihilation operators. They create linear combinations of states with type 1

and type 2 mesons,

b†k| 0〉 =
1√
2

(| k, 1〉 − i| k, 2〉). (3.54)

Linear combinations of states are perfectly good states, so let’s work with these as our

basis states. We can call them particles of type b and type c

b†k| 0〉 = | k, b〉, c†k| 0〉 = | k, c〉. (3.55)
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In terms of our new operators, it is easy to show that

Q = i

∫
d3k (a†k1ak2 − a†k2ak1)

=

∫
d3k (b†kbk − c

†
kck)

= Nb −Nc (3.56)

where Ni =
∫
dka†kiaki is the number operator for a field of type i. The total charge is

therefore the number of b’s minus the number of c’s, so we clearly have b-type particles

with charge +1 and c-type particles with charge −1. We say that c and b are one another’s

antiparticle: they are the same in all respects except that they carry the opposite conserved

charge. Note that we couldn’t have a theory with b particles and not c particles: they both

came out of the Lagrangian Eq. (3.44). The existence of antiparticles for all particles

carrying a conserved charge is a generic prediction of QFT.

Now, that was all a bit involved since we had to rotate bases in midstream to inter-

pret the conserved charge. With the benefit of hindsight we can go back to our original

Lagrangian and write it in terms of the complex fields

ψ ≡ 1√
2

(φ1 + iφ2)

ψ† ≡ 1√
2

(φ1 − iφ2). (3.57)

In terms of ψ and ψ†, L is

L = ∂µψ
†∂µψ − µ2ψ†ψ (3.58)

(note that there is no factor of 1
2 in front). In terms of creation and annihilation operators,

ψ and ψ† have the expansions

ψ =

∫
d3k

(2π)3/2
√

2ωk

(
bke
−ik·x + c†ke

ik·x
)

ψ† =

∫
d3k

(2π)3/2
√

2ωk

(
cke
−ik·x + b†ke

ik·x
)

(3.59)

so ψ creates c-type particles and annihilates their antiparticle b, whereas ψ† creates b-type

particles and annihilates c’s. Thus ψ always changes the Q of a state by −1 (by creating a

c or annihilating a b in the state) whereas ψ† acting on a state increases the charge by one.

We can also see this from the commutator [Q,ψ]: from the expression for the conserved

charge Eq. (3.56) it is easy to show that

[Q,ψ] = −ψ, [Q,ψ†] = ψ†. (3.60)

If we have a state | q〉 with charge q (that is, | q〉 is an eigenstate of the charge operator Q

with eigenvalue q), then

Q(ψ| q〉) = [Q,ψ]| q〉+ ψQ| q〉 = (−1 + q)ψ| q〉 (3.61)

– 44 –



so ψ| q〉 has charge q − 1, as we asserted.

The transformation Eq. (3.45) may be written as

ψ′ = e−iλψ. (3.62)

This is called a U(1) transformation or a phase transformation (the “U” stands for “uni-

tary”.) Clearly a U(1) transformation on complex fields is equivalent to an SO(2) transfor-

mation on real fields, and is somewhat simpler to work with. In fact, we can now work from

our ψ fields right from the start. In terms of the classical fields, start with the Lagrangian

L = ∂µψ
∗∂µψ − µ2ψ∗ψ (3.63)

(these are classical fields, not operators, so the complex conjugate of ψ is ψ∗, not ψ†.)

We can quantize the theory correctly and obtain the equations of motion if we follow the

same rules as before, but treat ψ and ψ∗ as independent fields. That is, we vary them

independently and assign a conjugate momentum to each:

Πµ
ψ =

∂L
∂(∂µψ)

, Πµ
ψ∗ =

∂L
∂(∂µψ∗)

. (3.64)

Therefore we have

Πµ
ψ = ∂µψ∗, Πµ

ψ∗ = ∂µψ (3.65)

which leads to the Euler-Lagrange equations

∂µΠµ
ψ =

∂L
∂ψ
→ (2 + µ2)ψ∗ = 0. (3.66)

Similarly, we find (2 + µ2)ψ = 0. Adding and subtracting these equations, we clearly

recover the equations of motion for φ1 and φ2.

We can similarly canonically quantize the theory by imposing the appropriate commu-

tation relations

[ψ(~x, t),Π0
ψ(~y, t)] = iδ(3)(~x− ~y), [ψ†(~x, t),Π0

ψ†(~y, t)] = iδ(3)(~x− ~y), .... (3.67)

We will leave it as an exercise to show that this reproduces the correct commutation

relations for the φ fields and their conjugate momenta.

Clearly ψ and ψ∗ are not independent. Still, this rule of thumb works because there

are two real degrees of freedom in φ1 and φ2, and two real degrees of freedom in ψ, which

may be independently varied. We can see how this works to give us the correct equations

of motion. Consider the Euler-Lagrange equations for a general theory of a complex field

ψ. For a variation in the fields δψ and δψ∗, we find an expression for the variation in the

action of the form

δS =

∫
d4x(Aδψ +A∗δψ∗) = 0 (3.68)

where A is some function of the fields. The correct way to obtain the equations of motion

is to first perform a variation δψ which is purely real, δψ = δψ∗. This gives the Euler-

Lagrange equation

A+A∗ = 0. (3.69)
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Then performing a variation δψ which is purely imaginary, δψ = −δψ∗, gives A−A∗ = 0.

Combining the two, we get A = A∗ = 0.

If we instead apply our rule of thumb, we imagine that ψ and ψ∗ are unrelated, so we

can vary them independently. We first take δψ∗ = 0 and from Eq. (3.68) get A = 0. Then

taking δψ = 0 we get A∗ = 0. So we get the same equations of motion, A = A∗ = 0.

We will refer to complex fields as “charged” fields from now on. Note that since we

haven’t yet introduced electromagnetism into the theory the fields aren’t charged in the

usual electromagnetic sense; “charged” only indicates that they carry a conserved U(1)

quantum number. A better analogue of the “charge” in this theory is baryon or lepton

number. Later on we will show that the only consistent way to couple a matter field to the

electromagnetic field is for the interaction to couple a conserved U(1) charge to the photon

field, at which point the U(1) charge will correspond to electric charge.

3.3.2 Non-Abelian Internal Symmetries

A theory with a more complicated group of internal symmetries is

L = 1
2

n∑
a=1

(
∂µφa∂

µφa − µ2φaφa
)
− g

(
n∑
a=1

(φa)
2

)2

. (3.70)

This is the same as the previous example except that we have n fields instead of just two.

Just as in the first example the Lagrangian was invariant under rotations mixing up φ1 and

φ2, this Lagrangian is invariant under rotations mixing up φ1...φn, since it only depends

on the “length” of (φ1, φ2, ..., φn). Therefore the internal symmetry group is the group of

rotations in n dimensions,

φa →
∑
b

Rabφb (3.71)

where Rab is an n × n rotation matrix. There are n(n − 1)/2 independent planes in n

dimensions, and we can rotate in each of them, so there are n(n− 1)/2 conserved currents

and associated charges. This example is quite different from the first one because the

various rotations don’t in general commute - the group of rotations in n > 2 dimensions

is nonabelian. The group of rotation matrices in n dimensions is called SO(n) (Special,

Orthogonal, n dimensions), and this theory has an SO(n) symmetry. A new feature of

nonabelian symmetries is that, just as the rotations don’t in general commute, neither do

the currents or charges in the quantum theory. For example, for a theory with SO(3)

invariance, the currents are

Jµ[1,2] = (∂µφ1φ2)− (∂µφ2φ1)

Jµ[1,3] = (∂µφ1φ3)− (∂µφ3φ1)

Jµ[2,3] = (∂µφ2φ3)− (∂µφ3φ2) (3.72)

and in the quantum theory the (appropriately normalized) charges obey the commutation

relations

[Q[2,3], Q[1,3]] = iQ[1,2]
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[Q[1,3], Q[1,2]] = iQ[2,3]

[Q[2,3], Q[1,2]] = iQ[1,3] (3.73)

This means that it not possible to simultaneously measure more than one of the SO(3)

charges of a state: the charges are non-commuting observables.

For n complex fields with a common mass,

L =

n∑
a=1

(
∂µψ

∗
a∂

µψa − µ2ψ∗aψa
)
− g

(
n∑
a=1

|ψa|2
)2

(3.74)

the theory is invariant under the group of transformations

ψa →
∑
b

Uabψb (3.75)

where Uab is any unitary n×n matrix. We can write this as a product of a U(1) symmetry,

which is just multiplication of each of the fields by a common phase, and an n× n unitary

matrix with unit determinant, a so-called SU(n) matrix. The symmetry group of the

theory is the direct product of these transformations, or SU(n)× U(1).

We won’t be discussing non-Abelian symmetries much in the course, but we just note

here that there are a number of non-Abelian symmetries of importance in particle physics.

The familiar isospin symmetry of the strong interactions is an SU(2) symmetry, and the

charges of the strong interactions correspond to an SU(3) symmetry of the quarks (as

compared to the U(1) charge of electromagnetism). The charges of the electroweak the-

ory correspond to those of an SU(2) × U(1) symmetry group. “Grand Unified Theories”

attempt to embed the observed strong, electromagnetic and weak charges into a single sym-

metry group such as SU(5) or SO(10). We could proceed much further here into group

theory and representations, but then we’d never get to calculate a cross section. So we

won’t delve deeper into non-Abelian symmetries at this stage.

3.4 Discrete Symmetries: C, P and T

In addition to the continuous symmetries we have discussed in this section, which are

parameterized by some continuously varying parameter and can be made arbitrarily small,

theories may also have discrete symmetries which impose important constraints on their

dynamics. Three important discrete space-time symmetries are charge conjugation (C),

parity (P ) and time reversal (T ).

3.4.1 Charge Conjugation, C

For convenience (and to be consistent with the notation we will introduce later), let us refer

to the b type particles created by the complex scalar field ψ† as “nucleons” and their c type

antiparticles created by ψ as “antinucleons” (this is misleading notation, since real nucleons

are spin 1/2 instead of spin 0 particles; hence the quotes), and denote the corresponding

single-particle states by |N(~k)〉 and |N(~k)〉, respectively. The discrete symmetry C consists

of interchanging all particles with their antiparticles.
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Given an arbitrary state |N(~k1), N(~k2), ..., N(~kn)〉 composed of “nucleons” and “antin-

ucleons” we can define a unitary operator Uc which effects this discrete transformation.

Clearly,

Uc|N(~k1), N(~k2), ..., N(~kn)〉 = |N(~k1), N(~k2), ..., N(~kn)〉. (3.76)

We also see that with this definition U2
c = 1, so U−1

c = U †c = Uc. We can now see how the

fields transform under C. Consider some general state |χ〉 and its charge conjugate |χ〉.
Then b†k|χ〉 ≡ |N(k), χ〉, and

Ucb
†
k|χ〉 = Uc|N(k), χ〉 = |N(k), χ〉 = c†k|χ〉 = c†kUc|χ〉. (3.77)

Since this is true for arbitrary states |χ〉, we must have Ucb
†
k = c†kUc, or

b†k → b′†k = Ucb
†
kU
†
c = c†k, c†k → c′†k = Ucc

†
kU
†
c = b†k. (3.78)

A similar equation is true for annihilation operators, which is easily seen by taking the

complex conjugate of both equations. As expected, the transformation exchanges particle

creation operators for anti-particle creation operators, and vice-versa. Expanding the fields

in terms of creation and annihilation operators, we immediately see that

ψ → ψ′ = UcψU
†
c = ψ†, ψ† → ψ′† = Ucψ

†U †c = ψ. (3.79)

Why do we care? Consider a theory in which the Hamiltonian is invariant under C:

UcHU
†
c = H (for scalars this is kind of trivial, since as long as ψ and ψ† always occur

together in each term of the Hamiltonian it will be invariant; however in theories with

spin it gets more interesting). In such a theory, C invariance immediately holds. It is

straightforward to show that any transition matrix elements are therefore unchanged by

charge conjugation. Consider the amplitude for an initial state |ψ〉 at time t = ti to evolve

into a final state |χ〉 at time t = tf . Denote the charge conjugates of these states by |ψ〉
and |χ〉. The amplitude for |ψ〉 to evolve into |χ〉 is therefore identical to the amplitude

for |ψ〉 to evolve into |χ〉:

〈χ(tf ) |U †cUceiH(tf−ti)U †cUc|ψ(ti)〉 = 〈χ(tf ) |UceiH(tf−ti)U †c |ψ(ti)〉
= 〈χ(tf ) |eiH(tf−ti)|ψ(ti)〉. (3.80)

So, for example, the amplitude for “nucleons” to scatter is exactly the same as the am-

plitude for “antinucleons” to scatter (we will see this explicitly when we start to calculate

amplitudes in perturbation theory, but C conjugation immediately tells us it must be true).

3.4.2 Parity, P

A parity transformation corresponds to a reflection of the axes through the origin, ~x→ −~x.

Similarly, momenta are reflected, so

Up|~k〉 = | − ~k〉 (3.81)

where Up is the unitary operator effecting the parity transformation. Clearly we will also

have

Up

{
a~k
a†~k

}
U †p =

{
a−~k
a†
−~k

}
(3.82)

– 48 –



and so under a parity transformation an uncharged scalar field has the transformation

φ(~x, t) → Upφ(~x, t)U †p

= Up

∫
d3k√

2ωk(2π)3/2

[
ake

i~k·~x−iωkt + a†ke
−i~k·~x+iωkt

]
U †p

=

∫
d3k√

2ωk(2π)3/2

[
a−~ke

i~k·~x−iωkt + a†
−~k
e−i

~k·~x+iωkt
]

=

∫
d3k√

2ωk(2π)3/2

[
ake
−i~k·~x−iωkt + a†ke

i~k·~x+iωkt
]

= φ(−~x, t) (3.83)

where we have changed variables ~k → −~k in the integration. Just as before, any theory for

which UpLU
†
p = L conserves parity.

Actually, this transformation φ(~x, t) → φ(−~x, t) is not unique. Suppose we had a

theory with an additional discrete symmetry φ → −φ; for example, L = L0 − λφ4 (see

Eq. (2.105)) where we have added a nontrivial interaction term (of which we will have

much more to say shortly). In this case, we could equally well have defined the fields to

transform under parity as

φ(~x, t)→ −φ(−~x, t), (3.84)

since that is also a symmetry of L. In fact, to be completely general, if we had a theory of

n identical fields φ1...φn, we could define a parity transformation to be of the form

φa(~x, t)→ φ′a(~x, t) = Rabφb(−~x, t) (3.85)

for some n × n matrix Rab. So long as this transformation is a symmetry of L it is

a perfectly decent definition of parity. The point is, if you have a number of discrete

symmetries of a theory there is always some ambiguity in how you define P (or C, or T ,

for that matter). But this is just a question of terminology. The important thing is to

recognize the symmetries of the theory.

In some cases, for example L = L0 − gψ∗ψφ (which we shall discuss in much more

detail in the next section), φ → −φ is not a symmetry, so the only sensible definition of

parity is Eq. (3.83). When φ does not change sign under a parity transformation, we call it

a scalar. In other situations, Eq. (3.83) is not a symmetry of the theory, but Eq. (3.84) is.

In this case, we call φ a pseudoscalar. When there are only spin-0 particles in the theory,

theories with pseudoscalars look a little contrived. The simplest example is

L = 1
2

4∑
a=1

(
∂µφa∂µφa −m2

aφ
2
a

)
− iεµναβ∂µφ1∂νφ2∂αφ3∂βφ4 (3.86)

where εµναβ is a completely antisymmetric four-index tensor, and ε0123 = 1. Under parity,

if φa(~x, t)→ ±φa(−~x, t), then

∂0φa(~x, t) → ±∂0φa(−~x, t)
∂iφa(~x, t) → ∓∂iφa(−~x, t) (3.87)
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where i = 1, 2, 3, since parity reverses the sign of ~x but leaves t unchanged. Now, the inter-

action term in Eq. (3.86) always contains three spatial derivatives and one time derivative

because εµναβ = 0 unless all four indices are different. Therefore in order for parity to be

a symmetry of this Lagrangian, an odd number of the fields φa (it doesn’t matter which

ones) must also change sign under a parity transformation. Thus, three of the fields will

be scalars, and one pseudoscalar, or else three must be pseudoscalars and one scalar. It

doesn’t matter which.

3.4.3 Time Reversal, T

The last discrete symmetry we will look at is time reversal, T , in which t → −t. A more

symmetric transformation is PT in which all four components of xµ flip sign: xµ → −xµ.

However, time reversal is a little more complicated than P and T because it cannot be

represented by a unitary, linear transformation.

We can see why this is the case by going back to particle mechanics and quantizing

the Lagrangian

L =
1

2
q̇2. (3.88)

Suppose the unitary operator UT corresponds to T . Then

UT q(t)U
†
T = q(−t)

UT p(t)U
†
T = UT

dq(t)

dt
U †T = −q̇(−t) = −p(−t) (3.89)

and so

UT [q(t), p(t)]U †T = UT iU
†
T = i = −[q(−t), p(−t)] (3.90)

and so we cannot consistently apply the canonical commutation relations for all time!

Clearly UT can’t be a unitary operator. We need something else.

What we need, in fact, is an operator which is anti-linear. Under an antilinear operator

Ω,

a|ψ〉 → Ω [a|ψ〉] = a∗Ω|ψ〉. (3.91)

That is, numbers are complex conjugated under an antilinear transformation. Since Dirac

notation is set up to deal with linear operators, it is somewhat awkward to express antilinear

operators in this notation.

The simplest anti-linear operator is just complex conjugation,

a|ψ〉 → Ω [a|ψ〉] = a∗|ψ〉 (3.92)

and in fact this is precisely what we need. First of all, it doesn’t screw up the commutation

relations because ΩiΩ−1 = −i, so there is an extra minus sign in Eq. (3.90) and there is

no contradiction:

ΩT [aq(t)]Ω−1
T = a∗q(−t) (3.93)

so

ΩT [q(t), p(t)]Ω−1
T = i∗ = −i = −[q(−t), p(−t)] (3.94)
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as required. In field theory, complex conjugation corresponds to the operator PT . It has

no effect on the creation and annihilation operators,

ΩPT

{
ak
a†k

}
Ω−1
PT =

{
ak
a†k

}
(3.95)

or on the states

ΩPT |~k1, ...~kn〉 = |~k1, ...~kn〉 (3.96)

(this is to be expected, since time reversal flips the direction of all the momenta, and a

parity transformation flips them back). The only thing it acts on is the i in the exponents

occurring in the expansion of the fields

φ(~x, t) → ΩPTφ(~x, t)Ω†PT

= ΩPT

∫
d3k√

2ωk(2π)3/2

[
ake

i~k·~x−iωkt + a†ke
−i~k·~x+iωkt

]
Ω−1
PT

=

∫
d3k√

2ωk(2π)3/2

[
ake
−i~k·~x+iωkt + a†ke

i~k·~x−iωkt
]

= φ(−~x,−t). (3.97)

Hence this is exactly what is required for a PT transformation.

In a quantum field theory, any of C, P or T may be broken (we will see some examples

of such theories later on). However, it is a general property of any local, relativistic field

theory that the amplitude must be invariant under the combined action of CPT (this is

called the CPT theorem).
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4. Example: Non-Relativistic Quantum Mechanics (“Second Quantiza-

tion”)

To put some flesh on the formalism we have developed so far, let’s pause and work through

an example. The following problem was used as a midterm test the first time I taught this

course (with rather bleak results ...). In the following years I gave it as a problem set. I

suggest you work through it before looking at the solution.

The Problem

Consider a theory of a complex scalar field ψ

L0 = iψ∗∂0ψ + b~∇ψ∗ · ~∇ψ,

where b is some real number (this Lagrange density is not real, but that’s all right: the

action integral is real). As the investigation proceeds, you should recognize this theory

as good old non-relativistic quantum mechanics. Treating the theory in this manner is

called second quantization, and is a useful formalism for studying multi-particle quantum

mechanics.

1. Consider L0 as defining a classical field theory. Find the Euler-Lagrange equations.

Find the plane-wave solutions, those for which ψ = ei(
~k·~x−ωt), and find ω as a function

of k. Although this theory is not Lorentz-invariant, it is invariant under space-time

translations and an internal U(1) symmetry transformation. Thus it possesses a

conserved energy, a conserved linear momentum and a conserved charge associated

with the internal symmetry. Find these quantities as integrals of the fields and their

derivatives. Fix the sign of b by demanding the energy be bounded below. (As

explained in class, in dealing with complex fields, you just turn the crank, ignoring

the fact that ψ and ψ∗ are complex conjugates. Everything should turn out all right

in the end: the equation of motion for ψ will be the complex conjugate of that for

ψ∗, and the conserved quantities will all be real.) (WARNING: Even though this is a

non-relativistic problem, our formalism is set up with relativistic conventions; don’t

miss minus signs associated with raising and lowering spatial indices.)

2. Canonically quantize the theory. (HINT: You may be bothered by the fact that the

momentum conjugate to ψ∗ vanishes. Don’t be. Because the equations of motion are

first-order in time, a complete and independent set of initial-value data consists of ψ

and its conjugate momentum alone. It is only on these that you need to impose the

canonical quantization conditions.) Identify appropriately normalized coefficients in

the expansion of the fields in terms of plane wave solutions with annihilation and/or

creation operators, and write the energy, linear momentum and internal-symmetry

charge in terms of these operators. (Normal-order freely.) Find the equation of

motion for the single particle state |~k〉 and the two particle state |~k1,~k2〉 in the

Schrödinger Picture. What physical quantities do b and the internal symmetry charge

correspond to?
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Solution

1. The Euler Lagrange equations are

∂µΠµ
a =

∂L
∂φa

(4.1)

so we first need the momenta conjugate to the fields. Treating ψ and ψ∗ as indepen-

dent fields, we find

Π0
ψ =

∂L
∂(∂0ψ)

= iψ∗, Πi
ψ =

∂L
∂(∂iψ)

= −b∂iψ∗

Π0
ψ∗ =

∂L
∂(∂iψ∗)

= 0, Πi
ψ∗ =

∂L
∂(∂iψ∗)

= b∂iψ. (4.2)

Thus, the equations of motion for the two fields are

i∂0ψ = b∇2ψ

i∂0ψ
∗ = −b∇2ψ∗ (4.3)

(note that, as required, the equations of motion are conjugates of each other. This is

actually ensured by the fact that the action is real.) This is a wave equations for ψ;

expanding in normal modes

ψ = ei(
~k·~x−ωkt), (4.4)

the equations of motion gives the dispersion relation

ωk = −b|~k|2. (4.5)

The internal U(1) symmetry is (of course)

ψ → e−iλψ, ψ∗ → eiλψ∗. (4.6)

Recall that the conserved current is given in general by

Jµ =
∑
a

Πµ
aDψa − Fµ. (4.7)

In our case, Fµ = 0 (or equivalently a constant), since DL = 0. We also have

Dψ = −iψ. Hence, the conserved charge density is the time component of Jµ

J0 = ψ∗ψ (4.8)

and the conserved charge Q is the integral of this quantity over all space,

Q =

∫
d3xJ0 =

∫
d3xψ∗ψ. (4.9)

For the invariance under space–time translations ψ(x) → ψ(x + λµa
µ), where aµ is

and arbitrary four vector (unit vector), we find

Dψ = aµ∂µψ, Fµ = aµL. (4.10)
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Therefore

J0 = Π0Dψ − a0L
= iψ∗aµ∂µψ − a0iψ∗∂0ψ − a0b~∇ψ∗ · ~∇ψ
= −iψ∗(~a · ~∇)ψ − a0b~∇ψ∗ · ~∇ψ.

For a time translation: a0 = 1, ai = 0,

H = E =

∫
d3x[−b~∇ψ∗ · ~∇ψ] = −b

∫
d3x |∇ψ|2 .

For this energy to be bounded from below, we need b < 0.

For a space translation: a0 = 0, ai = ~x,

P i =

∫
d3x[iψ∗∂iψ]

It’s easy to see that both the energy and momentum are Hermitian.

2. Since the momentum conjugate to ψ∗ vanishes, the only surviving equal time com-

mutation relation to impose is on ψ and its conjugate, iψ∗. Cancelling the i’s, we

get

[ψ(~x, t), ψ∗(~x, t)] = δ(~x− ~y),

and

[ψ(~x, t), ψ(~y, t)] = [ψ∗(~x, t), ψ∗(~y, t)] = 0.

Now expand the fields in the plane wave solutions given in part (1) to get

ψ(~x, t) =

∫
d3kAke

i(~k·~x−ωt)

ψ∗(~y, t) =

∫
d3kBke

−i(~k·~y−ωt)

Assume that Ak = αak and Bk = αa†k, then

[ψ(~x, t), ψ∗(~y, t)] =

∫
d3k

∫
d3k′ei(

~k·~x−ωt)e−i(
~k′·~y−ωt) [Ak, Bk]

=

∫
d3k

∫
d3k′ei(

~k·~x−ωt)e−i(
~k′·~y−ωt)α2δ(~k − ~k′)

= α2

∫
d3kei

~k·(~x−~y)

= (2π)3α2δ(~x− ~y)

This means that α = 1
(2π)3/2

and Ak = 1
(2π)3/2

ak is an annihilation operator, whereas

Bk = 1
(2π)3/2

a†k is a creation operator. The field ψ therefore only annihilates a particle

and ψ∗ only creates particles.
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Now we can go ahead and write the energy, the momentum and the internal symmetry

charge in terms of these creation and annihilation operators. We find

E =

∫
d3x[−b~∇ψ∗ · ~∇ψ]

= −b 1

(2π3)

∫
d3x

∫
d3k d3k′ a†ke

−i(~k~x−ωt)ak′e
i(~k′·~x−ω′t)~k · ~k′

= −b 1

(2π3)

∫
d3k d3k′ a†kak′e

−iωteiω
′t~k · ~k′(2π)3δ(~k − ~k′)

= −b
∫
d3k a†kak|~k|2

Similarly we find

Q =

∫
d3k a†kak

P i =

∫
d3k kia†kak

This form for the momentum operator is to be expected, since a†kak is the usual

number operator. The Hamiltonian acting on a one-particle state is therefore

: H : |~k〉 = −b|~k|2|~k〉

and on the two-particle state is

: H : |~k1,~k2〉 = −b
(
|~k1|2 + |~k2|2

)
|~k1,~k2〉

(this is straightforward to show using the commutation relations of the creation and

annihilation operators in the usual way). This clearly corresponds to the usual energy

of one- and two-particle states if b = −1/2m. The equations of motion for these states

in the Schrödinger picture are therefore

i
∂

∂t
|~k〉 =

|~k|2
2m
|~k〉

and

i
∂

∂t
|~k1,~k2〉 =

1

2m

(
|~k1|2 + |~k2|2

)
|~k1,~k2〉.

This is just the usual EOM for one- and two-particle states in NRQCD.

The conserved charge

Q =

∫
d3k a†kak

is just the number operator. This is a conserved quantity in a nonrelativistic theory,

since particle creation is a relativistic effect.
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5. Interacting Fields

In this section we will put the formalism we have spend the past few lectures deriving to

work. Although we have been talking about symmetries of general (possibly very com-

plicated) Lagrangians, the only equation of motion we have solved is the Klein-Gordon

equation, which is just a theory of free fields. For a real field, φ, we had

Lφ = 1
2(∂µφ∂

µφ− µ2φ2) (5.1)

and for a complex field ψ we had

Lψ = ∂µψ
†∂µψ −m2ψ†ψ. (5.2)

Because we could solve the Klein-Gordon equation, we could expand the fields as sums of

plane waves multiplied by creation and annihilation operators,

φ(x) =

∫
d3k

(2π)3/2
√

2ωk

[
ake
−ik·x + a†ke

ik·x
]

ψ(x) =

∫
d3k

(2π)3/2
√

2ωk

[
bke
−ik·x + c†ke

ik·x
]

ψ†(x) =

∫
d3k

(2π)3/2
√

2ωk

[
cke
−ik·x + b†ke

ik·x
]
. (5.3)

We have expressions for the energy, momentum and U(1) charge in our theory, but it is

incredibly dull because nothing happens. We just have plane waves propagating. In the

quantum theory, as we have seen, this corresponds to a theory of noninteracting, spinless

bosons. L = Lφ + Lψ is a theory of φ particles and ψ particles, but they never interact

because the two Lagrangians are decoupled. We can make things more interesting by

adding interaction terms to the Lagrangian.

5.1 Particle Creation by a Classical Source

The simplest type of interaction we can introduce into the theory is to couple the φ field

to a classical source:

L = Lφ − ρ(x)φ(x) (5.4)

where ρ(x) is some fixed, known function of space and time which is only nonzero for a

finite time interval. This leads to the equation of motion

∂µ∂
µφ+ µ2φ = −ρ(x). (5.5)

To realize why ρ(x) is a source term, recall from classical electromagnetism that in the

presence of a charge distribution %(~x, t) and a current ~(~x, t) the potentials obey the inho-

mogeneous wave equations

∇2ϕ− 1

c2

∂2ϕ

∂t2
= −4π%

∇2 ~A− 1

c2

∂2 ~A

∂t2
= −4π

c
~. (5.6)
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ϕ and ~A form the components of the four-vector Aµ = (ϕ, ~A), so in four-vector notation

we may write this as

∂µ∂
µAν = 4πJν (5.7)

where Jµ = (%,~) is the 4-current. Except for the fact that φ is massive, has no vector

index and is a quantum field, these two theories look quite similar, so we may interpret

ρ(x) as a source for the φ field, just as a charge distribution is a source for electric field.

This theory is actually simple enough that we can solve it exactly. If we start in the

vacuum state, what will we find at some time in the far future, after the source ρ(x) has

been turned on and off again? We can answer this by solving the field equations directly.

Before ρ(x) is turned on, the theory is free, and φ0(x) may be expanded in terms of

creation and annihilation operators, as in Eq. (5.3). After the source has turned on, we

can construct the solution to the equation of motion as follows:

φ(x) = φ0(x) + i

∫
d4y DR(x− y) ρ(y) (5.8)

where DR(x− y) is the retarded Green function, satisfying

(∂µ∂
µ + µ2)DR(x− y) = −iδ(4)(x− y)

DR(x− y) = 0, x0 < y0. (5.9)

The second requirement, that DR be the retarded Green function, is required so that the

boundary condition φ(x)→ φ0(x) as x0 → −∞ is satisfied.

The simplest way to find the Green function is to rewrite Eq. (5.9) in momentum

space. Writing

DR(x− y) =

∫
d4k

(2π)4
e−ik·(x−y) D̃R(k) (5.10)

we find the algebraic equation for D̃R(k),

(−k2 + µ2)D̃R(k) = −i (5.11)

which immediately gives us

DR(x− y) =

∫
d4k

(2π)4

i

k2 − µ2
e−ik·(x−y). (5.12)

This doesn’t quite define DR: the k0 integrand in Eq. (5.12) has poles at k0 = ±ωk. In

order to define the integral, we must choose a path of integration around the poles. Let us

choose a path of integration which passes above both poles. Then for y0 > x0 we can close

the contour in the upper half plane, giving zero for the integral since the path of integration

doesn’t enclose any singularities. Thus, the Green function vanishes for y0 > x0, making

this the appropriate contour for DR(x − y). For x0 > y0, we can close the contour in the

bottom half plane, obtaining for the integral

DR(x− y)
x0>y0

=

∫
d3k

(2π)3

[
1

2ωk
e−ik·(x−y)

∣∣∣∣
k0=ωk

+
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Figure 7: The contour defining DR(x− y).

1

−2ωk
e−ik·(x−y)

∣∣∣∣
k0=−ωk

]

=

∫
d3k

(2π)3

1

2ωk

(
e−ik·(x−y) − eik·(x−y)

)
= D(x− y)−D(y − x)

= [φ(x), φ(y)] (5.13)

where the function D(x) was introduced in Section 2. The retarded Green function

DR(x − y) is therefore related to the commutator of two fields, or equivalently (since

the commutator is a c-number, not an operator), the vacuum expecation value of the

commutator:

DR(x− y) = θ(x0 − y0)[φ(x), φ(y)]

= θ(x0 − y0)〈0 |[φ(x), φ(y)]| 0〉. (5.14)

For our present purposes, we only need the second line in Eq. (5.13). Inserting this

expression into Eq. (5.8) gives

φ(x) = φ0(x) + i

∫
d4y

∫
d3k

(2π)32ωk
θ(x0 − y0)

(
e−ik·(x−y) − e−ik·(x−y)

)
ρ(y)

x0→∞= φ0(x) + i

∫
d3k

(2π)32ωk

∫
d4y

(
e−ik·(x−y) − eik·(x−y)

)
ρ(y)

= φ0(x) + i

∫
d3k

(2π)32ωk

(
e−ik·xρ̃(k)− eik·xρ̃(−k)

)
(5.15)

where in the second line we have used the fact that if we wait until all of ρ(x) is in the past,

the theta function equals one over the whole domain of integration and may be dropped.

We have also defined the Fourier transform

ρ̃(k) =

∫
d4y eik·yρ(y). (5.16)

Thus we find, after the source has been turned off,

φ(x) =

∫
d3k

(2π)3/2
√

2ωk

{(
ak +

i

(2π)3/2
√

2ωk
ρ̃(k)

)
e−ik·x + h.c.

}
. (5.17)
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Since all observables are built out of the fields, we have solved the theory. The Hamiltonian

in the far future is now

H =

∫
d3k ωk

(
a†k −

i

(2π)3/2
√

2ωk
ρ̃∗(k)

)(
ak +

i

(2π)3/2
√

2ωk
ρ̃(k)

)
(5.18)

(this is obvious if you go back to the original derivation of H in terms of φ(x)) and so the

expectation value of the energy of the system in the far future is

〈0 |H| 0〉 =

∫
d3k

(2π)3

1

2
|ρ̃(k)|2. (5.19)

Note that because we are in the Heisenberg representation, we are still in the ground state

of the free theory – the state hasn’t evolved. The time evolution of the system is all

contained in the evolution of the fields. Now, since in the far future we have free field

theory again, the spectrum of the Hamiltonian is just free particles, which means that the

expectation value of the total number of particles created with momentum k is

dN(~k) =
|ρ̃(k)|2

(2π)32ωk
d3k (5.20)

and so each Fourier component of ρ produces particles with the corresponding four-momentum

with a probability proportional to |ρ̃(k)|2. The expectation value of the total number of

particles produced is ∫
dN =

∫
d3k

(2π)32ωk
|ρ̃(k)|2. (5.21)

5.2 More on Green Functions

Since Green functions are of central importance to scattering theory, let’s pause for a mo-

ment and study the expression (5.12) a bit more. The retarded Green function DR(x− y)

was obtain by choosing the path of integration shown in Fig. (7). Other paths of integra-

tion give Green functions which are useful for solving problems with different boundary

conditions. Choosing a path of integration which passes below both poles would give the

advanced Green function, obeying GA(x − y) = 0 for x0 > y0. This would be useful if

we knew the value of the field in the far future and were interested in its value before the

source was turned on. Another possibility is a path which goes below the pole at −ωk
and above the pole at ωk. In this case, when x0 > y0 we perform the k0 integral by closing

the contour below, obtaining the result D(x− y) for the integral. When x0 < y0 we close

the contour above, obtaining the same expression but with x and y interchanged. This

defines the Green function

DF (x− y) =

{
D(x− y), x0 > y0;

D(y − x), x0 < y0.

= θ(x0 − y0)〈0 |φ(x)φ(y)| 0〉+ θ(y0 − x0)〈0 |φ(y)φ(x)| 0〉
≡ 〈0 |Tφ(x)φ(y)| 0〉 (5.22)

where the last line defines the time ordering symbol T, which instructs us to place the

operators that follow in order with the latest on the left. This Green function, called the
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Figure 8: The contour defining DF (x− y).

Feynman propagator, will be of central importance to scattering theory, and we shall return

to it shortly. It is convenient to write the Feynman propagator as

DF (x− y) =

∫
d4k

(2π)4

i

k2 − µ2 + iε
e−ik·(x−y) (5.23)

where the limit ε → 0+ is understood and the path of integration in the k0 plane is now

along the real axis, since the poles are then at k0 = ±(ωk − iε) and are displaced properly

above and below the real axis. Note that the sign of the iε term is crucial: if ε were

negative, the contours would enclose the opposite poles, and the time ordering would come

out reversed.

5.3 Mesons Coupled to a Dynamical Source

The Lagrangian Eq. (5.4) is analogous to electromagnetism coupled to a current which is

unaffected by the dynamics of the field. While this is in many cases a good approximation,

in the real world the current itself interacts with the electromagnetic field, and the resulting

dynamics are quite complicated. For scalar field theory, the analogous situation is described

by a potential which couples the two fields ψ and φ:

L = Lφ + Lψ − gψ†ψφ. (5.24)

Note that the potential only depends on ψ and ψ† in the combination ψ†ψ, so the interaction

term doesn’t break the U(1) symmetry. We are therefore guaranteed that the interacting

theory will also conserve charge. Furthermore, the interaction depends only on the fields,

not their derivatives, so the conjugate momenta are the same as they were in the free

theory. The equations of motion are

∂µ∂
µφ+ µ2φ = −gψ†ψ,

∂µ∂
µψ +m2ψ = −gψφ. (5.25)

The field equations are now coupled, so the fields interact. In fact, comparing this with

Eq. (5.4), we see that ψ†ψ is a current density, a source for the φ field, just like ρ(x).

This model is much more complicated that the previous one, however, because there is

a back-reaction: the current ψ†ψ in turn depends on the field φ. The source is now not
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a prescribed function of space-time, as it was in the previous case, but a full dynamical

variable, so solving this theory is going to be much harder. In general we cannot solve this

system of coupled nonlinear partial differential equations exactly. Instead, we will have to

solve them perturbatively: that is, if g is small we can treat the interaction term as a small

perturbation of free field theory. We will be able to solve the equations of motion as a

power series in g.6 In fact, most of the rest of this course will be concerned with applying

perturbation theory to an assortment of different theories. Much of what is known about

quantum field theory comes from perturbation theory.

The theory defined in Eq. (5.24) describes the interactions of two types of meson, one

of which carries a conserved charge. This doesn’t look anything like the particles we see in

the real world, but we will use it in this section as a toy model to illustrate our perturbative

approach to scattering theory. However, we have seen that the equations of motion look

quite similar to the equations of motion of an electric field coupled to a current. If the ψ

fields were spin 1/2 fermions instead of spin 0 bosons we would have a theory of the strong

interactions between nucleons, where the force is transmitted through the exchange of φ

mesons. We’ll take advantage of this analogy and refer to the ψ particles as “nucleons” (in

quotation marks) and the φ’s as mesons. We’ll call this our “nucleon”-meson theory.

5.4 The Interaction Picture

How do we set this problem up? First of all, we would like to make use of some of our

previous results for free field theories. In particular, we would like to be able to write our

fields in terms of creation and annihilation operators, because in this form we know exactly

how the fields act on the states of the theory. Unfortunately, the solution to the Heisenberg

equations of motion are no longer plane waves but instead something awful. We can fix

this with a clever trick called the interaction picture.

We have already discussed the Schrödinger and Heisenberg pictures. The interaction

picture combines elements of each. All three pictures will coincide at t = 0:

|ψ(0)〉S = |ψ(0)〉H = |ψ(0)〉I
OS(0) = OH(0) = OI(0) (5.26)

where the subscript I refers to the interaction picture, and O represents a generic operator

with no explicit t dependence.

Recall that in the Schrödinger picture, the operators don’t evolve with time, and the

t dependence is carried entirely by the states

OS(t) = OS(0)

i
d

dt
|ψ(t)〉S = H|ψ(t)〉S , (5.27)

while in the Heisenberg picture the states are independent of time and the operators (and

in particular, the fields) carry the time dependence

|ψ(t)〉H = |ψ(0)〉H
6Since g has dimensions of mass, the power series will actually be a series in g/M , where M is some

typical mass or energy in the problem.
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i
d

dt
|OH(t)〉 = [OH(t), H]. (5.28)

We showed earlier that matrix elements are the same in the two pictures.

In the interaction picture (IP) we split the Hamiltonian up into two pieces,

H = H0 +HI (5.29)

where H0 is the free Hamiltonian (that is, the Hamiltonian corresponding to the free-field

Lagrangian), and HI contains the interaction term. Since

H =

∫
d3x

∑
a

Π0
aφ̇a − L =

∫
d3x

∑
a

Π0
aφ̇a − L0 − LI , (5.30)

if LI contains no derivatives of the fields (so it doesn’t change the conjugate momenta from

the free theory), we see immediately that

HI = −LI . (5.31)

In our example, HI = −LI = gψ†ψφ. States in the I.P. are defined by

|ψ(t)〉I ≡ eiH0t|ψ(t)〉S . (5.32)

If we were dealing with a free field theory, HI = 0, this would immediately give |ψ(t)〉I =

|ψ(t)〉H = |ψ(0)〉H and the states would be independent of time, just as in the Heisenberg

picture.

Demanding that matrix elements be identical in all three pictures, we find

S〈ψ(t) |OS |ψ(t)〉S = I〈ψ(t) |OI(t)|ψ(t)〉I = S〈ψ(t) |e−iH0tOI(t)e
iH0t|ψ(t)〉S (5.33)

and so in the I.P. the operators evolve according to the free Hamiltonian:

OI(t) = eiH0tOI(0)e−iH0t (5.34)

(where we have used Eq. (5.26)). This is the solution of the equation of motion

i
d

dt
OI(t) = [OI(t), H0]. (5.35)

This is useful because fields in an interacting theory in the I.P. will evolve just like free

fields in the Heisenberg picture, so we can continue to use all of our results for free fields.

All of the complications have been relegated to the equation of motion for the states. From

the equations of motion of the Schrödinger field, Eq. (5.27), we have

i
d

dt
e−iH0t|ψ(t)〉I = HSe

−iH0t|ψ(t)〉I

⇒ H0e
−iH0t|ψ(t)〉I + e−iH0ti

d

dt
|ψ(t)〉I = (H0(0) +HI(0))e−iH0t|ψ(t)〉I

⇒ i
d

dt
|ψ(t)〉I = eiH0tHI(0)e−iH0t|ψ(t)〉I = HI(t)|ψ(t)〉I (5.36)

where HI(t) = eiH0tHI(0)e−iH0t, as expected from Eq. (5.34). Again we see explicitly that

when HI = 0 the fields in the I.P. are independent of time.
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5.5 Dyson’s Formula

We can already get an idea of how perturbation theory is going to work in the interaction

picture. The time dependence of the operators is trivial, simply given by the free field

equations. On the other hand, the time dependence of the states is going to be taken

into account perturbatively, order by order in the interaction Hamiltonian. Since the

Hamiltonian generates time evolution, at first order in perturbation theory the Hamiltonian

can act once on the states. The interaction term ψ†ψφ contains a collection of creation

and annihilation operators, such as

c†b†a, c†ca, bb†a†, bca†, .... (5.37)

These interactions don’t conserve particle number, and can contribute to a number of

processes. In the first term, the Hamiltonian acts on the initial state, annihilates a φ

particle and creates a ψ particle and antiparticle: this corresponds to the decay process

φ → ψψ. The second corresponds to the absorption ψ + φ → ψ, and so on. At second

order in perturbation theory the Hamiltonian can acts twice on the state, producing more

complicated processes like ψ + ψ → φ → ψ + ψ (ψ anti-ψ scattering through the creation

of an intermediate φ). In this section we will set up a formalism to apply perturbation

theory to scattering processes.

Scattering processes are particularly convenient to study because in many cases the

initial and final states look like systems of noninteracting particles. What do we mean

by this? In a scattering process, we start out with some initial state | i〉 consisting of a

number of isolated particles. Since the particles are widely separated, we don’t expect

them to feel the effects of the potential in Eq. (5.24), and so they will look like free plane

wave states (that is, eigenstates of the free Hamiltonian H0.) In particular, we expect them

to be eigenstates of particle number, even though N will not in general commute with the

interaction Hamiltonian HI . We say we are colliding two electrons, or two protons, or

whatever, with some particular momentum. The initial state looks simple.

As the particles approach one another, they begin to feel the potential, and the states

start to evolve according to Eq. (5.36) in a complicated and non-linear way. At this

intermediate stage, the system will look extremely complicated when expressed in terms

of our basis of free particles. Particles will be created and destroyed, since HI in general

doesn’t commute with N . We no longer have, for example, just two colliding protons, but

a complicated mess of protons, pions, photons, and so forth.

We can imagine several results of the scattering process. Several initial particles could

collide and form a bound state, such as p+p→ 2D (two protons fusing to form a deuterium

nucleus). In this case, no matter how long we wait after the scattering process has occurred

the final state will never look like an eigenstate of the free Hamiltonian, because the

interaction is responsible for the bound state. If we turn the interaction off, the bound

state will fly apart. The formalism we are going to develop for scattering theory will not

be very useful in this situation.

Instead, we could have a process in which no bound states are formed. Then some long

time after the interaction the system will consist of a bunch of widely separated particles,
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perhaps three protons, an antiproton and fourteen pions. The system will again look like a

collection of noninteracting particles. Again it will look simple. This is the type of process

we will be considering.

Before we go any further, I should tell you that this is a bit of a fake. In fact, no matter

how far you go into the past or future from a scattering process you never end up with a

collection of free particles. We already know this from electromagnetism: long after the

collision process, an electron still carries its electromagnetic field along with it. When we

quantize electromagnetism, we will see that this corresponds to a cloud of photons around

the electron. Similarly, the “nucleons” in our toy model will always have a cloud of mesons

around them. If we turn off the interaction, the states will change, so our simple picture

is not quite right. Despite this, our quick and dirty scattering theory will still work. You

can see that this might be the case by imagining that instead of Eq. (5.24), our theory is

defined by the Lagrangian

L = Lφ + Lψ − gf(t)ψ†ψφ (5.38)

where f(t) = 0 for large |t| and f(t) = 1 for t near 0, as shown in Figure 9. For

Figure 9: The “turning on and off” function f(t) in Eq. (5.38). In the limit ∆ → ∞, T → ∞,

∆/T → 0 we expect to recover the results of the original theory Eq. (5.24). The scattering process

occurs near t = 0.

processes where bound states occur, f(t) clearly drastically changes the states in the far

future, since when f(t) → 0 the interaction turns off and the states will fly apart. But in

cases where there are no bound states formed, you might imagine that adding f(t) to the

interaction won’t change the scattering amplitude at all. In particular, if we imagine that

a long time T/2 after the scattering process occurs, we turn the interaction off very slowly

(adiabatically) over a time period ∆, we expect that the simple states in the real theory

will slowly turn into the eigenstates of the free Hamiltonian with unit probability. In other

words, there must be a 1− 1 correspondence between the asymptotic (simple) eigenstates

of the full Hamiltonian and the eigenstates of the free Hamiltonian. This means that we

can’t consider bound states, which are not eigenstates of the free Hamiltonian. In the limit

T →∞, ∆→∞ and ∆/T → 0 (the last requirement ensures that edge effects vanish) we

should recover the full theory.

This description is really meant as a hand-waving way of justifying our approach in

which the initial and final states are taken to be eigenstates of the free Hamiltonian. It is

possible to justify this approach (more) rigorously, but this would take us into technical
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details which we don’t have time for in this course. The hand-waving approach will have

to suffice at this stage. 7

So we want to solve

i
d

dt
|ψ(t)〉 = HI(t)|ψ(t)〉 (5.39)

(we will drop the subscript I on the states, since we will always be working in the I.P. from

now on) with the boundary condition

|ψ(−∞)〉 = | i〉. (5.40)

We want to connect the simple description in the far past with the simple description in

the far future, long after the collision has taken place. If we define the scattering operator

S

|ψ(∞)〉 = S|ψ(−∞)〉 = S| i〉 (5.41)

then the amplitude to find the system in some given state | f〉 in the far future is

〈f |S| i〉 ≡ Sfi. (5.42)

This is conventionally known as the “S-matrix element”. We can solve for S iteratively:

integrating both sides of Eq. (5.39) from t1 = −∞ to t, we find

|ψ(t)〉 = | i〉+ (−i)
∫ t

−∞
dt1HI(t1)|ψ(t1)〉. (5.43)

Iterating this gives

|ψ(t)〉 = | i〉 + (−i)
∫ t

−∞
dt1HI(t1)| i〉

+ (−i)2

∫ t

−∞
dt1

∫ t1

−∞
dt2HI(t1)HI(t2)|ψ(t2)〉. (5.44)

Repeating this procedure indefinitely and taking t→∞, we obtain the following expansion

for S:

S =
∞∑
n=0

(−i)n
∫ ∞
−∞

dt1

∫ t1

−∞
dt2...

∫ tn−1

−∞
dtnHI(t1)...HI(tn). (5.45)

There is a more symmetric way to write this. Look at the n = 2 term, for example:∫ ∞
−∞

dt1

∫ t1

−∞
dt2HI(t1)HI(t2). (5.46)

This corresponds to integrating over the region −∞ < t2 < t1 < ∞ shown in part (a) of

the figure. We can reverse the order of integration, and noting that this is the same region

of integration as in part (b) of the figure, we can write the term as∫ ∞
−∞

dt2

∫ ∞
t2

dt1HI(t1)HI(t2)

=

∫ ∞
−∞

dt1

∫ ∞
t1

dt2HI(t2)HI(t1), (5.47)

7See Peskin and Schroeder, Section 7.2, for the proper treatment of this problem.
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so we can write the second term of the expansion as

1

2!

[∫ ∞
−∞

dt1

∫ ∞
t1

dt2HI(t2)HI(t1) +

∫ ∞
−∞

dt1

∫ t1

−∞
dt2HI(t1)HI(t2)

]
. (5.48)

Notice that in the first term t2 > t1, while in the second t1 > t2. So the HI ’s are always

(a) (b)

Figure 10: The shaded regions correspond to the region of integration in (a) Eq. (5.46) and (b)

Eq. (5.47).

ordered with the earlier one on the right. As before, we define the time-ordered product

T (O1O2) of two operators O1(x2) and O2(x2) by

T (O1(x1)O2(x2)) =

{
O1(x1)O2(x2), t1 > t2;

O2(x2)O1(x1), t1 < t2.
(5.49)

In terms of the time-ordered product, we can write the second term in the expansion of S

as
1

2!

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2 T (HI(t1)HI(t2)). (5.50)

Similarly, for n operators we define the time ordered product (or T -product) such that the

operators are ordered chronologically, the earliest on the right and the latest on the left.

HI commutes with itself at equal times, so there is no ambiguity in this definition. The

n’th term in the expansion of S may then be written as

1

n!

∫ ∞
−∞

dt1...

∫ ∞
−∞

dtn T (HI(t1)...HI(tn)) (5.51)

and the expansion for S is then

S =

∞∑
n=0

(−i)n
n!

∫ ∞
−∞

dt1...

∫ ∞
−∞

dtn T (HI(t1)...HI(tn))

=
∞∑
n=0

(−i)n
n!

∫
d4x1...

∫
d4xn T (HI(x1)...HI(xn)). (5.52)

We can even be slick and write this series as a time-ordered exponential,

S = Te−i
∫
d4xHI(x), (5.53)

where the time-ordering acts on each term in the series expansion. This is Dyson’s formula.
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5.6 Wick’s Theorem

To evaluate the individual terms in Dyson’s formula we will have to calculate matrix

elements of time ordered products of fields between the initial and final scattering states.

For example, in our meson-“nucleon” theory at second order in g we have to evaluate

matrix elements of the form

〈f |T (HI(x1)HI(x2))| i〉 = 〈f |T (ψ†(x1)ψ(x1)φ(x1)ψ†(x2)ψ(x2)φ(x2))| i〉. (5.54)

For the scattering process N +N → N +N (elastic scattering of two “nucleons”), we have

| i〉 = | ~k1(N); ~k2(N)〉, | f〉 = | ~k3(N);~k4(N)〉, where ~k4 = ~k1 + ~k2 − ~k3 since our theory

conserves momentum. Since we know how the fields act on the states in the I.P., this

matrix element is straightforward to calculate. However, in this form it’s still rather messy,

because the T -product contains 16 arrangements of “nucleon” creation and annihilation

operators. It would be much simpler if we could normal-order this expression, because then

the only ordering which would contribute to this process would be ones with two “nucleon”

annihilation operators on the right and two “nucleon” creation operators on the left. In

fact, there is a relation between time-ordered and normal-ordered products, which goes by

the name of Wick’s theorem. To state Wick’s theorem, we define the contraction of two

fields,
−−−−
A(x)B(y) ≡ T (A(x)B(y))− : A(x)B(y) : (5.55)

It is easy to see that
−−−−
A(x)B(y) is a number, not an operator. Consider first the case

x0 > y0. Then

T (A(x)B(y)) = (A(+) +A(−))(B(+) +B(−)) =: AB : +[A(+), B(−)] (5.56)

so
−−−−
A(x)B(y) is a number (given by the canonical commutation relations). Similarly, it is a

number when x0 < y0, so we can sandwich both sides of Eq. (5.55) between vacuum states

to find that

−−−−
A(x)B(y) = 〈0 |

−−−−
A(x)B(y)| 0〉

= 〈0 |T (A(x)B(y))| 0〉 − 〈0 | : A(x)B(y) : | 0〉
= 〈0 |T (A(x)B(y))| 0〉 (5.57)

since the vacuum expectation value of a normal ordered product of fields vanishes (the

annihilation operators on the right annihilate the vacuum). So we have found that the

contraction of two fields is just the vacuum expectation value of the time ordered product

of the fields. We have already seen this object before - it is the Feynman propagator for

the field,

−−−
φ(x)φ(y) = DF (x− y) = 〈0 |T (φ(x)φ(y))| 0〉 =

∫
d4k

(2π)4
eik·(x−y) i

k2 − µ2 + iε
. (5.58)

where the limε→0+ is implicit in this expression.
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For the charged fields, it is straightforward to show that the propagator is

−−−−−
ψ(x)ψ†(y) =

−−−−−
ψ†(x)ψ(y) =

∫
d4k

(2π)4
eik·(x−y) i

k2 −m2 + iε
(5.59)

while other contractions vanish:

−−−−
ψ(x)ψ(y) =

−−−−−−
ψ†(x)ψ†(y) = 0. (5.60)

(The last equation is true because ψ only creates c-type particles and annihilates b-type

particles, therefore 〈0 |T (ψ(x)ψ(y))| 0〉 = 0.)

Having defined the propagator of a field, we can now state Wick’s theorem. For any

collection of fields φ1 ≡ φa1(x1), φ2 ≡ φa2(x2), ... the T -product of the fields has the

following expansion

T (φ1...φn) = : φ1...φn :

+ : φ1φ2φ3...φn : + :
−−−
φ1φ2φ3...φn : +...+ : φ1φ2...

−−−−
φn−1φn :

+ : φ1φ2φ3φ4φ5...φn : +...+ φ1φ2... :
−−−−
φn−3φn−2

−−−−
φn−1φn :

+ ... (5.61)

On the right-hand side of the equation we have all possible terms with all possible contrac-

tions of two fields. We are also using the notation

: A(x)
−−−−−−−−
B(y)C(z)D(w) :≡ : A(x)C(z) :

−−−−
B(y)D(w) (5.62)

Wick’s theorem is true by definition for n = 2. The proof that this is true for all n is by

induction, and so not terribly illuminating, so we won’t repeat it here.

Wick’s theorem has unravelled the messy combinatorics of the T -product, leaving us

with an expression in terms of propagators and normal-ordered products, whose matrix

elements are easy to take without worrying about commutation relations. In its general

form, Eq. (5.61), it looks rather daunting, so let’s get a feeling for it by applying it to the

expression for S at O(g2) in our model:

(−ig)2

2!

∫
d4x1

∫
d4x2T (ψ†(x1)ψ(x1)φ(x1)ψ†(x2)ψ(x2)φ(x2)). (5.63)

Wick’s theorem relates this to a number of normal-ordered products. One of these terms

is
(−ig)2

2!

∫
d4x1

∫
d4x2 : ψ†(x1)ψ(x1)

−−−−−−−−−−−−−−−−−−−−
φ(x1)ψ†(x2)ψ(x2)φ(x2) : (5.64)

This term can contribute to a variety of physical processes. The ψ field contains operators

which annihilate a “nucleon” and create an “anti-nucleon.” The ψ† field contains operators

which annihilate an “anti-nucleon” and create a “nucleon.” So the operator

:ψ†(x1)ψ(x1)
−−−−−−−−−−−−−−−−−−−−
φ(x1)ψ†(x2)ψ(x2)φ(x2):≡:ψ†(x1)ψ(x1)ψ†(x2)ψ(x2):

−−−−
φ(x1)φ(x2) (5.65)
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can contribute to elastic NN scattering, N + N → N + N . That is to say, the matrix

element

〈 ~k3(N); ~k4(N) | :ψ†(x1)ψ(x1)ψ†(x2)ψ(x2): | ~k1(N); ~k2(N)〉 (5.66)

is nonzero, because there are terms in the two ψ fields that can annihilate the two nucleons

in the initial state and terms in the two ψ† fields that can create two nucleons, to give a

nonzero matrix element. Other combinations of annihilation and creation operators in this

term can also contribute to N + N → N + N and N + N → N + N . You can also see

that there is no combination of creation and annihilation operators that will contribute to

N + N → N + N . The ψ fields would have to annihilate the nucleons, and the ψ† fields

can’t create anti-nucelons. We already knew this had to be the case, because the theory

has a conserved U(1) charge which wouldn’t be conserved in this process. It is reassuring

to see that this actually works in practice.

Another term in the expansion of the T -product is

(−ig)2

2!

∫
d4x1

∫
d4x2 : ψ†(x1)

−−−−−−−−−−−−−
ψ(x1)φ(x1)ψ†(x2)ψ(x2)φ(x2) : (5.67)

This term can contribute to the following 2 → 2 scattering processes (you should verify

this):

N + φ→ N + φ, N + φ→ N + φ, N +N → φ+ φ, φ+ φ→ N +N.

A single term is able to contribute to a variety of processes like this because each field can

either destroy or create particles.

5.7 S matrix elements from Wick’s Theorem

Having used Wick’s theorem to relate (unpleasant) T-products to products of normal or-

dered fields and contractions (which are easy to work with), let’s now calculate the scat-

tering amplitude for “nucleon”-“nucleon” scattering at first order in perturbation theory.

First note that for a given process we are interested not in having an expression for the

operator S, but instead for the matrix element

〈f |(S − 1)| i〉. (5.68)

We really want S−1, not S, because we aren’t interested in processes in which no scattering

at all occurs, which corresponds to the leading order term of the Wick expansion. For

NN → NN scattering we want the matrix element

〈p′1(N), p′2(N) |(S − 1)| p1(N), p2(N)〉. (5.69)

Note that there are no arrows over the momenta in the states. We are now doing relativistic

field theory in earnest and so we are going to use our relativistically normalized states from

the first lecture,

| k〉 = (2π)3/2
√

2ωk|~k〉. (5.70)
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We can write these states as

| k〉 = a†(k)| 0〉 (5.71)

where the relativistically normalized creation operator a†(k) is defined as

a†(k) ≡ (2π)3/2
√

2ωk a
†
k (5.72)

and the scalar field φ has the expansion

φ(x) =

∫
d3k

(2π)32ωk

[
a(k)e−ik·x + a†(k)eik·x

]
. (5.73)

From Eqs. (5.70) and (5.71), we also find

a(k′)| k〉 = a(k′)a†(k)| 0〉
= [a(k′), a†(k)]| 0〉
= (2π)32ωk δ

(3)(~k − ~k′)| 0〉 (5.74)

and so ∫
d3k′

(2π)32ωk
a(k′)| k〉 = | 0〉. (5.75)

Similar relations holds for the relativistically normalized “nucleon” and “anti-nucleon”

creation and annihilation operators, so a relativistically normalized incoming two nucleon

state is

| p1(N); p2(N)〉 = b†(p1)b†(p2)| 0〉. (5.76)

Now, to evaluate Eq. (5.69) at second order in the Wick expansion we need to evaluate the

matrix element in Eq. (5.66),

〈p′1; p′2 | :ψ†(x1)ψ(x1)ψ†(x2)ψ(x2): | p1; p2〉 (5.77)

(since we only have nucleons in the initial and final states, I’m going to suppress the “N”

label on the states). The only way to get a nonzero matrix element is by using the nucleon

annihilation terms in ψ(x1) and ψ(x2) to annihilate the two incoming nucleons, and using

the nucleon creation terms in ψ†(x1) and ψ†(x2) to create the two nucleons in the final

state. Any other combination of creation and annihilation operators will give zero inner

product. So in equations,

〈p′1; p′2 | :ψ†(x1)ψ(x1)ψ†(x2)ψ(x2): | p1; p2〉 =

〈p′1; p′2 |ψ†(x1)ψ†(x2)| 0〉〈0 |ψ(x1)ψ(x2)| p1; p2〉. (5.78)

From the explicit expansion of ψ in terms of b†(k) and c(k) and Eq. (5.75), you can easily

show that

〈0 |ψ(x1)ψ(x2)| p1; p2〉 = e−ip1·x1−ip2·x2 + e−ip1·x2−ip2·x1 . (5.79)
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Using this and its complex conjugate, we find four terms contributing to the matrix element

〈p′1; p′2 | :ψ†(x1)ψ(x1)ψ†(x2)ψ(x2): | p1; p2〉 =

(eip
′
1·x1+ip′2·x2 + eip

′
1·x2+ip′2·x1)(e−ip1·x1−ip2·x2 + e−ip1·x2−ip2·x1)

= eip
′
1·x1+ip′2·x2−ip1·x1−ip2·x2 + eip

′
1·x2+ip′2·x1−ip1·x2−ip2·x1

+eip
′
1·x2+ip′2·x1−ip1·x1−ip2·x2 + eip

′
1·x1+ip′2·x2−ip1·x2−ip2·x1 (5.80)

Notice that the first two terms on the first line of the final answer differs by the interchange

x1 ↔ x2. The same is true for the last two terms. Since we are integrating over x1 and x2

symmetrically, and since
−−−−
φ(x1)φ(x2) is symmetric under x1 ↔ x2, these terms must give

identical contributions to the matrix element. This factor of 2 cancels the 1/2! in Dyson’s

formula. Using our expression for the φ propagator, Eq. (5.58), we obtain the following

expression for the second order contribution to NN scattering

(−ig)2

∫
d4x1 d

4x2

−−−−
φ(x1)φ(x2)

×
(
eip
′
1·x1+ip′2·x2−ip1·x1−ip2·x2 + eip

′
1·x2+ip′2·x1−ip1·x2−ip2·x1

)
= (−ig)2

∫
d4x1 d

4x2

∫
d4k

(2π)4

i

k2 − µ2 + iε
(5.81)

×
(
ei(p

′
1−p1+k)·x1+i(p′2−p2−k)·x2 + ei(p

′
2−p1+k)·x1+i(p′1−p2−k)·x2

)
.

The x1 and x2 integrations are easy to do – they just give us δ functions, so this becomes

(−ig)2

∫
d4k

(2π)4

i

k2 − µ2 + iε

[
(2π)4δ(4)(p′1 − p1 + k)(2π)4δ(4)(p′2 − p2 − k)

+(2π)4δ(4)(p′2 − p1 + k)(2π)4δ(4)(p′1 − p2 − k)
]
. (5.82)

Finally, we can do the k integration using the δ functions, and we get

(−ig)2(2π)4δ(4)(p′1 + p′2 − p1 − p2)

(
i

(p′1 − p1)2 − µ2 + iε
+

i

(p′2 − p1)2 − µ2 + iε

)
. (5.83)

Notice that performing the final integral over δ functions leaves us with a factor of

(2π)4δ(4)(pf − pi)

where pf is the sum of all final momenta, and pi is the sum of initial momenta. This

just enforces energy-momentum conservation for the scattering process. Since energy and

momentum are conserved in any theory with a time- and space-translation invariant La-

grangian, it is traditional to define the invariant Feynman amplitude Afi by

〈f |(S − 1)| i〉 = iAfi(2π)4δ(4)(pf − pi). (5.84)

The factor of i is there by convention; it reproduces the phase conventions for scattering in

non-relativistic quantum mechanics. Thus, we find the invariant Feynman amplitude for

“nucleon”-“nucleon” scattering to be

A = −g2

(
1

(p′1 − p1)2 − µ2 + iε
+

1

(p′2 − p1)2 − µ2 + iε

)
. (5.85)
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In the centre of mass frame, we can write the momenta as

p1 = (
√
p2 +m2, pê)

p2 = (
√
p2 +m2,−pê)

p′1 = (
√
p2 +m2, pê′)

p′2 = (
√
p2 +m2,−pê′) (5.86)

where ê · ê′ = cos θ, and θ is the scattering angle. This immediately gives

(p1 − p′1)2 = −2p2(1− cos θ), (p1 − p′2)2 = −2p2(1 + cos θ) (5.87)

and so we get

A = g2

[
1

2p2(1− cos θ) + µ2
+

1

2p2(1 + cos θ) + µ2

]
. (5.88)

Here we’ve dropped the iε because the denominator never vanishes. Note that the two

terms in Eq. (5.88) are required because of Bose statistics. Scattering into two identical

particles at an angle θ is indistinguishable from scattering at an angle π − θ, and so the

probability must be symmetrical under the interchange of the two processes. Since these

particles are bosons, the amplitude must also be symmetric.

5.8 Diagrammatic Perturbation Theory

While the intermediate steps were a bit messy, our final result for NN elastic scattering,

Eq. (5.85), was remarkably simple. Indeed, nobody ever bothers thinking about Dyson’s

formula or Wick’s theorem when calculating scattering amplitudes because there is a very

simple diagrammatic shorthand which has all of this formalism built into it. These are

called Feynman Diagrams. Feynman diagrams are essentially pictures of the scattering

process - or more precisely, pictures of the fields and contractions which must be evaluated

to give the matrix element. They are very easy to construct, according to simple rules.

First of all, at n’th order in perturbation theory the interaction Hamiltonian will

act n times, so a given Feynman diagram will contain n interaction vertices. These are

diagrams representing the interaction Hamiltonian in which each field in a given term of

HI is represented by a line emanating from the vertex. To distinguish ψ’s from ψ†’s, we

can draw an arrow on the corresponding line. A single interaction vertex for our toy theory

is shown in Fig. 11.

Next, contractions are represented by connecting the lines coming out of different

vertices. Any time there is a contraction, join the lines of the contracted fields. The

arrows will always line up, because the contractions for which they don’t,
−−−−
ψ(x)ψ(y) and

−−−−−−
ψ†(x)ψ†(y), are zero. An unarrowed line will never be connected to an arrowed line because
−−−
ψ(x)φ(y) is clearly zero as well. So the term in Eq. (5.64) corresponds to the diagram in

Fig. 12, while the term in Eq. (5.67) corresponds to the diagram in Fig. 13. (Since the

arrows always line up, we have only drawn one arrow on the contracted nucleon lines).
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Figure 11: Interaction vertex for the “nucleon”-meson theory.

Figure 12: Diagrammatic representation of the contraction in Eq. (5.64).

Figure 13: Diagrammatic representation of the contraction in Eq. (5.67).

Now, any fields which are left uncontracted must either annihilate particles from the

incoming state or create particles from the outgoing state. If there are different ways of do-

ing this, they correspond to indistinguishable processes, so we must add the corresponding

amplitudes. Thus, we write down a separate Feynman diagram for each distinct labeling

of the external legs. For NN scattering, this gives us the two Feynman diagrams, shown

in Fig. 14:

For nucleons, the direction of the arrow on the line indicates the direction of flow of

the U(1) charge. An incoming arrow in the initial state corresponds to a nucleon being

annihilated; an incoming arrow in the final state corresponds to an anti-nucleon being

created. Similarly, an outgoing arrow in the initial state corresponds to an anti-nucleon

and an outgoing arrow in the final state corresponds to an outgoing nucleon. Note that

I am using the convention that Feynman diagrams are read from left to right - so the

incoming states come in on the left and the outgoing states go out on the right. Other

conventions - right to left, top to bottom, bottom to top - are also used in other books (as

well as previous versions of these notes!).

These diagrams have a very simple physical interpretation. For the first diagram for

– 73 –



Figure 14: Feynman diagrams contributing to NN scattering at order g2. The arrows on the lines

indicate the flow of conserved charge; the other arrows indicate the direction of momentum flow.

NN scattering, you can say that a nucleon with momentum p1 comes in and interacts,

scattering into a nucleon with momentum p′1 and a meson with momentum k = p1 − p′1.

Energy and momentum are conserved in this process, but the virtual meson doesn’t satisfy

k2 = µ2. In terms of the uncertainty principle, the meson must not live long enough for its

energy to be measured to great enough accuracy to measure this discrepancy. It therefore

can’t exist as a real particle, but must be reabsorbed after a short time. To distinguish it

from a physical particle, it is referred to as a “virtual” meson, and it is reabsorbed by a

nucleon with momentum p2, scattering it into a nucleon with momentum p′2. (Note that

although we are writing this as though there is a definite ordering to these events, the

graph has no time-ordering in it. We could just as well say that the meson is emitted from

the second nucleon and then absorbed by the first.)

The second diagram must be there because of Bose statistics. Since the two incoming

nuclei are identical, it is in principle impossible to say which of the incident nuclei carries p1

and which carries p2. The processes occuring in the two graphs are indistinguishable, and

so the amplitude must sum over both of them. Note that Bose statistics are automatically

built into our creation and annihilation operator formalism.

Having written down our two diagrams and interpreted them, we can now evaluate their

contributions to the scattering amplitude iAfi by the following rules (called the Feynman

rules for the theory):

(a) At each vertex, write down a factor of

(−ig)(2π)4δ(4)

(∑
i

ki

)

where
∑

ki
is the sum of all momenta flowing into (or out of, if you like, as long as

you’re consistent) the vertex.

(b) For each internal line with momentum k flowing through it, write down a factor∫
d4k

(2π)4
D(k2)

where D(k2) is the propagator for the appropriate field:

D(k2) =
i

k2 − µ2 + iε
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for a meson, and

D(k2) =
i

k2 −m2 + iε
for a “nucleon”.

(c) Divide the final result by the overall energy-momentum conserving δ function, (2π)4δ(pF−
pI), where pI and pF are the sums of the total initial and final momenta, respectively.

That’s it. Note that there is no excuse for not getting the factors of (2π)4 right. Every

factor of d4k always comes along with a factor of (2π)−4, and every δ(4) function always

comes with a factor of (2π)4.

Actually, it’s a bit simpler even than this: we can shortcut some of the trivial delta

functions and integrations by simply imposing energy-momentum conservation on the mo-

menta flowing into each vertex. We can incorporate these simplifications into our Feynman

rules for iAfi. After drawing all possible diagrams at each order, assign a momentum to

each line (internal and external) and enforce energy-momentum conservation at each ver-

tex. Then

(a′) At each vertex, write down a factor of (−ig).

(b′) For each contracted line, write down a factor of the propagator for that field.

This is fine for graphs like the ones we have been considering. However, there are also

diagrams with closed loops for which energy-momentum conservation at the vertices is not

sufficient to fix all the internal momenta. For example, the diagram in Fig. 15 corresponds

to the matrix element obtained from the contraction

〈p | :
−−−−−−
ψ†(x1)ψ(x2)ψ(x1)ψ†(x2)

−−−−
φ(x1)φ(x2) : | p〉. (5.89)

Enforcing energy-momentum conservation at each vertex is still not sufficient to fix the

Figure 15: Feynman diagram corresponding to matrix element (5.89).

momentum k flowing through the loop, and so we must keep the factor of∫
d4k

(2π)4
(5.90)

Similarly, the fully contracted term

〈0 | :
−−−−−−
ψ†(x1)ψ(x2)

−−−−−−
ψ(x1)ψ†(x2)

−−−−
φ(x1)φ(x2) : | 0〉 (5.91)

corresponds to the two-loop graph in Fig. (16). In this diagram, neither p nor k is

constrained, so we must integrate over both momenta. Thus we add an additional Feynman

rule for iA:
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Figure 16: Feynman diagram corresponding to matrix element (5.91).

(c) For each internal loop with momentum k unconstrained by energy-momentum con-

servation, write down a factor of
d4k

(2π)4
.

With these rules, it is a simple matter to write down the two Feynman diagrams in

Fig. 14, and immediately read off the amplitude (5.85).

5.9 More Scattering Processes

We can now write down some more Feynman diagrams which contribute to scattering at

O(g2):

Figure 17: Feynman Diagrams contributing to NN → NN

N(p1)+N(p2) → N(p′1)+N(p′2): There are two Feynman graphs contributing to this

process, shown in Fig.(17). Applying our Feynman rules to these diagrams, we immediately

read off

iA = (−ig)2

[
i

(p1 − p′1)2 − µ2
+

i

(p1 + p2)2 − µ2

]
. (5.92)

It is important to be able to recognize which diagrams are and aren’t distinct. Since the

diagrams are simply a shorthand for matrix elements of operators in the Wick expansion,

the orientation of the lines inside the graphs have absolutely no significance. We could just

as well have drawn the diagrams in Fig. 17 as in Fig. (18). The diagrams are the same in

the two figures because they have the same arrangement of lines and vertices: in the first

figure, the vertices are N(p1)−N(p′1)− φ and N(p2)−N(p′2)− φ in both diagrams, with

the two φ’s contracted. Similarly, the second diagrams in both figures are identical. We

could even be perverse and draw the second diagram as in Fig. (19).
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Figure 18: Alternate drawing of the Feynman diagrams in Fig. (17).

Figure 19: Alternate drawing of diagram the second diagram in the previous figure.

N(p1) + N(p2) → φ(p′1)φ(p′2), or nucleon-nucleon annihilation into two mesons. The

amplitude is given by the diagrams in Fig. (20), which gives

Figure 20: Diagrams contributing to NN → φφ.

iA = (−ig)2

[
i

(p1 − p′1)2 −m2
+

i

(p1 − p′2)2 −m2

]
. (5.93)

In this case we have virtual nucleons in the intermediate state, instead of virtual mesons.

Once again, Bose statistics are taken into account by the two diagrams, which differ only

by the exchange of the identical particles in the final state.

N(p1) +φ(p2) → N(p′1) +φ(p′2), or nucleon-meson scattering. From the two diagrams

in Fig. (21) we obtain

iA = (−ig)2

[
i

(p1 − p′2)2 −m2
+

i

(p1 + p2)2 −m2

]
. (5.94)

Once again, we could have drawn the first diagram as shown in Fig. (22)

This completes the list of interesting scattering processes at O(g2). Note that there

are processes such as NN → NN and Nφ→ Nφ which we didn’t write down; clearly these

are simply related to the analogous process with particles instead of antiparticles. Indeed,
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Figure 21: Diagrams contributing to Nφ→ Nφ.

Figure 22: Alternate drawing of the first diagram in the previous figure.

the fact that these amplitudes are identical to those with the corresponding antiparticles

is a consequence of charge conjugation invariance (C), discussed in the previous chapter.

In some cases there are additional combinatoric factors which must be incorporated

into the Feynman rules. Consider the Lagrangian of a self-coupled scalar field

L = L0 −
λ

4!
φ4. (5.95)

The reason for the factor of 4! in the definition of the coupling is made immediately clear

by examining the perturbative expansion of the theory. This theory has a single interac-

tion vertex, shown in Fig. (23). At O(λ) in perturbation theory, the only term which

Figure 23: Interaction vertex for φ4 interaction.

contributes to φφ→ φφ scattering is the completely uncontracted term

− λ
4!
〈k′1, k′2| : φ(x)φ(x)φ(x)φ(x) : |k1, k2〉. (5.96)

Now, any one of the φ fields can annihilate the first meson; any one of the remaining three

can annihilate the second, leaving either of the remaining fields to create either of the final

mesons, giving a total of 4! different combinations. For the Feynman rule for this vertex,

the factors of 4! cancel and we are left simply with −iλ.

At higher orders in perturbation theory, there are more complicated diagrams con-

tributing to these scattering processes. For example, for NN → NN scattering in our

meson-“nucleon” theory, at O(g4) we have diagrams like the two shown in Fig. (24). The

first diagram arises from Wick contractions of the form

: ψ†(x1)ψ(x2)ψ(x3)ψ†(x4)
−−−−−−
ψ(x1)ψ†(x3)

−−−−−−
ψ†(x2)ψ(x4)

−−−−
φ(x1)φ(x2)

−−−−
φ(x3)φ(x4) : (5.97)
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Figure 24: Two representative graphs which contribute to NN → NN scattering at O(g4).

whereas the second diagram arises from Wick contractions of the form

: ψ†(x1)ψ(x2)ψ(x4)ψ†(x4)
−−−−−−
ψ(x1)ψ†(x3)

−−−−−−
ψ†(x2)ψ(x3)

−−−−
φ(x1)φ(x2)

−−−−
φ(x3)φ(x4) : (5.98)

At O(g4) we also get a new process, φφ → φφ scattering, from the graph in Fig. (25).

The momenta flowing through the internal lines in this figure have been explicitly shown.

Figure 25: Diagram contributing to φφ→ φφ scattering.

Because of the overall energy-momentum conserving δ function, it does not matter whether

we label, for example, the bottom line by k−p2 or k+p1−p′1−p′2. We can also see explicitly

that energy-momentum conservation at the vertices leaves one unconstrained momentum

k which must be integrated over. According to our Feynman rules, this last graph is

iA = (−ig)4

∫
d4k

(2π)4

i4

(k2 −m2 + iε)((k + p1)2 −m2 + iε)

× 1

((k + p1 − p′1)2 −m2 + iε)((k − p2)2 −m2 + iε)
. (5.99)

The evaluation of integrals of this type is a delicate procedure, and we won’t discuss it in

this course. Note, however, that for large kµ the integral behaves as∫
d4k

k8

and so is convergent. This is not generally the case: in many situations loop integrals

diverge, giving infinite coefficients at each order in perturbation theory. This was a serious

problem in the early years of quantum field theory. However, it turns out that these

infinities are similar in spirit to the infinity we faced when we found a divergent vacuum

energy. By a sufficiently shrewd redefinition of the parameters in the Lagrangian, all

infinities in observable quantities may be eliminated. There is a well-defined procedure

known as renormalization which accomplishes this feat.
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5.10 Potentials and Resonances

People were scattering nucleons off nucleons long before quantum field theory was around,

and at low energies they could describe scattering processes adequately with non-relativistic

quantum mechanics. Let’s look at the nonrelativistic limit of the “nucleon-nucleon” scat-

tering amplitude and try to understand it in terms of NRQM.

First of all, recall8 the Born approximation from NRQM: at first order in perturbation

theory, the amplitude for an incoming state with momentum ~k to scatter off a potential

U(~r) into an outgoing state with momentum ~k′ is proportional to the Fourier transform of

the potential,

ANR(~k → ~k′) = −i
∫
d3r e−i(

~k′−~k)·~rU(~r). (5.100)

In the centre of mass frame, two-body scattering is simplified to the problem of scattering

off a potential, both classicially and quantum mechanically. Let us therefore compare the

nonrelativistic potential scattering amplitude Eq. (5.100) with that from the first diagram

in Fig. (14):

iA =
−ig2

(p1 − p′1)2 − µ2
=

ig2

|~p1 − ~p ′1 |2 + µ2
(5.101)

where we have used the fact that in the centre of mass frame, the energies of the initial

and scattered “nucleons” are the same. To compare the relativistic and nonrelativistic

amplitudes, we also must divide the relativistic result by (2m)2, to account for the differ-

ence between the relativistic and nonrelativistic normalizations of the states. Defining the

dimensionless quantity λ = g/2m, this gives∫
d3rU(~r)e−i(~p

′
1−~p1)·~r = − λ2

|~p1 − ~p ′1 |2 + µ2
(5.102)

Inverting the Fourier transform gives

U(~r) = −λ2

∫
d3q

(2π)3

ei~q·~r

|~q|2 + µ2

= − λ2

4π2

∫ ∞
0

dq
q2

q2 + µ2

eiqr − e−iqr
iqr

= − λ2

2πr

1

2πi

∫ ∞
−∞

dq
qeiqr

q2 + µ2
(5.103)

and closing the contour of the integral in the upper half complex plane to pick up the

residue of the single pole at q = +iµ gives

U(r) = − λ2

4πr
e−µr. (5.104)

This is called the Yukawa potential. We note two features:

1. The potential falls off exponentially with a range of µ−1, the Compton wavelength

of the exchanged particle.

8See, for example, Cohen-Tannoudji, Diu and Laloë, Quantum Mechanics, Vol. II, Chapter VIII, espe-

cially section B. 4
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2. The potential is attractive.

The first feature is generic for the exchange of any particle. Indeed, this was how Yukawa

predicted the existence of the pion, by working backwards from the observed range of the

force (about 1 fm) to predict the mass (about 200 MeV). You can see directly from the

scattering amplitudes that the sign of the Yukawa term in the amplitude is the same in

“nucleon”-“nucleon”, “antinucleon”-“antinucleon” and “nucleon”-“antinucleon” scattering.

This is a generic feature of scalar boson exchange - it leads to a universally attractive

potential. This is in contract to the electrostatic potential, which arises from the exchange

of a spin-1 boson, and can be either attractive or repulsive. Gravity, which is mediated by

a spin-2 field, is again universally attractive.

Now let’s look at “nucleon”-“antinucleon” scattering. The first term in Eq. (5.92)

again corresponds to scattering in a Yukawa potential. What about the second term?

First, we note that in the nonrelativistic limit (p1 + p2)2 ' 4m2 � ~p2
i , so this term is

suppressed compared with the potential scattering term. This shouldn’t be surprising

- particle creation and annihilation is a purely relativistic effect. In the centre of mass

frame, we have

~p1 = −~p2 ≡ ~p, E1 = E2 =
√
p2 +m2 (5.105)

and so the amplitude is proportional to

A ∝ 1

4M2 + 4p2 − µ2 + iε
. (5.106)

There are two cases to consider. If µ < 2m, the denominator never vanishes. We can there-

fore drop the +iε, and the scattering amplitude is a monotonically decreasing function of

p2, corresponding to the intermediate meson going further offshell as p2 increases. However,

if µ > 2m, the scattering amplitude has a pole, corresponding to the intermediate meson

going on mass-shell at k2 = (p1 + p2)2 = µ2. At this kinematic point, the intermediate

meson is no longer virtual, and instead is a real propagating particle. This is reflected as

a resonance in the cross section. Searching for resonances in cross sections is one way of

discovering new particles at colliders. For example, the figure below shows the cross-section

(roughly the amplitude squared) for e+e− to annihilation to muon pairs as well as to quarks

(the curve marked “hadrons”). Both processes can proceed either through an intermediate

photon or an intermediate Z0 boson. At low energies the intermediate photon dominates

and the cross-section is monotonically decreasing, but there is a clear resonance at a centre

of mass energy around 91 GeV, the mass of the Z0 boson.

Note that the Z0 peak in the figure is not a pole, but rather a peak of finite height.

This is another general feature of resonances. This is because, for µ > 2m, the meson is

unstable to decay into a “nucleon”-“antinucleon” pair via the diagram in Fig. (29). (For

µ < 2m, the decay is not kinematically allowed). When treated correctly, this instability

adds a finite imaginary piece to the denominator of the scattering amplitude, shifting the

pole into the complex plane, and rendering the resulting probability finite at the peak.

The +iε in the amplitude is therefore not relevant in this case, either - in fact it is only in

diagram with closed loops that the +iε is crucial.
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Figure 26: Cross sections for electron-positron scattering to various final states. Note the resonance

in the cross sections corresponding to the intermediate Z0 boson going on-shell. The amplitude for

e+e− → γγ does not have an intermediate Z0 boson, and so the corresponding cross section does

not have a resonance.
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6. Example (continued): Perturbation Theory for nonrelativistic quantum

mechanics

We can get some more practice in the techniques of the previous chapter by applying them

to the second quantized form of NRQM, introduced at the end of Chapter 3. Since the

second quantized formulation of NRQM is the same as we have been using for relativistic

QM, we can do perturbation theory using the same techniques. (This part wasn’t on the

midterm, but did make it onto a problem set).

The Problem

Consider adding a second field χ to the theory, coupled to ψ by a potential:

L = L0 + iχ∗∂0χ+ b~∇χ∗ · ~∇χ−
∫
d3x′V (|~x− ~x′|)χ∗(~x′, t)ψ∗(~x, t)χ(~x′, t)ψ(~x, t). (6.1)

As you are about to show, the expectation value of the interaction Hamiltonian in the

position state |χ(~r1)ψ(~r2)〉 is V (|~r1−~r2|); hence, for V positive, this is a repulsive potential

which depends only on the distance between the particles. This potential is non-local

in space, and so violates causality in a relativistic theory, but since the theory is non-

relativistic this doesn’t matter.

1. Show that this term does indeed correspond to a two-body potential V (|~x − ~x′|) by

showing that in the presence of the interaction the two-particle matrix element of the

Hamiltonian (i.e. the energy of the two-particle state) is shifted by

〈~x3, ~x4|HI |~x1, ~x2〉 = V (|~x1 − ~x2|)〈~x3, ~x4|~x1, ~x2〉

(normal order freely). Since this is a non-relativistic theory, you can use the usual

position eigenstates from NRQM,

|~x〉 =

∫
d3~k

(2π)3/2
e−i

~k·~x|~k〉.

2. Using Dyson’s formula, find (to lowest order in V ) 〈~k3,~k4|S−1|~k1,~k2〉, the amplitude

for two body scattering, as a function of V . Show that in the centre of mass frame you

recover the Born approximation of nonrelativistic quantum mechanics for scattering

off a potential,

iA ∝
∫
d3~r V (|~r|)e−i(∆~k)·~r (6.2)

where ∆~k is the change in momentum of one of the scattered particles. (You should

also get energy- and momentum-conserving δ functions in your amplitude).

3. Returning now to relativistic quantum mechanics, consider the amplitude for the

scattering of two distinguishable “nucleons” ψa and ψb with identical masses and

couplings to the φ field. In the non-relativistic limit, we can consider this as the

scattering of two “nuclei” due to an effective nucleon-nucleon potential induced via
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meson exchange. In analogy with your answer to part (c), show that the effective

nucleon-nucleon potential has the Yukawa form

V (r) ∼ g2 e
−µr

r
.

Is the force attractive or repulsive?

Solution

1. Since the free Hamiltonian for the χ field is the same as for the ψ field, we can use the

same expansion as before. Using Dyson’s formula to first order, we don’t encounter

any time ordered products, so life is pretty easy

〈0|S − 1|0〉 = 〈0|
∫
d4xd3x′V (|~x− ~x′|)χ∗(~x′, t)ψ∗(~x, t)χ(~x′, t)ψ(~x, t)|0〉

=
1

(2π6

∫
d3x′d4xV (|~x− ~x′|)

∫
d4kad

4kbd
4kcd

4kd

e−ikax
′
e−ikbxeikcx

′
eikdx〈0|a†kaa

†
kb
akcak−d|0〉

=
1

(2π6

∫
d3x′d4xV (|~x− ~x′|)

∫
d4kad

4kbd
4kcd

4kd

e−ikax
′
e−ikbxeikcx

′
eikdxδ4(k1 − kc)δ4(k2 − kd)δ4(k3 − ka)δ(k4 − kb)× 4

=
1

(2π6

∫
d3x′d4xV (|~x− ~x′|)e−ik1x′e−ik2xeik3x′eik4x × 4

=

∫
d3x′d4xV (|~x− ~x′|)e−ix′(k1−k3)e−ix

′(k2−k4) × 4

=
1

(2π5

∫
d3x′d3xV (|~x− ~x′|)ei~x′( ~k1− ~k3)ei~x( ~k2− ~k4)δ(E1 + E2 − E3 − E4)× 4

The factor of four comes from the various ways I can get a non–zero matrix element.

This would be 4!, if the particles were identical. This is not clear from the question.

Now do a change in variables

r = x− x′, s = x+ x′ ⇒ x =
r + s

2
, x′ =

s− r
2

Now d3xd3x′ = 1
8d

3rd3s to get

〈0|S − 1|0〉 =
1

(2π5

1

2

∫
d3rd3sV (|~r|)e i2~r( ~k2+ ~k3− ~k4)− ~k1)e

i
2
~s( ~k1+ ~k2− ~k3)− ~k4)δ(E1 + E2 − E3 − E4)

=
4

(2π2

∫
d3rV (|~r|)e i2~r( ~k3− ~k1)×2δ4(k1 + k2 − k3 − k4)

=
4

(2π2

∫
d3rV (|~r|)e−i~r(∆~k)δ4(k1 + k2 − k3 − k4)

Note that I didn’t have to make use of the centre of mass frame.
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2. The Feynman amplitude for this Feynman diagram is

iA = (−ig)2 i

q2 − µ2 + iε
(2π)4δ(k1 + k2 − k3 − k4), q = ∆p

In the nonrelativistic limit, m2 � p2, therefore the change in the energy is neglible(q2
0 =

2m2 + |~p1|2 + |~p3|2 − 2
√
m2 + |~p1|2

√
m2 + |~p3|2 → 0). Thus,

iA = ig2 1

|~q|2 + µ2
(2π)4δ(k1 + k2 − k3 − k4)

Comparing that with the result obtained in c), one finds

V (|~r|) = −g22π3

∫
d3q

ei~q~r

q2 + µ2

= −g22π3

∫ ∞
0

∫ π

0

eiqrcosθ

q2 + µ2
sinθdθq2dq

With ∫ π

0
eiqrcosθsinθdθ =

1

irp

[
eirp − e−irp

]
We find

V (|~r|) = −g22π3 1

ir

∫ ∞
−∞

qdq
e−qr

q2 + µ2

= −g24π4 e
−µr

r

The last step involved closing the contour above and picking up the pole at p = iµ.

This is an attractive potential.
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7. Decay Widths, Cross Sections and Phase Space

At this stage we are now able to calculate amplitudes for a variety of processes by evaluating

Feynman diagrams,

〈f |(S − 1)| i〉 = iA(2π)4δ(4)(pF − pI)

but we have yet to make contact with anything measurable. In order to calculate probabil-

ities, we must square the amplitudes and sum over all observed final states. But it looks

like the probability is going to be proportional to

|Sfi|2 ∼ |δ(4)(pF − pI)|2.

|δ(4)(pF − pI)|2?? Squaring a delta function makes no sense. What happened?

The problem is that we are not working with “square-integrable” states. Instead, our

states are normalized to δ(3) functions. They are not normalizable because they are plane

waves, existing at every point in space-time. Thus the scattering process is in fact occurring

at every point in space, for all time. No wonder we got divergent nonsense. This is clearly

not what we wanted.

The proper way to solve this problem is to take our plane wave states and build up

localized wave packets, which are normalizable and for which the scattering process really

is restricted to some finite region of space-time. Another approach, which is simpler and

will give the right answer, is to return to our old crutch and put the system in a box

of volume V , and turn the interaction on for only a finite time T . This will solve the

normalization problem because plane wave states in the box are square-integrable, the

states being normalized to

〈~k |~k′〉 = δ~k~k′ (7.1)

instead of δ(3)(~k−~k′). Furthermore, if we divide our answer by T , we will get the transition

probability/unit time, which is really what we are interested in. Finally, we can take the

limit T, V →∞ and hope it makes sense (it will).

As we discussed earlier in the course, in a box measuring L on each side with periodic

boundary conditions, the allowed values of momenta must be of the form

kx =
2πnx
L

, ky =
2πny
L

, kz =
2πnz
L

(7.2)

where nx, ny and nz are integers, as shown in the kx − ky plane in Fig. (27). The

integrals over momentum for the expansion of the fields therefore becomes a sum over

discrete momenta, and the scalar field φ has the expansion

φ(x) =
∑
~k

[
ake
−ik·x

√
2ωk
√
V

+
a†ke

ik·x
√

2ωk
√
V

]
(7.3)

(you can check that this is the right expansion by seeing that the commutation relations for

a†k and ak reproduce the correct canonical commutation relations for the fields). Switching
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Figure 27: Allowed values of kx and ky in a box of measuring L on each side.

back to our non-relativistic normalization for our states, we see that each time a field

creates or annihilates a state it will bring in an additional factor of

e±ik·x√
2ωk
√
V

(7.4)

(in contrast to the factor of e±ik·x we had in the last set of lecture notes, when we were

working with relativistically normalized states in infinite volume). Thus, we have for finite

V = L3 and T ,

〈f |(S − 1)| i〉V T = iAV Tfi (2π)4δ
(4)
V T (pF − pI)×

∏
f

1√
2ωk
√
V

∏
i

1√
2ωk
√
V

(7.5)

where the products are over final (f) and initial (i) particles, and the notation V T indicates

finite volume and time. The function

δ
(4)
V T (p) ≡ 1

(2π)4

∫ T/2

−T/2
dt

∫
V
d3~xeip·x (7.6)

approaches a δ function in the V, T →∞ limit.

Each quantity in Eq. (7.5) is finite, so squaring it is now sensible. However, since we

want to make contact with the real world, we note that no experimentalist can measure the

cross section for the scattering process N(p1) +N(p2)→ N(p′1) +N(p′2) for any particular

values of the momenta since it is impossible to resolve a single state. It is only possible to

measure all states about some small region ∆k in momentum space. From the figure, it is

clear that in a region of size ∆kx∆ky∆kz, there are

L

2π
∆kx

L

2π
∆ky

L

2π
∆kz =

V

(2π)3
∆kx∆ky∆kz (7.7)

states. If there are N particles in the final state, in the infinitesimal region of size

d3p1d
3p2...d

3pN there will be
N∏
f=1

V

(2π)3
d3pf (7.8)
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states, which must be summed over. Squaring our expression for the amplitude, summing

over all final states and dividing by the total time T , we find the following expression for

the differential transition probability per unit time wV T /T :

wV T
T

=
1

T
|AV Tfi |2(2π)8

∣∣∣δ(4)
V T (pF − pI)

∣∣∣2 ×∏
f

d3pf
(2π)32ωp

∏
i

1

2ωiV
. (7.9)

Note that the factors of V cancel in the product over final particles. We will find that

for decay rates and cross sections the V in the product over initial particles also cancel.

The only tricky part of taking the limit V, T → ∞ is the |δ(4)
V T (p)|2 function. This will

approach a function which is infinitely peaked at the origin, so we might anticipate it will

be proportional to a delta function. So let’s look at∫
d4p

∣∣∣δ(4)
V T (p)

∣∣∣2 =
1

(2π)8

∫
d4p

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′
∫
V
d3~x

∫
V
d3~x′eip·x−ip·x

′
. (7.10)

Performing the integral
∫
d4p, the exponential factors just give us (2π)4δ(4)(x− x′), so we

can trivially do the integrals over t′ and x′, and we find∫
d4p

∣∣∣δ(4)
V T (p)

∣∣∣2 =
1

(2π)4

∫ T/2

−T/2
dx

∫
V
d3~x =

V T

(2π)4
. (7.11)

So indeed
∣∣δ(4)(p)

∣∣2 is proportional to a δ function, with a coefficient which diverges in the

limit T, V →∞:

lim
V,T→∞

∣∣∣(2π)4δ
(4)
V T (p)

∣∣∣2 = V T (2π)4δ(4)(p). (7.12)

Substituting this into Eq. (7.9) and taking the limit V, T →∞, we find

w

T
= |Afi|2V (2π)4δ

(4)
V T (pF − pI)×

∏
final particles f

d3pf
(2π)32Ef

∏
initial particles i

1

2EiV

≡ |Afi|2V D
∏

initial particles i

1

2EiV
, (7.13)

where we are using E and ω interchangeably for the energies of the particles, and we have

defined the factor D by

D ≡ (2π)4δ(4)(pF − pI)
∏

final particles f

d3pf
(2π)32Ef

. (7.14)

Note that D is manifestly Lorentz invariant, since the measure d3pf/(2π)32Ef is the in-

variant measure we derived earlier on. Also note that just as in the case of our Feynman

rules, each δ(n) function comes with a factor of (2π)n, and each integration dnk comes with

a factor of (2π)−n, so there is no excuse for getting the factors of 2π wrong.

Now, in fact we are only really interested in processes with one or two particles in the

initial state (but still an arbitrary number of particles in the final state), corresponding to

decays and 2→ N particle scattering. The relevant physical quantities we wish to calculate

are lifetimes and cross sections. So let’s examine each of these in turn.
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7.1 Decays

For a decay process there is a single particle in the initial state, so

w

T
=

1

2E
|Afi|2D. (7.15)

Note that the factors of V have cancelled, as they must in order to have a sensible V →∞
limit. In the particle’s rest frame, we will define the quantity dΓ as the differential decay

probability/unit time:

dΓ ≡ 1

2M
|Afi|2D. (7.16)

Then the total decay probability/unit time, Γ, is

Γ =
1

2M

∫
all final states

|Afi|2D. (7.17)

Since the probability of the particle decaying/unit time is Γ, after a time t the probability

that the particle has not decayed is just e−Γt. Therefore, Γ = 1/τ , where τ is the particle’s

lifetime (in natural units). Γ is called the “decay width.” If we consider the uncertainty

principle, we see that it does in fact correspond to a width. Since the particle exists for a

time τ , any measurement of its energy (or mass, in its rest frame) must be uncertain by

∼ 1/τ = Γ. Thus, a series of measurements of the particle’s mass will have a characteristic

spread of order Γ, as indicated in Fig. (28).

Figure 28: The result of a series of measurements of the mass of a particle with lifetime τ = 1/Γ.

The width of the distribution is proportional to Γ.

7.2 Cross Sections

In a physical scattering experiment, a beam of particles is collided with a target (or an-

other beam of particles coming in the opposite direction), and a measurement is made of

the number of particles incident on a detector. So for an incident flux F =# of parti-

cles/unit time/unit area, an infinitesimal detector element will record some number dN

scatterings/unit time

dN = Fdσ (7.18)
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where dσ is called the differential cross section. The total number of scatterings per unit

time is then N = Fσ, where σ is the total cross section. With this definition, we have

dσ =
differential probability

unit time× unit flux

=
A2
fi

4E1E2V
D × 1

flux

=
A2
fi

4E1E2

1

|~v1 − ~v2|
D (7.19)

where ~v1 and ~v2 are the 3-velocities of the colliding particles, in terms of which the flux is

|~v1 − ~v2|/V . This is easy to see. Consider first a beam of particles moving perpendicular

to a plane of area A and moving with 3-velocity ~v. If the density of particles is d, then

after a time t, the total number of particles passing through the plane is

N = |~v|Atd. (7.20)

Therefore the flux is N/At = |~v|d. With our normalization, there is one particle in the box

of volume V , so d = 1/V , and the flux is |~v|/V . In the case of two beams colliding, the

probability of finding either particle in a unit volume is 1/V , but since the collision can

occur anywhere in the box the total flux is |~v1 − ~v2|/V 2 × V = |~v1 − ~v2|/V .

From Eq. (7.19), the total cross section is

σ =
1

4E1E2

1

|~v1 − ~v2|

∫
all final states

|Afi|2D. (7.21)

Once again, the factors of V cancel and the result is well-behaved in the limit T, V →∞.

7.3 D for Two Body Final States

These formulas for the decay widths and the cross sections are true for arbitrary numbers

of particles in the final states. For two particles, there are six integrals to do (d3~p1d
3~p2),

but four of the variables are constrained by the energy-momentum conserving δ function

δ(4)(p1 + p2 − pI), leaving only two independent variables to integrate over. Thus, we can

write D in a simpler form. For a two-body final state,

D =

∫
d3~p1

(2π)32E1

d3~p2

(2π)32E2
(2π)4δ(4)(p1 + p2 − pI). (7.22)

In the centre of mass frame, ~pI = 0, and Ei ≡ ET , the total energy available in the process.

Therefore

D =
d3~p1

(2π)32E1

d3~p2

(2π)32E2
(2π)3δ(3)(~p1 + ~p2)(2π)δ(E1 + E2 − ET )

⇒ d3~p1

(2π)34E1E2
(2π)δ(E1 + E2 − ET )

=
1

(2π)34E1E2
p2

1dp1dΩ1(2π)δ(E1 + E2 − ET ) (7.23)
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where we have performed the integral over ~p2, and ~p2 = −~p1 is now implicit. We have also

written d3~p1 = p2
1dp1d cos θ1dφ1 ≡ p2

1dp1dΩ1, where θ and φ are the polar angles of ~p1.

To eliminate the last dependent variable, the δ function of energy must be converted

to a δ function of p1. Using the general formula

δ[f(x)] =
∑

x0∈zeroes of f

1

|f ′(x0)|δ(x− x0) (7.24)

to change variables from E1 to p1, we must include a factor of∣∣∣∣∂(E1 + E2)

∂p1

∣∣∣∣−1

.

Since E2
1 = p2

1 +m2, and E2
2 = p2

2 +m2 = p2
1 +m2 (from ~p2 = −~p1),

∂E1

∂p1
=
p1

E1
,
∂E2

∂p2
=
p1

E2
(7.25)

and so ∣∣∣∣∂(E1 + E2)

∂p1

∣∣∣∣ =
p1(E1 + E2)

E1E2
=
p1ET
E1E2

. (7.26)

The desired result for a two body final state in the centre of mass frame is therefore

D =
1

16π2

p1 dΩ1

ET
. (7.27)

In this derivation, we have assumed that the particles A and B in the final state are

distinguishable, because we treated the final states |A(~p1), B(~p2)〉 and |A(~p2), B(~p1)〉 as

distinct. In fact, if the particles are identical then these states are in fact identical, and

so we’ve double-counted by a factor of 2!. In general, for n identical particles in the final

state, we must multiply D by a factor of 1/n!.

Now let’s apply this to a couple of examples. Going back to our QMD theory, suppose

µ2 > 4m2, so that the decay φ→ NN is kinematically allowed. There is only one diagram

contributing to this decay at leading order in perturbation theory, shown in Fig. (29), so

iA = −ig (simple!) and the decay width of the φ is

Γ =
g2

2µ

p1

16π2µ

∫
dΩ1

=
g2p1

8πµ2
(7.28)

since
∫
dΩ = 4π. p1 is straightforward to compute from energy-momentum conservation.

The initial four-momentum is (µ,~0) and the final momenta of the nucleons are P1 =

(
√
p2

1 +m2, ~p1), P2 = (
√
p2

1 +m2,−~p1), so p1 =
√
µ2 − 4m2/2.

As a second example, we consider 2→ 2 particle scattering in the centre of mass frame.

Since the results which follow are just kinematics and don’t depend on the amplitude A,
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Figure 29: Leading contribution to µ→ NN .

they are valid in any theory. The 3-velocities are ~v1 = ~p1/(γm1) = ~p1/E1, and ~v2 =

~p2/E2 = −~p1/E2, so

|~v1 − ~v2| = p1

(
1

E1
+

1

E2

)
= p1

E2 + E1

E1E2
=
p1ET
E1E2

. (7.29)

This leads to

dσ =
1

4piET

1

16π2

pfdΩ1

ET
|Afi|2 (7.30)

and so
dσ

dΩ
=

1

64π2E2
T

pf
pi
|Afi|2 (7.31)

where pi and pf are the magnitudes of the three-momenta of the incoming and outgoing

particles, respectively.

7.4 D for 3 Body Final States

For three body final states, there are nine integrals to do and four constraints from the δ

function, leaving five independent variables. The derivation is straightforward but more

lengthy than for the 2 body final state, so we will just quote the result here. If the outgoing

particles have energies E1, E2 and E3, then we will choose the independent variables to be

E1, E2, θ1, φ1 and φ12, where φ12 is the angle between particles 1 and 2. In terms of these

variables,

D =
1

256π5
dE1 dE2 dΩ1 dφ12 (7.32)

in the centre of mass frame. In some cases (such as the decay of a spinless meson), the

amplitude is independent of Ω1 and φ12; in this case, we can integrate over those three

variables (
∫
dΩ1dφ12 = 8π2) to obtain

D =
1

32π3
dE1dE2. (7.33)
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8. More on Scattering Theory

Having now gotten a feeling for calculating physical processes with Feynman diagrams, we

now proceed to put scattering theory on a firmer foundation. To do that, it is useful first

to think a bit about Feynman diagrams in a somewhat more general way than we have

thus far.

8.1 Connected and Amputated Diagrams

In the previous section, we noted that at O(g2) in perturbation theory, contracting all the

fields gives us the “vacuum bubble” shown in Fig. 16. Since this doesn’t contribute to a

scattering process, we neglected it. However, the graph does contribute to the “scattering”

process of the vacuum state in the far past to the vacuum state in the far future; that is,

the matrix element 〈0 |S| 0〉.
This is a peculiar result! In a theory with energy and momentum conservation, if you

start out in the vacuum you should stay in the vacuum state with unit probability (in

Latin, ex nihilo nihil fit). However, one can show that if the interaction is turned on for a

finite time T , the effect of adding up all these vacuum bubbles is simply a phase9:

〈0 |S| 0〉 = exp (−iE0T ) . (8.1)

Aha! This is just the usual Schrödinger evolution of a state with energy E0! The problem

is that when you turn on interactions, the zero particle state is no longer the state of lowest

energy of the theory - the vacuum state is instead a very complicated state containing lots

of virtual nucleon-antinucleon-meson states. Since by fiat (and normal ordering) we set the

energy of the zero particle state in the noninteracting theory to be zero, the energy of the

true interacting vacuum is not zero, but E0.

This sounds like a problem. When we scatter particles, we are scattering them in the

background of the true vacuum, not the noninteracting vacuum. For example, at O(g4) in

perturbation theory we would expect to have to include graphs like Fig. 30, while at higher

orders we would include all other possible vacuum bubbles. These are called disconnected

Figure 30: A disconnected diagram.

diagrams. The bubble graphs tell us how the true vacuum state |Ω〉 is related to the 0-

particle state | 0〉, and since they involve no internal or external particles, are the same no

matter what scattering graph they are added onto. However, as we will argue in the next

9See Peskin & Schroeder, section 4.4, for a more thorough discussion and proof of this.
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section, there is a simple fix: if we simply agree not to include disconnected diagrams when

we calculate scattering amplitudes, we will get the correct scattering amplitude in the true

vacuum.

A similar effect occurs for the single particle states. If we naıvely calculate the graph in

Fig. 31 we will get infinity, since the nucleon line after the bubble is an on-shell propagator,

i/0. I won’t discuss these diagrams in detail in this course, but they are related to the

fact that the single particle states in the free theory are not the same as the single particle

states in the interacting theory. In particular, the energy in the meson field surrounding

the nucleon will shift the energy (and hence the mass) of the single nucleon state. More

subtly, these diagrams will also change the amplitude for the nucleon field to annihilate

or create single nucleon states. As you will show next semester, when these two effects

are properly taken into account, you will get the correct result for scattering amplitudes

by neglecting diagrams of the form in Fig. 31, with loops on external lines. We refer to

diagrams in which all loops on external lines have been cut off as “amputated”.

In the rest of this chapter we will justify these two claims, as well as giving a more

formal discussion of Feynman diagrams.

Figure 31: An un-amputated diagram.

8.2 Feynman Diagrams, S-matrix elements and Green’s Functions

Up to now, we’ve had a rather straightforward way to interpret Feynman diagrams: with all

the external lines corresponding to physical particles and satisfying the mass-shell condition

p2
i = m2

i , they correspond to S matrix elements. In this section we will find it useful to

generalize our notion of Feynman diagrams to include diagrams where the external legs are

not necessarily on the mass shell (that is, for external momenta which do not necessarily

obey p2
i = m2

i ). Clearly, such quantities do not directly correspond to S matrix elements.

Nevertheless, they will turn out to be extremely useful objects.

Let us denote the sum of all Feynman diagrams with n external lines carrying momenta

k1, . . . , kn directed inward by

G̃(n)(k1, . . . , kn)

as denote in the figure for n = 4. (For simplicity, we will restrict ourselves to Feynman

diagrams in which only one type of scalar meson appears on the external lines. The

extension to higher-spin fields is straightforward; it just clutters up the formulas with

indices). The question we will answer in this section is the following: Can we assign any

meaning to this blob if the momenta on the external lines are unrestricted, off the mass

shell, and maybe not even satisfying k1 + k2 + k3 + k4 = 0?
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k1 k2
k3k4 � ~G(4)(k1; k2; k3; k4)

Figure 32: The blob represents the sum of all Feynman diagrams; the momenta flowing through

the external lines is unrestricted.

In fact, we will give three affirmative answers to this question, each one of which will

give a bit more insight into Feynman diagrams.

8.2.1 Answer One: Part of a Larger Diagram

The most straightforward answer to this question is that the blob could be an internal part

of a more complicated graph. Let’s say we were interested in calculating the graphs in Fig.

33(a-d), which all have the form shown in Fig. 33(e), where the blob represents the sum

of all graphs (at least up to some order in perturbation theory). Recalling our discussion

(a) (b)
(c) (d) (e)

Figure 33: The graphs in (a-d) all have the form of (e).

of Feynman diagrams with internal loops, we would label all internal lines with arbitrary

momenta and integrate over them. So if we had a table of blobs, we could simply plug it

into this graph, do the appropriate integrals, and have something which we do know how

to interpret: an S-matrix element.

So this gives us a sensible, and possibly even useful, interpretation of the blob. Before

we go any further, we should choose a couple of conventions. For example, we could include

or not include the n propagators which hang off G̃(k1, . . . , kn). We could also include or

not include the overall energy-momentum conserving δ-function. We’ll include them both.

Fig. 34 shows a few contributions to G̃(4)(k1, k2, k3, k4).

One simple thing we can do with these blobs is to recover S-matrix elements. We

cancel off the external propagators and put the momenta back on their mass shells. Thus,
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~G(2)(k1; k2; k3; k4) = +O(g2)= (2�)4�(4)(k1+k4) ik21 � �2 + i�(2�)4�(4)(k2+k3) ik22 � �2 + i�+(2 permutations)= +k1k2 k3k4 +k1k2 k3k4 k1 k2k3k4 k1k2 k3k4!  !  !  !  !  !  
Figure 34: Lowest order contributions to G̃(4)(k1, k2, k3, k4).

we get

〈k3, k4 |(S − 1)| k1, k2〉 =
4∏
r=1

k2
r − µ2

i
G̃(−k3,−k4, k1, k2). (8.2)

Because of the four factors of zero out front when the momenta are on their mass shell, the

graphs that we wrote out above do not contribute to S − 1, as expected (since they don’t

contribute to scattering away from the forward direction).

8.2.2 Answer Two: The Fourier Transform of a Green’s Function

We have found one meaning for our blob. We can use it to obtain another function, its

Fourier transform, which we can then give another meaning to. Using the convention for

Fourier transforms,

f(x) =

∫
d4k

(2π)4
f̃(k)eik·x

f̃(k) =

∫
d4xf(x)e−ik·x (8.3)

(again keeping with our convention that each dk comes with a factor of 1/(2π)), we have

G(n)(x1, . . . , xn) =

∫
d4k1

(2π)4
. . .

∫
d4kn
(2π)4

exp(ik1 · x1 + . . .+ ikn · xn)G̃(n)(k1, . . . , kn) (8.4)

(hence the tilde over G defined in momentum space).

Now, consider adding a source to any given theory,

L → L+ ρ(x)ϕ(x) (8.5)

where ρ(x) is a specified c-number source, not an operator. As you showed in a recent

problem set, this adds a new vertex to the theory, shown in Fig. 35.k i~�(k)
Figure 35: Feynman rule for a source term ρ(x).
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Now, consider the vacuum-to-vacuum transition amplitude, 〈0 |S| 0〉, in this modified

theory. At n’th order in ρ(x), all the contributions to 〈0 |S| 0〉 come from diagrams of the

form shown in the figure.

k1k2 k3k4 k5
kn

Figure 36: n’th order contribution to 〈0 |S| 0〉 in the presence of a source.

Thus, the n’th order (in ρ(x)) contribution to 〈0 |S| 0〉 to all orders in g is

in

n!

∫
d4k1

(2π)4
. . .

∫
d4kn
(2π)4

ρ̃(−k1) . . . ρ̃(−kn) G̃(n)(k1, . . . , kn). (8.6)

The reason for the factor of 1/n! arises because if I treat all sources as distinguishable, I

overcount the number of diagrams by a factor of n!. Thus, to all orders, we have

〈0 |S| 0〉 = 1 +

∞∑
n=1

in

n!

∫
d4k1

(2π)4
. . .

∫
d4kn
(2π)4

ρ̃(−k1) . . . ρ̃(−kn) G̃(n)(k1, . . . , kn)

= 1 +
∞∑
n=1

in

n!

∫
d4x1 . . . d

4xn ρ(x1) . . . ρ(xn)G(n)(x1, . . . , xn). (8.7)

This provides us with the second answer to our question. The Fourier transform of the sum

of Feynman diagrams with n external lines off the mass shell is a Green’s function (that’s

what the G stands for). Recall we already introduced the n = 2 Green’s function (in free

field theory) in connection with the exact solution to free field theory with a source.

Let’s explicitly note that the vacuum-to-vacuum transition ampitude depends on ρ(x)

by writing it as

〈0 |S| 0〉ρ.
〈0 |S| 0〉ρ is a functional of ρ, which is how mathematicians denote functions of functions.

Really, it is just a function of an infinite number of variables, the value of the source at

each spacetime point. It comes up often enough that it gets a name,

Z[ρ] = 〈0 |S| 0〉ρ. (8.8)

(The square bracket reminds you that this is a function of the function ρ(x).) Z[ρ] is called

the generating functional for the Green’s function because, in the infinite dimensional

generalization of a Taylor series, we have

δnZ[ρ]

δρ(x1) . . . δρ(xn)

∣∣∣∣
ρ=0

= inG(n)(x1, . . . , xn) (8.9)
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where the δ instead of δ once again reminds you that we are dealing with functionals here:

you are taking a partial derivatives of Z with respect to ρ(x), holding a 4 dimensional

continuum of other variable fixed. This is called a functional derivative. As discussed

in Peskin & Schroeder, p. 298, the functional derivative obeys the basic axiom (in four

dimensions)

δ

δJ(x)
J(y) = δ(4)(x− y), or

δ

δJ(x)

∫
d4y J(y)ϕ(y) = ϕ(x). (8.10)

This is the natural generalization, to continuous functions, of the rule for discrete vectors,

∂

∂xi
xj = δij , or

∂

∂xi

∑
j

xjkj = ki. (8.11)

The generating functional Z[J ] will be particularly useful when you study the path integral

formulation of QFT in the spring.

The term “generating functional” arises in analogy with the functions of two variables,

which when you Taylor expand in one variable, the coefficients are a set of functions of the

other. For example, the generating function for the Legendre polynomials is

f(x, z) =
1√

z2 − 2xz + 1
(8.12)

since when expanded in z, the coefficients of zn is the Legendre polynomial Pn(x):

f(x, z) = 1 + xz +
1

2
(3x2 − 1)z2 + . . .

= P0(x) + zP1(x) + z2P2(x) + . . . . (8.13)

Similarly, when Z[ρ] in expanded in powers of ρ(x), the coefficient of ρn is proportional to

the n-point Green’s function G(n)(x1, . . . , xn). Thus, all Green’s functions, and hence all

S matrix elements (and so all physical information about the system) are encoded in the

vacuum persistance amplitude in the presence of an external source ρ.

8.2.3 Answer Three: The VEV of a String of Heisenberg Fields

But wait, there’s more. Once again, let us consider adding a source term to the theory.

Thus, the Hamiltonian may be written

H0 +HI → H0 +HI − ρ(x)ϕ(x) (8.14)

where H0 is the free-field piece of the Hamiltonian, and HI contains the interactions. Now,

as far as Dyson’s formula is concerned, you can break the Hamiltonian up into a “free”

and “interacting” parts in any way you please. Let’s take the “free” part to be H0 +HI
and the interaction to be ρϕ. I put quotes around “free”, because in this new interaction

picture, the fields evolve according to

ϕ(~x, t) = eiHtϕ(~x, 0)e−iHt (8.15)
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where H =
∫
d3x (H0 +HI). These fields aren’t free: they don’t obey the free field equa-

tions of motion. You can’t define a contraction for these fields, and thus you can’t do

Wick’s theorem. They are what we would have called Heisenberg fields if there had been

no source, and so we will subscript them with an H.

Now, just from Dyson’s formula, we find

Z[ρ] = 〈0 |S| 0〉ρ = 〈0 |T exp

(
i

∫
d4xρ(x)ϕH(x)

)
| 0〉 (8.16)

= 1 +

∞∑
n=1

in

n!

∫
d4x1 . . . d

4xn ρ(x1) . . . ρ(xn)〈0 |T (ϕH(x1) . . . ϕH(xn)) | 0〉

and so we clearly have

G(n)(x1, . . . , xn) = 〈0 |T (ϕH(x1) . . . ϕH(xn)) | 0〉. (8.17)

For n = 2, we have the two-point Green’s function 〈0 |T (ϕH(x1)ϕH(x2)) | 0〉. This looks

like our definition of the propagator, but it’s not quite the same thing. The Feynman

propagator was defined as a Green’s function for the free field theory; the two-point Green’s

function is defined in the interacting theory. One of the tasks of the next few sections is to

see how these are related.

8.3 Scattering in the True Vacuum

From the discussion in the previous section, we have three logically distinct objects:

1. S-matrix elements (the physical observables we wish to measure),

2. the sum of Feynman diagrams (the things we know how to calculate), and

3. n-point Green’s functions, defined by Eq. (8.9) or, equivalently, (8.17).

By thinking about scattering näıvely (introducing a turning on and off function to make the

interaction vanish in the far past and distant future, and hoping everything holds together

when we take the appropriate limits), we could show that these were all related. Now we

want to get rid of that crutch, and define perturbation theory in a more sensible way. The

question we will then have to address is, what is the relation between these objects in a

more rigorous formulation of scattering theory?

We set up the problem as follows. Imagine you have a well-defined theory, with a

time independent Hamiltonian H (the turning on and off function is gone for good) whose

spectrum is bounded below, whose lowest lying state is not part of a continuum (i.e. no

massless particles yet), and the Hamiltonian has actually been adjusted so that this state,

|Ω〉, the physical vacuum, satisfies

H|Ω〉 = 0. (8.18)

Note that in an interacting theory the true vacuum |Ω〉 is not the same as the 0-particle

state | 0〉, because of the presence of disconnected bubble graphs. The vacuum is transla-

tionally invariant and normalized to one

~P |Ω〉 = 0, 〈Ω |Ω〉 = 1. (8.19)
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Now, let H → H− ρ(x)ϕ(x) and define

Z[ρ] ≡ 〈Ω |S|Ω〉ρ
= 〈Ω |U(∞,−∞)|Ω〉ρ (8.20)

where the ρ subscript again means, in the presence of a source ρ(x), and the evolu-

tion operator U(t1, t2) is the Schorödinger picture evolution operator for the Hamiltonian∫
d3x (H− ρ(x)ϕ(x)). We then define

G(n)(x1, . . . , xn) =
1

in
δnZ[ρ]

δρ(x1) . . . δρ(xn)

∣∣∣∣
ρ=0

. (8.21)

which, using Dyson’s formula just as we did at the end of the last section, is equivalently

G(n)(x1, . . . , xn) = 〈Ω |T (ϕH(x1) . . . ϕH(xn)) |Ω〉. (8.22)

Note that this is, at least in principle, different from our previous definitions of Z and G,

which implicitly referred to S matrix elements taken between free vacuum states, with the

interactions defined with the turning on and off function. Thus, we can ask two questions:

1. Is G(n) defined this way the Fourier transform of the sum of all Feynman graphs?

Let’s call the G(n) defined as the sum of all Feynman graphs G
(n)
F and the Z which

generates these ZF . The question then is, is G(n) = G
(n)
F ? Or equivalently, is Z = ZF ?

The answer will be “almost”: we can compute Green’s functions just as we always

did, as the sum of Feynman graphs, with the added caveat that we neglect all vacuum

bubble diagrams, as we discussed earlier. This is actually rather surprising, since we

derived Feynman rules based on the action of interacting fields on the bare vacuum,

not the full vacuum.

2. Are S matrix elements obtained from Green’s functions in the same way as before?

For example, is

〈k′1, k′2 |S − 1| k1, k2〉 =
∏
a

k2
a − µ2

i
G̃(−k′1,−k′2, k1, k2)? (8.23)

The answer again will be “almost.” The problem will be, as we have already discussed,

that in an interacting theory, the bare field ϕ0(x) no longer creates mesons with unit

probability. The formula will hold, but only when the Green’s function G̃ is defined

using renormalized fields ϕ instead of bare fields.

First we will answer the first question: Is G(n) = G
(n)
F ? Our answer will be similar to

the derivation of Wick’s theorem on pages 82-87 of Peskin & Schroeder, which you should

look at as well.

The object which had a graphical expansion in terms of Feynman diagrams was

ZF [ρ] = lim
t±→±∞

〈0 |T exp

(
−i
∫ t+

t−

[HI − ρ(x)ϕI(x)]

)
| 0〉 (8.24)
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where I remind you that | 0〉 refers to the bare vacuum, satisfying H0| 0〉 = 0. Instead, let

us consider the following object:

Z ′F [ρ] = lim
t±→±∞

〈0 |T exp
(
−i
∫ t+
t−

[HI − ρ(x)ϕI(x)]
)
| 0〉

〈0 |T exp
(
−i
∫ t+
t−
HI
)
| 0〉

. (8.25)

where we have divided the the vacuum-to-vacuum S-matrix element 〈0 |S| 0〉, which is just

the sum of all vacuum bubbles. But since the vacuum bubbles are independent of the

initial and final states, they are universal for all diagrams, and so dividing ZF by 〈0 |S| 0〉
cancels the effects of the vacuum bubbles. Z ′F is therefore simply the sum of all Feynman

diagrams, ignoring vacuum bubbles.

To get G
(n)
F (x1, . . . , xn), we do n functional derivatives with respect to ρ and then set

ρ = 0:

G
(n)
F (x1, . . . , xn) = lim

t±→±∞

〈0 |T
[
ϕI(x1) . . . ϕI(xn) exp

(
−i
∫ t+
t−
HI
)]
| 0〉

〈0 |T exp
(
−i
∫ t+
t−
HI
)
| 0〉

. (8.26)

Now, we have to show that this is equal to Eq. (8.22). This will take a bit of work.

First of all, since Eq. (8.26) is manifestly symmetric under permutations of the xi’s,

we can simply prove the equality for a particularly convenient time ordering. So let’s take

t1 > t2 > . . . > tn (8.27)

In this case, we can drop the T -ordering symbol from G(n)(x1, . . . , xn). Now, since

UI(tb, ta) = T exp

(
−i
∫ tb

ta

d4xHI
)

(8.28)

is the usual time evolution operator, we can express the time ordering in G
(n)
F as

G
(n)
F (x1, . . . , xn) = lim

t±→±∞

〈0 |UI(t+, t1)ϕI(x1)UI(t1, t2)ϕI(x2) . . . ϕI(xn)UI(tn, t−)| 0〉
〈0 |UI(t+, t−)| 0〉 .

(8.29)

Now, everywhere that UI(ta, tb) appears, rewrite it as UI(ta, 0)UI(0, tb), and then use the

relation between Heisenberg and Interaction fields,

ϕH(xi) = UI(ti, 0)†ϕI(xi)UI(ti, 0)

= UI(0, ti)ϕI(xi)UI(ti, 0) (8.30)

to convert everything to Heisenberg fields, and get rid of those intermediate U ’s:

G
(n)
F (x1, . . . , xn) = lim

t±→±∞

〈0 |UI(t+, 0)ϕH(x1)ϕH(x2) . . . ϕH(xn)UI(0, t−)| 0〉
〈0 |UI(t+, 0)UI(0, t−)| 0〉 . (8.31)

Let’s concentrate on the right hand end of the expression, UI(0, t−)| 0〉 (in both the numer-

ator and denominator), and refer to the mess to the left of it as some fixed state 〈Ψ |. First
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of all, since H0| 0〉 = 0, we can trivially convert the evolution operator to the Schrödinger

picture,

lim
t−→∞

〈Ψ |UI(0, t−)| 0〉 = lim
t−→∞

〈Ψ |UI(0, t−) exp(iH0t−)| 0〉 = lim
t−→∞

〈Ψ |U(0, t−)| 0〉. (8.32)

Next, insert a complete set of eigenstates of the full Hamiltonian, H,

lim
t−→∞

〈Ψ |U(0, t−)| 0〉 = lim
t−→∞

〈Ψ |U(0, t−)

|Ω〉〈Ω |+∑
n6=0

|n〉〈n |

 | 0〉
= 〈Ψ|Ω〉〈Ω |0〉+ lim

t−→−∞

∑
n6=0

eiEnt−〈Ψ|n〉〈n| 0〉 (8.33)

where the sum is over all eigenstates of the full Hamiltonian except the vacuum, and we

have used the fact that H|Ω〉 = 0 and H|n〉 = En|n〉, where the En’s are the energies of

the excited states.

We’re almost there. This next part is the important one. The sum over eigenstates is

actually a continuous integral, not a discrete sum. As t− → −∞, the integrand oscillates

more and more wildly, and in fact there is a theorem (or rather, a lemma - the Riemann-

Lebesgue lemma) which states that as long as 〈Ψ|n〉〈n| 0〉 is a continuous function, the

sum (integral) on the right is zero.

The Riemann-Lebesgue lemma may be stated as follows: for any “nice” function f(x),

lim
µ→∞

∫ b

a
f(x)

{
sinµx

cosµx

}
= 0. (8.34)

It is quite easy to see the graphically, as shown in Fig. 37. Physically, what the lemma is

0 0.2 0.4 0.6 0.8 1
-10

-5

0

5

10 f (x)
f (x) sin�x

Figure 37: The Riemann-Lebesgue lemma: f(x) multiplied by a rapidly oscillating function inte-

grates to zero in the limit that the frequency of oscillation becomes infinite.

telling you is that if you start out with any given state in some fixed region and wait long

enough, the only trace of it that will remain is its (true) vacuum component. All the other
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one and multiparticle components will have gone away: as can be seen from the figure, the

contributions from infinitesimally close states destructively interfere.

So we’re essentially done. A similar argument shows that

lim
t+→∞

〈0 |UI(t+, 0)|Ψ〉| 0〉 = 〈0|Ω〉〈Ω |Ψ〉 (8.35)

and applying this to the numerator and denominator of Eq. (8.31) we find

G
(n)
F (x1, . . . , xn) =

〈0|Ω〉〈Ω |ϕH(x1) . . . ϕH(xn)|Ω〉〈Ω |0〉
〈0|Ω〉〈Ω |Ω〉〈Ω |0〉

= G(n)(x1, . . . , xn)

=
∑

(connected diagrams with n external legs) . (8.36)

So there is now no longer to distinguish between the sum of diagrams and the real

Green’s functions.

8.4 The LSZ Reduction Formula

We now turn to the second question: Are S matrix elements obtained from Green’s func-

tions in the same way as before?

By introducing a turning on and off function, we were able to show that

〈l1, . . . , ls |S − 1| k1, . . . , kr〉 =
s∏

a=1

l2a − µ2

i

r∏
b=1

k2
b − µ2

i
G̃(r+s)(−l1, . . . ,−ls, k1, . . . , kr). (8.37)

The real world does not have a turning on and off function. Is this formula correct? The

answer is “almost.”

The correct relation between S matrix elements (what we want) and Green functions

(what, as we just showed, we get from Feynman diagrams) which we will derive is called

the LSZ reduction formula. Since its derivation doesn’t require resorting to perturbation

theory, we no longer need to make any reference to free Hamiltonia, bare vacua, interaction

picture fields, etc. So FROM NOW ON all fields will be in the Heisenberg representation

(no more interaction picture), and states will refer to eigenstates of the full Hamiltonian

(although for the rest of this section we will continue to denote the vacuum by |Ω〉 to avoid

confusion)

ϕ(x) ≡ ϕH(x), | 0〉 ≡ |Ω〉. (8.38)

The physical one-meson states in the theory are now the complete one meson states, rela-

tivistically normalized

H| k〉 =

√
~k2 + µ2| k〉 ≡ ωk| k〉, 〈k′ |k〉 = (2π)32ωkδ

(3)(~k − ~k′). (8.39)

The reason the answer to our question is “almost” is because the field ϕ in the La-

grangian does not have the correct amplitude to create and annihilate mesons in the in-

teracting theory. In particular, it is not normalized to create a one particle state from
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the vacuum with a standard amplitude - instead, it is normalized to obey the canonical

commutation relations. For free field theory, these two properties were equivalent. For

interacting fields, however, the amplitude to create a meson from the vacuum has higher

order perturbative corrections. It is easy to see this diagrammatically. In free field theory,

〈k|φ(0)|0〉 = 1, and matrix elements of ϕ between the vacuum and non single-particle states

vanish. Once we include interactions, this is no longer the case - for example, the diagram

in Fig. (29) contributes to the matrix element 〈NN |ϕ(x)|0〉. By conservation of proba-

bility, this means that once you turn on interactions, 〈k|φ(x)|0〉 < 1, so in an interacting

theory the fields are not correctly normalized to create mesons.

We can fix this with a simple rescaling. Let us denote the fields in the Lagrangian

which are normalized to obey the canonical commutation relations by ϕ0 (these are typically

referred to as “bare” fields), and define a rescaled (“renormalized”) field ϕ(x) in terms of

ϕ0. By translational invariance,

〈k |ϕ(x)|Ω〉 = 〈k |eiP ·xϕ(0)e−iP ·x|Ω〉 = eik·x〈k |ϕ(0)|Ω〉. (8.40)

By Lorentz invariance, you can see that 〈k |ϕ(0)|Ω〉 is independent of k. It is some number,

which for historical reasons is denoted Z1/2 (and traditionally called the “wave function

renormalization”), and only in free field theory will it equal 1,

Z1/2 ≡ 〈k |ϕ(0)|Ω〉. (8.41)

We now can define a new field, ϕ, which is normalized to have a standard amplitude to

create one meson10,

ϕ(x) ≡ Z1/2ϕ0(x), 〈k |ϕ(x)|Ω〉 = eik·x. (8.42)

However, the renormalized fields still produce multiparticle states from the vacuum. De-

spite this, we can now state the LSZ (Lehmann-Symanzik-Zimmermann) reduction formula:

Define the renormalized Green functions G(n),

G(n)(x1, . . . , xn) ≡ 〈Ω |T (ϕ(x1) . . . ϕ(xn)) |Ω〉 (8.43)

and their Fourier transforms, G̃(n). In terms of renormalized Green functions, S matrix

elements are given by

〈l1, . . . , ls |S − 1| k1, . . . , kr〉 =

s∏
a=1

l2a − µ2

i

r∏
b=1

k2
b − µ2

i
G̃(r+s)(−l1, . . . ,−ls, k1, . . . , kr)

(8.44)

That’s it - almost, but not quite, what we had before. The only difference is that the

S matrix is related to Green functions of the renormalized fields - in our new notation,

10If the free field has a nonvanishing vacuum expectation values, i.e. 〈0 |φ0(x)| 0〉 6= 0, we will have to

subtract this off as well.
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the factors of G̃ in Eq. (8.2) should be G̃0. Given that it is the renormalized fields ϕ(x)

which create normalized meson states from the vacuum, this is perhaps not so surprising.

What is more surprising is that even the renormalized field ϕ(x) creates a whole spectrum

of multiparticle states from the vacuum as well, and that these do not pollute the relation

between Green functions and S-matrix elements. Naıv̈ely, you might think that the Green

function would be related to a sum of S-matrix elements, for all different incoming mul-

tiparticle states created by ϕ(x). However, as we shall show, these additional states can

all be arranged to oscillate away via the Riemann-Lebesgue lemma, much as in the last

section.

8.4.1 Proof of the LSZ Reduction Formula

The proof can be broken up into three parts. In the first part, I will show you how to

construct localized wave packets. The wave packet will have multiparticle as well as single

particle components; however, the multiparticle components will be set up to oscillate away

after a long time. In the second part of the proof, I will wave my hands vigorously and

discuss the creation of multiparticle states in which the particles are well separated in the

far past or future; these will be called in and out states, and we will find a simple expression

for the S matrix in terms of the operators which create wave packets. In the third part

of the proof, we massage this expression and take the limit in which the wave packets are

plane waves, to derive the LSZ formula.

1. How to make a wave packet

Let us define a wave packet | f〉 as follows:

| f〉 =

∫
d3k

(2π)32ωk
F (~k)| k〉 (8.45)

where F (~k) = 〈k |f〉 is the momentum space wave function of | f〉. Associate with each F

a position space function, satisfying the Klein-Gordon equation with negative frequency,

f(x) ≡
∫

d3k

(2π)32ωk
F (~k)e−ik·x, k0 = ωk, (2 + µ2)f(x) = 0. (8.46)

Note that as we approach plane wave states, | v〉 → | k〉, f(x)→ e−ik·x.

Now, define the following odd-looking operator which is only a function of the time, t

(recall again that we are working in the Heisenberg representation, so the operators carry

the time dependence)

ϕf (t) ≡ i
∫
d3x (ϕ(~x, t)∂0f(~x, t)− f(~x, t)∂0ϕ(~x, t)) . (8.47)

This is precisely the operator which makes single particle wave packets. First of all, it

trivially satisfies

〈Ω |ϕf (t)|Ω〉 = 0 (8.48)
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and has the correct amplitude to produce a single particle state | f〉:

〈k |ϕf (t)|Ω〉

= i

∫
d3x

∫
d3k′

(2π)22ωk′
F (~k′) 〈k |

(
ϕ(x)∂0e

−ik′·x − e−ik′·x∂0ϕ(x)
)
|Ω〉

= i

∫
d3x

∫
d3k′

(2π)22ωk′
F (~k′)

(
−iωk′e−ik

′·x − e−ik′·x∂0

)
〈k |ϕ(x)|Ω〉

= i

∫
d3k′

(2π)22ωk′
F (~k′)(−iωk′ − iωk)

∫
d3x ei(

~k′−~k)·~xe−i(ωk′−ωk)t

= F (~k) (8.49)

where we have used ∫
d3x ei(

~k′−~k)·~x = (2π)δ(3)(~k − ~k′) (8.50)

and we note that the phase factor e−i(ωk′−ωk)t becomes one once the δ function constraint

is imposed (this will change when we consider multiparticle states). Note that this result

is independent of time.

A similar derivation, with one crucial minus sign difference (so that the factors of ωk
and ωk′ cancel instead of adding), yields

〈Ω |ϕf (t)|k〉 = 0. (8.51)

Thus, as far as the zero and single particle states are concerned, ϕf (t) behaves as a creation

operator for wave packets. Now we will see that in the limit t → ±∞ all the other states

created by ϕf (t) oscillate away.

Consider the multiparticle state |n〉, which is an eigenvalue of the momentum operator:

Pµ|n〉 = pµn|n〉. (8.52)

Proceeding much as before, let us calculate the amplitude for ϕf (t) to make this state from

the vacuum:

〈n |ϕf (t)|Ω〉

= i

∫
d3x

∫
d3k′

(2π)22ωk′
F (~k′) 〈n |

(
ϕ(x)∂0e

−ik′·x − e−ik′·x∂0ϕ(x)
)
|Ω〉

= i

∫
d3x

∫
d3k′

(2π)22ωk′
F (~k′)

(
−iωk′e−ik

′·x − e−ik′·x∂0

)
〈n |ϕ(x)|Ω〉

= i

∫
d3x

∫
d3k′

(2π)22ωk′
F (~k′)

(
−iωk′e−ik

′·x − e−ik′·x∂0

)
eipn·x〈n |ϕ(0)|Ω〉

= i

∫
d3k′

(2π)22ωk′
F (~k′)(−iωk′ − ip0

n)

∫
d3x ei(

~k′−~pn)·~xe−i(ωk′−p
0
n)t〈n |ϕ(0)|Ω〉

=
ωpn + p0

n

2ωpn
F (~pn)e−i(ωpn−p

0
n)t〈n |ϕ(0)|Ω〉 (8.53)

where

ωpn =
√
~p2
n + µ2. (8.54)
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Note that we haven’t had to use any information about 〈n |ϕ(x)|Ω〉 beyond that given by

Lorentz invariance; thus, we haven’t had to know anything about the amplitude to create

multiparticle states from the vacuum. The crucial point is the existence of the phase factor

e−i(ωpn−p
0
n)t in Eq. (8.53), and the observation that for a multiparticle state with a finite

mass,

ωpn < p0
n. (8.55)

This should be easy to convince yourself of: a two particle state, for example, can have ~p = 0

if the particles are moving back-to-back, while the energy of the state p0
n can vary between

2µ and ∞. In contrast, a single particle state with ~p = 0 can only have p0 = ωp = µ < p0
n.

Thus, for the single particle state the oscillating phase vanishes, as already shown, whereas

it can never vanish for multiparticle states.

So now we have the familiar Riemann-Lebesgue argument: take some fixed state |ψ〉,
and consider 〈ψ |ϕf (t)|Ω〉 as t→ ±∞. Inserting a complete set of states, we find

lim
t→±∞

〈ψ |ϕf (t)|Ω〉 = lim
t→±∞

〈ψ|Ω〉〈Ω |ϕf (t)|Ω〉

+

∫
d3k

(2π)32ωk
〈ψ |k〉〈k |ϕf (t)|Ω〉+

∑
n6=0,1

〈ψ |n〉〈n |ϕf (t)|Ω〉


= 〈ψ| f〉+ 0 (8.56)

where we have used the fact that the multiparticle sum vanishes by the Riemann-Lebesgue

lemma.

Similarly, one can show that

lim
t→±∞

〈Ω |ϕf (t)|ψ〉 = 0 (8.57)

for any fixed state |ψ〉.
Thus, our cunning choice of ϕf (t) was arranged so that the oscillating phases cancelled

only for the single particle state, so that only these states survived after infinite time. We

have a similar interpretation as before: in the t→ −∞ limit, ϕf (t) acts on the true vacuum

and creates states with one, two, ... n particles. Taking the inner product of this state with

any fixed state, we find that at t = 0 the only surviving components are the single-particle

states, which make up a localized wave packet.

2. How to make widely separated wave packets

The results of the last section were rigorous (or at least, could be made so without a lot of

work). By contrast, in this section we will wave our hands violently and rely on physical

arguments.

We now wish to construct multiparticle states of interest to scattering problems, that

is, states which in the far past or far future look like well separated wavepackets. The

physical picture we will rely upon is that if F1(~k) and F2(~k) do not have common support,

in the distant past and future they correspond to widely separated wave packets. Then
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when ϕf2(t) acts on a state in the far past or future, it shouldn’t matter if this state is the

vacuum state or the state | f1〉, since the first wavepacket is arbitrarily far away. Let us

denote states created by the action of ϕf2(t) on | f1〉 in the distant past as “in” states, and

states created by the action of ϕf2(t) on | f1〉 in the far future as “out” states. Then we

have

lim
t→∞ (−∞)

〈ψ |ϕf2(t2)| f1〉 = | f1, f2〉out (in). (8.58)

Now by definition, the S matrix is just the inner product of a given “in” state with

another given “out” state,

out〈f3, f4 |f1, f2〉in = 〈f3, f4 |S| f1, f2〉. (8.59)

Thus, we have shown that

〈f3, f4 |S| f1, f2〉 = lim
t4→∞

lim
t3→∞

lim
t2→−∞

lim
t1→−∞

〈Ω |ϕf4†(t4)ϕf3†(t3)ϕf2(t2)ϕf1(t1)|Ω〉. (8.60)

3. Massaging the resulting expression

In principle, we have achieved our goal in Eq. (8.60): we have written an expression

for S matrix elements in terms of a weighted integral over vacuum expectation values of

Heisenberg fields. However, it doesn’t look much like the LSZ reduction formula yet, but

we can do that with a bit of massaging.

What we will show is the following

〈f3, f4 |S − 1| f1, f2〉 =

∫
d4x1 . . . d

4xn f
∗
4 (x4)f∗3 (x3)f2(x2)f1(x1)

× i4
∏
r

(2r + µ2)〈Ω |Tϕ(x1) . . . ϕ(x4)|Ω〉. (8.61)

This looks messy and unfamiliar, but it’s not. If we take the limit in which the wave

packets become plane wave states, | fi〉 → | ki〉, fi(x)→ eiki·xi , we have

〈k3, k4 |S − 1| k1, k2〉 =

∫
d4x1 . . . d

4xn e
ik3·x3+ik4·x4−ik2·x2−ik1·x1

×i4
∏
r

(2r + µ2)G(4)(x1, . . . , x4)

=
∏
r

k2
r − µ2

i
G̃(4)(k1, k2,−k3,−k4), (8.62)

which is precisely the LSZ formula. Note that we have taken the plane wave limit after

taking the limit in which the limit t→ ±∞ required to define the in and out states; thus,

in this order of limits even the plane wave in and out states are widely separated.

Before showing this, let us prove a useful result: for an arbitrary interacting field A

and function f(x) satisfying the Klein-Gordon equation and vanishing as |x| → ∞,

i

∫
d4x f(x)(2 + µ2)A(x) = i

∫
d4x f(x)∂2

0A(x) +A(x)(−∇2 + µ2)f(x)

– 108 –



= i

∫
d4x f(x)∂2

0A(x)−A(x)∂2
0f(x)

=

∫
dt ∂0

∫
d3x i (f(x)∂0A(x)−A(x)∂0f(x))

= −
∫
dt ∂0A

f (t)

=

(
lim

t→−∞
− lim
t→+∞

)
Af (t) (8.63)

where we have integrated once by parts, and Af (t) is defined as in Eq. (8.47). Similarly,

we can show

i

∫
d4x f∗(x)(2 + µ2)A(x) =

(
lim

t→+∞
− lim
t→−∞

)
Af†(t). (8.64)

Note the difference in the signs of the limits. We can now use these relations to convert

factors of (2 + µ2)ϕ(x) to ϕf (t) on the RHS of Eq. (8.61). Doing this for each of the xi’s,

we obtain

RHS =

(
lim

t4→+∞
− lim
t4→−∞

)(
lim

t3→+∞
− lim
t3→−∞

)(
lim

t2→−∞
− lim
t2→+∞

)
×
(

lim
t1→−∞

− lim
t1→+∞

)
〈Ω |Tϕf1(x1)ϕf2(x2)ϕf3†(x3)ϕf4†(x4)|Ω〉.

(8.65)

Now we can evaluate the limits one by one.

First of all, when t4 → −∞, it is the earliest (in the order of limits which we have

taken), and so acts on the vacuum. Thus, according to the complex conjugate of Eq. (8.57),

we get zero. When t4 → +∞, it is the latest, and acts on the vacuum state on the left,

to give 〈f4 |. Similarly, only the t3 → ∞ limit contributes, creating the state out〈f3, f4 |.
Next, taking the two limits of t2, we find

RHS =

(
lim

t1→−∞
− lim
t1→+∞

)(
out〈f3, f4 |ϕf1(t1)| f2〉

− lim
t2→+∞

out〈f3, f4 |ϕf2(t2)ϕf1(t1)|Ω〉
)
. (8.66)

Unfortunately, we don’t know how ϕf2(t2 → ∞) acts on a multi-meson out state, and so

it’s not clear what the second term is. Let’s parameterize our ignorance and define

〈ψ | ≡ lim
t2→∞

out〈f3, f4 |ϕf2(t2). (8.67)

Then taking the t1 limits, we find

RHS = out〈f3, f4 |f1, f2〉in − out〈f3, f4 |f1, f2〉out − 〈ψ |f1〉+ 〈ψ |f1〉
= 〈f3, f4 |S − 1| f1, f2〉 (8.68)

as required. Note that we have used the fact (from Eq. (8.56)) that

lim
t1→∞

〈ψ |ϕf1(t1)|Ω〉 = lim
t1→−∞

〈ψ |ϕf1(t1)|Ω〉 = 〈ψ |f1〉. (8.69)
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So that’s it - we’ve proved the reduction formula. It was a bit involved, but there are

a few important things to remember:

1. The proof relied only on the properties

〈Ω |ϕ(0)|Ω〉 = 0, 〈k |ϕ(0)|Ω〉 = 1. (8.70)

No other properties of ϕ were assumed. In particular, ϕ was not assumed to have

any particular relation to the bare field ϕ0 which appears in the Lagrangian - the

simplest relation is Eq. (8.42), but the Green functions of any field ϕ which satisfies

the requirements (8.70) will give the correct S-matrix elements. For example,

ϕ̃(x) = ϕ(x) + 1
2gϕ(x)2 (8.71)

is a perfectly good field to use in the reduction formula. As a simple test of this,

try making the substitution in Eq. (8.71) for a free field theory and calculate a

scattering amplitude - despite the fact that you will now have a lot of nontrivial

graphs to calculate, you should find that scattering amplitudes in this theory vanish

identically.

Physically, this is again because of the Riemann-Lebesgue destructive interference.

One appropriately renormalized, ϕ(0) and ϕ̃(0) only differ in their vacuum to mul-

tiparticle state matrix elements. But this difference just oscillates away - the multi-

particle states created by the field are irrelevant.

Practically, this has a very useful consequence: you can always make a nonlinear field

redefinition for any field in a Lagrangian, and it doesn’t change the value of S-matrix

elements (although it will change the Green functions off shell, but that is irrelevant

to the physics). In some cases this is quite convenient, since some complicated non-

renormalizable Lagrangians may take particularly simple forms after an appropriate

field redefinition.

This is a good result to remember, if only to save a few trees. A lot of papers have

been written (even in recent years) which claim that some particular field is the

“correct” one to use in a given problem. Most of these papers are silly - the authors’

pet form of the Lagrangian has been obtained by a simple nonlinear field redefinition

from the standard form, and so is guaranteed to give the same physics.

2. We can also use the same methods as above to derive expressions for matrix elements

of fields between in and out states (remembering that the S matrix is just the matrix

element of the unit operator between in and out states). For example,

out〈k1, . . . , kn |A(x)|Ω〉 =

∫
d4x1 . . . d

4xn e
ik1·x1+...+ikn·xn

×in
∏
r

(
2r + µ2

)
T 〈Ω |ϕ(x1) . . . ϕ(xn)A(x)|Ω〉 (8.72)
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for any field A(x). Substituting the expression for the Fourier transformed Green

function, the matrix element can be calculated in terms of Feynman diagrams:

out〈k1, . . . , kn |A(x)|Ω〉 =

∫
d4k

(2π)4
eik·x

n∏
r=1

k2
r − µ2

i
G̃(2,1)(k1, . . . , kn; k) (8.73)

where G(2,1)(x1, . . . , xn;x) is the Green function with n ϕ fields and one A field.

3. In principle, there is no problem in obtaining matrix elements for scattering bound

states - you just need a field with some overlap with the bound state, which can then

be renormalized to satisfy Eq. (8.70). For example, in QCD mesons have the quantum

numbers of quark-antiquark pairs. So if q(x) is a quark field and q(x) an antiquark

field, q(x)q(x) should have a nonvanishing matrix elements to make a meson. So

“all” you need to calculate for meson-meson scattering from QCD is

T 〈Ω |(qq)R(x1)(qq)R(x2)(qq)R(x3)(qq)R(x4)|Ω〉 (8.74)

where the renormalized product of fields satisfies 〈meson |(qq)R(0)|Ω〉 = 1. Of course,

nobody can calculate this T -product since perturbation theory fails for the strong

interactions, but that’s not a problem of the formalism (as opposed to the turning

on and off function, which had no way of dealing with bound states). One could use

perturbation theory to calculate the scattering amplitudes of an e+e− pair to the

various states of positronium.
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9. Spin 1/2 Fields

9.1 Transformation Properties

So far we have only looked at the theory of an interacting scalar field φ(x). Recall that since

φ is a scalar, under a Lorentz transformation xµ → x′µ = Λµνx
ν , φ transforms according

to

φ(x)→ φ′(x) = φ(Λ−1x). (9.1)

This simply states that the field itself does not transform at all; the value of the field at

the coordinate x in the new frame is the same as the field at that same point in the old

frame. In general, φ could have a more complicated transformation law. For example, we

could have four fields φµ, µ = 1..4, which make up the components of a 4-vector. In this

case, φµ will transform under a Lorentz transformation as

φµ(x)→ φ′µ(x) = Λµνφ
ν(Λ−1x). (9.2)

In general, a field will transform in some well-defined way under the Lorentz group,

φa(x)→ Dab(Λ)φb(Λ
−1x). (9.3)

If φa has n components, Dab(Λ) is an n × n matrix. The matrices D(Λ) form an n-

dimensional representation of the Lorentz group: if Λ1 and Λ2 define two Lorentz transfor-

mations, ∑
b

Dab(Λ1)Dbc(Λ2) = Dac(Λ1Λ2). (9.4)

In addition, D(Λ−1) = D(Λ)−1, and D(1) = I, the identity matrix.

We are interested in describing particles of spin 1/2. From our previous experience

in quantum mechanics, we already know how such objects transform under rotations, a

subgroup of the Lorentz group. A spin 1/2 state |ψ〉 has two components:

|ψ〉 =

( |ψ↑〉
|ψ↓〉

)
. (9.5)

The spin operators Sx, Sy and Sz are given by

Sx = 1
2σx, Sy = 1

2σy, Sz = 1
2σz (9.6)

where σx, σy and σz are the Pauli matrices

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
. (9.7)

For a particle with no orbital angular momentum, the total angular momentum J is just

given by the spin operators. In general, rotations are generated by the angular momentum

operator J : 11 a general state |ψ〉 transforms under a rotation about the ê axis by an angle

θ as

|ψ〉 → UR(ê, θ)|ψ〉 (9.8)

11See, for example, Cohen-Tannoudji, Diu and Laloë, Quantum Mechanics, Volume 1, Chapter VI (espe-

cially Complement BVI).
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where the rotation operator

UR(ê, θ) = e−iJ ·êθ (9.9)

is unitary. Therefore, a state with total angular momentum 1/2 transforms under this

rotation as12

|ψ〉 → e−i~σ·êθ/2|ψ〉 (9.10)

so the matrices

e−i~σ·êθ/2

form the spinor representation of the rotation group. Hence, a quantum field u which

creates and annihilates spin 1/2 particles will transform under rotations according to

u′(x) = U †Ru(x)UR = e−i~σ·êθ/2u(R−1x) (9.11)

where R is the rotation matrix for vectors, and we are suppressing spinor indices.

In a relativistic theory, we must determine the transformation properties of spinors

under the full Lorentz group, not just the rotation group. The most satisfying way to

do this would be to pause for a moment from field theory and develop the theory of

representations of the Lorentz group. We could find all possible representations of the

group, and then finally restrict ourselves to the spinor representation. But since we have

only a small amount of time, and since we are really not interested in any representations

of the Lorentz group beside the scalar, vector (both of which we already understand) and

spinor representations, corresponding to particles of spin 0, 1 and 1/2 respectively, we

will simply introduce a nice trick for obtaining the spinor representation from the vector

representation. This is not generalizable to other representations, but it will serve our

purposes.

Let us return to the rotation subgroup of the Lorentz group. The rotations are the

group of transformations (x, y, z)→ (x′, y′, z′) which leave r2 = x2 + y2 + z2 invariant (and

which retain the handedness of the coordinates, so we do not include reflections). We can

assemble the components of a 3-vector into a two by two traceless Hermitian matrix

X =

(
z x− iy

x+ iy −z

)
= xiσi. (9.12)

A two by two complex matrix

(
a b

c d

)
has eight independent components (two for each

complex entry). Hermiticity requires Re a = Re d, Im a = Im d = 0, Re b = Re c and

Im b = −Im c, reducing the number of independent components to four, and tracelessness

reduces this to three, so Eq. (9.12) is the most general form for a two by two traceless

Hermitian matrix. Consider the transformation X ′ = UXU †, where U is a two by two

unitary matrix with unit determinant. Then X ′ is also a traceless, Hermitian matrix

TrX ′ = TrUXU † = TrU †UX = TrX

X ′† =
(
UXU †

)†
= X ′ (9.13)

12Recall that the exponential of a matrixM is defined by the power series eM = 1+M+M2/2!+M3/3!+....

This is only equal to the exponential of the entries in the matrix if M is diagonal.
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so in general we can write it as

X ′ =

(
z′ x′ − iy′

x′ + iy′ −z′
)
. (9.14)

Since

detX ′ = detUdetXdetU † = detX (9.15)

we have

x′2 + y′2 + z′2 = x2 + y2 + z2 (9.16)

so this is another way of writing the transformation law of a vector under rotations. It is

easy to show by direct matrix multiplication that

U = e−i~σ·êθ/2 (9.17)

is the appropriate transformation matrix for a rotation about the ê axis.

The U ’s by themselves form a two-dimensional represenation of the rotation group, and

a spinor is defined to be a two-component column vector which transforms under rotations

through multiplication by U :

u′ = Uu. (9.18)

This agrees with our previous assertion, Eq. (9.10).

We can extend this construction to the whole connected Lorentz group. Removing the

tracelessness condition on X increases the number of free parameters by one, so it now

takes the general form

X =

(
t+ z x− iy
x+ iy t− z

)
. (9.19)

Now consider the transformation

X ′ = QXQ† (9.20)

where Q is no longer required to be unitary, but still detQ = 1. Then under the transfor-

mation Eq. (9.20), detX = detX ′, so

t′2 − x′2 − y′2 − z′2 = t2 − x2 − y2 − z2 (9.21)

and so the transformation corresponds to a (proper13) Lorentz transformation. We note

that the matrix Q has six independent parameters, which is the same as a proper Lorentz

transformation (three independent rotations and three independent boosts).

Consider the transformation of the 4-vector (1,~0) under a boost in the ẑ direction,

(1,~0)→ (γ,−
√
γ2 − 1ẑ). (9.22)

It is convenient to introduce the parameter φ, defined by

coshφ = γ, sinhφ = −
√
γ2 − 1 (9.23)

13The proper or connected Lorentz transformations do not include reflections or time reversal. Any proper

Lorentz transformation may be written as a product of a rotation and a boost.

– 114 –



where γ =
√
v2 − 1 parameterizes the boost. Then the vector transforms as

(1,~0)→ (coshφ, sinhφ). (9.24)

It is straightforward to verify that in our matrix representation, this boost corresponds to

the transformation matrix Qz = exp(σzφ/2) (note that there is no i in the exponential; Qz
is Hermitian, not unitary, so Q†z = Qz):

X ′ = eφσz/2Xeφσz/2

=

(
eφ/2 0

0 e−φ/2

)(
1 0

0 1

)(
eφ/2 0

0 e−φ/2

)
=

(
eφ 0

0 e−φ

)
=

(
coshφ+ sinhφ 0

0 coshφ− sinhφ

)
(9.25)

and so t′ = coshφ and z′ = sinhφ, as required. In general, you can verify that a boost in

the ê direction is given by

Q = e~σ·êφ/2. (9.26)

The Q’s, the group of unitary two by two matrices with unit determinant (including the

rotation matrices U) form a representation of the connected Lorentz group. Under a boost,

a spinor transforms as u→ Qu.

This construction is not unique. If we have a set of matrices Q(Λ) which form a

representation of a group, so do the matrices Q∗(Λ), as do the matrices SQ∗(Λ)S† for some

unitary matrix S. This is easy to verify; for example, the new representation preserves the

group multiplication rule:

SQ∗(Λ1)S†SQ∗(Λ2)S† = S [Q(Λ1)Q(Λ2)]∗ S† = SQ∗(Λ1Λ2)S† (9.27)

where we have used the fact that the Q’s form a representation. However there may or

may not be any physical difference between the two representations. Two representations

Q and Q̃ are said to be equivalent if there is some unitary matrix S such that

Q(Λ) = SQ̃(Λ)S† (9.28)

for all transformations Λ. This is physically sensible because if two representations are

equivalent, I can always transform an object u transforming under one representation to

one transforming under the other representation by performing the change of basis

u→ Su. (9.29)

There is no physics in a change of basis, so a set of fields transforming underQ are physically

equivalent to a set of fields transforming under Q̃. On the other hand, if no such matrix

S exists, then the two representations are inequivalent, and there is a physical difference

between fields transforming according the two representations. We will see a practical

illustration of this shortly.
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For the Lorentz group, the two representations Q and Q∗ are, in fact, inequivalent.

Therefore there are two different types of spinor fields we can define; those which transform

according to Q and those which transform according to Q∗. However, for the rotation

subgroup, U and U∗ can be shown to be equivalent representations, with S = iσ2:

U(R) = iσ2U
∗(R)(iσ2)† =

(
0 1

−1 0

)
U∗(R)

(
0 −1

1 0

)
(9.30)

for all rotation matrices U(R) = exp(−i~σ · êθ/2). This is why we never encountered two

different types of spinors when dealing only with rotations. However, for boosts, it can be

shown that

iσ2

(
e−~σ·êφ/2

)∗
(iσ2)† = e~σ·êφ/2 6= e−~σ·êφ/2 (9.31)

and so the two representations Q and SQ∗S† of the Lorentz group are not equivalent.

Thus we can define two types of spinors which we shall denote by u+ and u−. They

transform in the same way under rotations,

u± → e−i~σ·êθ/2u± (9.32)

but differently under boosts

u± → e±~σ·êφ/2u±. (9.33)

In group theory jargon, u+ is said to transform according to the D(0,1/2) representation of

the Lorentz group and u− transforms according to the D(1/2,0) representation.

In order to construct Lorentz invariant Lagrangians which are bilinear in the fields, we

shall need to know how terms bilinear in the u’s transform. Not surprisingly, since in some

sense the spinors were the “square roots” of the vectors, we can construct four-vectors from

pairs of spinors. First consider the bilinear u†+u+. Under a Lorentz transformation,

u†+u+ → u†+Q
†Qu+. (9.34)

If Q is purely a rotation, Q† = Q−1 (Q is unitary) so u†+u+ → u†+u+. Therefore it is a

scalar under rotations (but not under Lorentz boosts). The three components of

u†+~σu+ ≡ (u†+σxu+, u
†
+σyu+, u

†
+σzu+) (9.35)

form a three-vector under rotations (I have left this as an exercise for you to show).

Putting these together, you should also be able to show that the four components of

V µ = (u†+u+, u
†
+~σu+) (9.36)

form a four-vector. A similar construction shows that the components of

Wµ = (u†−u−,−u†−~σu−) (9.37)

transform as a four vector under a proper Lorentz transformation.
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9.2 The Weyl Lagrangian

We will now promote our spinors to fields, that is spinor functions of space and time,

transforming under Lorentz transformations according to

u+(x)→ UΛ(Λ)†u+(x)UΛ(Λ) = D(Λ)u+(Λ−1x) (9.38)

and similarly for u−, where UΛ(Λ) is the unitary operator corresponding to Lorentz trans-

formations,

UΛ(Λ)| k〉 = |Λk〉. (9.39)

Note that the u’s are complex fields. We can now construct a Lagrangian for u+, keeping

in mind the following restrictions:

1. The action S should be real. This is because we want just as many field equations

as there are fields. By breaking up any complex fields into their real and imaginary

parts, we can always think of S as being a function only of a number of real fields,

say N of them. If S were complex, with independent real and imaginary parts, then

the real and imaginary parts of the resulting Euler-Lagrange equations would yield

2N field equations for N fields, too many to be satisfied except in special cases (see

Weinberg, The Quantum Theory of Fields, Vol. I, pg. 300).

2. L should be bilinear in the fields, to produce a linear equation of motion. In the

absence of interactions, we want u+ to be a free field with plane wave solutions,

which requires linear equations of motion.

3. L should be invariant under the internal symmetry transformation u+ → e−iλu+, u
†
+ →

eiλu†+. This is because we want to have some contact with the real world, and all

observed fermions carry some conserved charge (like baryon number or lepton num-

ber).

We’ve already seen that bilinears in u+ and u†+ form the components of a four-vector; to

make this a scalar we have to contract with another vector. The only other vector we have

at our disposal is the derivative ∂µ. Hence, the simplest Lagrangian we can write down

satisfying the above requirements is

L = i
(
u†+∂0u+ + u†+~σ · ~∇u+

)
. (9.40)

The i in front is required for the action to be real, which you can verify by integrating by

parts. The sign of L is not fixed; we will take it at this point to be +. We will see later on

that this theory has problems with positivity of the energy no matter what sign we choose,

so we will defer the discussion to a later section.

The Lagrangian Eq. (9.40) is called the Weyl Lagrangian. We can get the equation of

motion by varying with respect to u†+:

Πµ

u†+
=

∂L
∂(∂µu

†
+)

= 0 (9.41)
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so the equation of motion is

∂L
∂u†+

= 0⇒ (∂0 + ~σ · ~∇)u+ = 0. (9.42)

Multiplying this equation by ∂0 − ~σ · ~∇ and using the relation

σiσj = i
∑
k

εijkσk + δij (9.43)

gives us (~σ · ~∇)2 = ~∇2 and so (
∂2

0 − ~∇2
)
u+ = 2u+ = 0. (9.44)

Remember that u+ is a column vector, so both components of u+ obey the Klein-Gordon

equation for a massless field.

Defining the energy to be positive,

k0 =

√
|~k|2 (9.45)

there are two solutions for u+(x):

u+(x) = u+e
−ik·x, u+(x) = v+e

ik·x (9.46)

where u+ and v+ are constant 2 component spinors. Based on our previous experience

with complex fields, we expect that when we quantize the theory, u+ will multiply an anni-

hilation operator for a particle and v+ will multiply a creation operator for an antiparticle.

Substituting the positive energy solution into the Weyl equation gives

(∂0 + ~σ · ~∇)u+(x) = (−ik0 + i~σ · ~k)u+(x) = 0 (9.47)

and so

(k0 − ~σ · ~k)u+ = 0. (9.48)

Consider ~k to be in the ẑ direction, ~k = k0ẑ. Then we have (1− σz)u+ = 0, or

u+ ∝
(

1

0

)
. (9.49)

What does this tell us about the states of the quantum theory? Well, in the quantum

theory we expect that u+ will multiply an annihilation operator. Consider a state | k〉
moving in the positive z direction, ~k = (0, 0, kz), k0 > 0. Then we expect that

〈0 |u+(x)| k〉 ∝ e−ik·x
(

1

0

)
(9.50)

or

〈0 |u+(0)| k〉 ∝
(

1

0

)
. (9.51)
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It will turn out that this state is in an eigenstate of the z component of angular momentum,

Jz:

Jz| k〉 = λ| k〉. (9.52)

It is straightforward to find λ. Since u is a spinor field, we know how it transforms under

rotations about the z axis by an angle θ,

U †R(ẑ, θ)u+(0)UR(ẑ, θ) = e−iσzθ/2u+(0) (9.53)

and therefore

〈0 |U †Ru+(0)UR| k〉 = 〈0 |e−iσzθ/2u+(0)| k〉

∝ e−iσzθ/2
(

1

0

)
= e−iθ/2

(
1

0

)
. (9.54)

But since

UR| k〉 = e−iλθ| k〉
UR| 0〉 = | 0〉 (9.55)

we also have

〈0 |U †R(ẑ, θ)u+(0)UR(ẑ, θ)| k〉 = e−iλθ〈0 |u+(0)| k〉 ∝ e−iλθ
(

1

0

)
(9.56)

and so

λ = 1/2. (9.57)

Therefore in the quantum theory the annihilation operator multiplying u+ will annihilate

states with angular momentum 1/2 along the direction of motion. Similarly, we can show

that

v+ ∝
(

1

0

)
,

and that v+ will multiply a creation operator that creates states with angular momentum

-1/2 along the direction of motion.

Therefore, the quanta of this theory consist of particles carrying spin +1/2 in the di-

rection of motion and antiparticles carrying spin −1/2 in the direction of motion, while

there are no corresponding states with particles (antiparticles) carrying spin antiparallel

(parallel) to the direction of motion (since there is no corresponding solution to the equa-

tions of motion for the fields). These states don’t look much like electrons, since electrons

(or any other massive spin 1/2 particle) can have spin either parallel or antiparallel to the

direction of motion. In fact, it is not consistent for a massive particle to have only one spin

state, since for a massive particle it is always possible to boost to a frame going faster than

the particle. In this frame, the particle’s 3-momentum is in the opposite direction but its

spin is unchanged. Thus, if the spin was parallel to the direction of motion in one frame,

it is antiparallel in the other.

Thus, spin along the direction of motion is only a good quantum number for massless

particles, and is usually called the helicity of the particle. Spin is usually reserved for
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massive particles to describe their angular momentum in the rest frame. A particle with

positive helicity (along the direction of motion) is referred to as “right-handed,” while if

the helicity is negative (antiparallel to the direction of motion) it is “left-handed.” Thus,

in the quantum theory we expect that u+(x) will annihilate right-handed particles. Since

the field operator therefore changes the helicity of the state it acts on by −1/2, it should

also create left-handed antiparticles. For the u−(x) field, we would find that it annihilates

left-handed particles and creates right-handed particles.

This doesn’t sound very much like an electron, or a quark, or a proton, or most of

the fermions observed in Nature. It sounds the closest to a neutrino. The masses of the

three types of neutrino observed are very small - less than about 10−7 of the mass of the

electron - so to a good approximation they are massless. Indeed, right-handed neutrinos

and left-handed antineutrinos have never been observed, and so neutrinos are, to a good

approximation, described by the u− field.

Clearly the Weyl Lagrangian, in distinguishing right and left-handed particles, violates

parity. Under a parity transformation the three momentum of a particle flips sign, while

its spin is unchanged. Thus parity interchanges left and right-handed particles. Similarly,

the Weyl Lagrangian violates charge conjugation invariance, since charge conjugation will

turn a left-handed neutrino into a left-handed antineutrino, which has never been observed.

However, the combined operation of CP will turn a left-handed neutrino into a right-handed

antineutrino. Thus, although we haven’t quantized the theory to show this explicitly, we

expect that the Weyl Lagrangian violates C and P separately, but conserves the product

CP .

9.3 The Dirac Equation

This is all very well, but it’s not what we set out to find. We were really looking for a theory

of electrons, which are certainly not massless. Furthermore, the strong and electromagnetic

interactions of electrons are observed to conserve parity (the weak interactions, which we

shall study later, violate parity). Therefore we would like to write down a free field theory

of massive spin 1/2 particles which has a parity symmetry.

We have already argued that parity interchanges left and right-handed fields. Thus we

can define the action of parity on the u± fields to be

P : u±(~x, t)→ u∓(−~x, t). (9.58)

A parity invariant theory must therefore have both types of spinors. The simplest La-

grangian is just

L0 = iu†+(∂0 + ~σ · ~∇)u+ + iu†−(∂0 − ~σ · ~∇)u− (9.59)

but this is nothing more than two decoupled massless spinors. However, it is easy to

check explicitly that u†+u− and u†−u+ transform as scalars under Lorentz transformations.

Therefore we can include the parity conserving term

L = L0 −m
(
u†+u− + u†−u+

)
= iu†+(∂0 + ~σ · ~∇)u+ + iu†−(∂0 − ~σ · ~∇)u− −m

(
u†+u− + u†−u+

)
(9.60)
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The coupling multiplying the u†+u− term has dimensions of mass, so we have suggestibly

called it m. This is the Dirac Lagrangian, and as we shall see it describes massive spin

1/2 fields. In its current form it doesn’t look the way Dirac wrote it down, but we will be

introducing some slick new notation shortly to put it in a more elegant form.

We can again vary the fields and derive the equations of motion. We find the coupled

equations

i(∂0 + ~σ · ~∇)u+ = mu−

i(∂0 − ~σ · ~∇)u− = mu+. (9.61)

Multiplying the first equation by ∂0 − ~σ · ~∇, we find

(∂2
0 − ~∇2)u+ = −im(∂0 − ~σ · ~∇)u− = −m2u+ (9.62)

and so each of the components of u+ and u− obeys the massive Klein-Gordon equation

(∂µ∂
µ +m2)u±(x) = 0. (9.63)

At this point we will introduce some notation to make life easier. We can group the

two fields u+ and u− into a single four component “bispinor” field ψ:

ψ ≡
(
u+

u−

)
. (9.64)

In terms of ψ, the Dirac Lagrangian is

L = iψ†∂0ψ + iψ†~α · ~∇ψ −mψ†βψ (9.65)

where

~α =

(
~σ 0

0 −~σ

)
, β =

(
0 1

1 0

)
(9.66)

and each entry represents a two-by-two matrix. The equation of motion is

i(∂0 + ~α · ~∇)ψ = βmψ. (9.67)

This is the Dirac equation. Note that we can get the Dirac equation directly from Eq. (9.65)

from the Euler-Lagrange equations for ψ:

Πµ
ψ†

=
∂L

∂(∂µψ†)
= 0

∂L
∂ψ†

= 0⇒ i∂0ψ + ~α · ~∇ψ −mβψ = 0. (9.68)

You just have to remember that ψ is now a four component column vector, and so these

are now matrix equations. If you prefer, you can leave the spinor indices explicit in this

derivation.

In terms of ψ, a parity transformation is now

P : ψ(~x, t)→ βψ(−~x, t) (9.69)
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and under a Lorentz boost

ψ → e~α·êφ/2ψ. (9.70)

Since u+ and u− transform the same way under rotations, ψ transforms under rotations as

R : ψ → e
~L·êθψ (9.71)

where ~L = 1
2

(
~σ 0

0 ~σ

)
.

The α’s and β obey the relations

{β, αi} = 0, {αi, αj} = 0 (i 6= j), β2 = α2
1 = α2

2 = α2
3 = 1 (9.72)

where {A,B} is the anticommutator of A and B:

{A,B} = AB +BA. (9.73)

Finally, we note that the components of (ψ†ψ,ψ†~αψ) form a 4-vector.

This representation is not unique. We could, for example, have defined ψ by

ψ =
1√
2

(
u+ + u−
u+ − u−

)
(9.74)

and all of these results would still hold, except the α’s and β would be different. However,

they would still obey the anticommutations relations Eq. (9.72). In this basis (the “Dirac”

basis), we find

~α =

(
0 σ

σ 0

)
, β =

(
1 0

0 1

)
. (9.75)

We could define other bases as well. The Weyl basis turns out to be convenient for highly

relativistic particles m� E while the Dirac basis is convenient in the nonrelativistic limit

m � E. However, as we shall see, in most situations we will never have to specify the

basis. The anticommutation relations Eq. (9.72), which hold in any basis, will be sufficient.

Very shortly we will introduce some even more slick notation which will allow us to

write all of our results in a Lorentz covariant form. However, before proceeding to that let

us finish our discussion of the plane wave solutions to the Dirac equation. We will need

these solutions to canonically quantize the theory, since the plane wave solutions multiply

the creation and annihilation operators in the quantum theory.

9.3.1 Plane Wave Solutions to the Dirac Equation

As in the Weyl equation, take the energy p0 to be positive, p0 =
√
|~p|2 +m2. Then we

have both positive and negative frequency solutions

ψ(x) = u~pe
−ip·x, ψ(x) = v~pe

ip·x (9.76)

where u~p and v~p are constant four component bispinors. Substituting the first solution into

the Dirac equation, we find

(p0 − ~α · ~p)u~p = βmu~p. (9.77)
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For definiteness, we will work in the Dirac basis, so β =

(
1 0

0 −1

)
. In the rest frame, ~p=0

and p0 = m, so we find

u~p = βu~p ⇒ u~p =


a

b

0

0

 (9.78)

and so two linearly independent solutions are

u
(1)
~0

=
√

2m


1

0

0

0

 , u
(2)
~0

=
√

2m


0

1

0

0

 . (9.79)

(The factor of
√

2m in the normalization is a convention. Note that Mandl & Shaw do not

include this factor in their definition of the plane wave states.) Now, in both the Dirac and

Weyl bases the spin operator is

Sz =
1

2

(
σz 0

0 σz

)
(9.80)

so Szu
(1)
~p = +1

2u
(1)
~p and Szu

(2)
~p = −1

2u
(2)
~p . The two solutions correspond to the two spin

states. As we expected, both solutions are present for a massive field.

Now we use our knowledge of the transformation properties of ψ to find the the plane

wave solutions when ~p 6= 0. Instead of solving the Dirac equation for ~p 6= 0, we can just

boost the coordinate system in the opposite direction

u
(r)
~p = e~α·êφ/2u

(r)
~0

(9.81)

where ê = ~p/|~p|, coshφ = γ = E/m and sinhφ = |~p|/m. Using α2
i = 1 and αiαj = −αjαi,

we get

u
(r)
~p =

[
cosh

φ

2
+ ~α · ê sinh

φ

2

]
u

(r)
~0
. (9.82)

Now, coshφ/2 =
√

(1 + coshφ)/2 and sinhφ/2 =
√

(1 + sinhφ)/2, so

u
(r)
~p =

[√
E +m

2m
+

√
E −m

2m
~α · ê

]
u

(r)
~0

(9.83)

so in the Dirac basis we find, for ~p in the ẑ direction,

u
(1)
~p =


√
E +m

0√
E −m

0

 , u
(2)
~p =


0√

E +m

0

−
√
E −m

 . (9.84)

The case where ~p is not parallel to ẑ is straightforward to compute from Eq. (9.83).
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Similar arguments also allow us to find the solutions for the v’s, which in the quantum

theory we expect to multiply creation operators for antiparticles. We find

v
(1)
~0

=
√

2m


0

0

1

0

 , v
(2)
~0

=
√

2m


0

0

0

1



v
(1)
~p =


√
E −m

0√
E +m

0

 , v
(2)
~p =


0

−
√
E −m
0√

E +m

 . (9.85)

Notice that we have chosen our solutions to be orthonormal:

u
(r)†
~0

u
(s)
~0

= 2mδrs, v
(r)†
~0

v
(s)
~0

= 2mδrs (9.86)

or

u
(r)†
~0

βu
(s)
~0

= 2mδrs, v
(r)†
~0

βv
(s)
~0

= −2mδrs (9.87)

This second form is useful because we’ve already noted that ψ†βψ is a Lorentz scalar.

Therefore we can immediately write

u
(r)†
~0

βu
(s)
~0

= u
(r)†
~p βu

(s)
~p = 2mδrs

v
(r)†
~0

βv
(s)
~0

= v
(r)†
~p βv

(s)
~p = −2mδrs (9.88)

since the scalar is unaffected by Lorentz boosts.

9.4 γ Matrices

With all of these α’s and β’s, the theory doesn’t look Lorentz covariant. Time and space

appear to be on a different footing, although we know they’re not because L is a scalar.

We can clean things up a bit by introducing even more notation which makes everything

manifestly Lorentz covariant. It will also allow us to write down combinations of bispinors

which transform in simple ways under Lorentz transformations.

We’ve already seen that for two bispinors ψ1 and ψ2, ψ†1βψ2 is a Lorentz scalar. It’s

convenient to make use of this fact and define the Dirac Adjoint of a bispinor ψ

ψ ≡ ψ†β. (9.89)

Therefore ψ1ψ2 is a scalar: under a Lorentz transformation

ψ1ψ2 → ψ1ψ2 (9.90)

(note that since β2 = 1, ψ† = ψβ). Furthermore, we know that the components of

(ψ†1ψ2, ψ
†
1~αψ2) = (ψ1βψ2, ψ1β~αψ2) transform like the components of a four-vector. It’s

convenient then to define the four matrices γµ, µ = 0..3, by

γ0 ≡ β, γi ≡ βαi. (9.91)
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(Note that the label i on the α’s is not a Lorentz index and so there is no distinction

between upper and lower indices on α. The index i on γ is a Lorentz index, and so this

equation defines γµ with raised indices.) The components of the four vector are now simply

written as ψ1γ
µψ2. The γµ’s are called the Dirac γ matrices. You will learn to know and

love them.

Under a Lorentz transformation ψ → D(Λ)ψ, and so ψ = ψ†β → ψ†D†(Λ)β =

ψ†ββD†(Λ)β ≡ ψD(Λ), where we have defined the Dirac adjoint of the operator D(Λ)

D(Λ) = γ0D†(Λ)γ0. (9.92)

Since under a Lorentz transformation,

ψγµψ → ψD(Λ)γµD(Λ)ψ = Λµνψγ
νψ (9.93)

we find that the γ matrices satisfy

D(Λ)γµD(Λ) = Λµνγ
ν . (9.94)

We can now use this technology to construct objects from the bispinors which transform

in more complicated ways under the Lorentz group. For example, ψγµγνψ transforms like

a two index tensor:

ψγµγνψ → ψD(Λ)γµD(Λ)D(Λ)γνD(Λ)ψ

= ΛµαΛνβψγ
αγβψ (9.95)

(where we have used D(Λ)D(Λ) = 1, which follows from the fact that ψψ is a scalar).

The commutation relations for the α’s and β may now be written in terms of the γ’s

as

{γµ, γν} = 2gµν . (9.96)

Thus, the γ matrices all anticommute with one another, and (γ0)2 = −(γ1)2 = −(γ2)2 =

−(γ3)2 = 1. For any four-vector aµ, we define a/ (“a-slash”) by

a/ = aµγ
µ. (9.97)

From the γ algebra it follows that

a/b/+ b/a/ = 2a · b (9.98)

and a/a/ = a2. The Dirac Lagrangian may be written in a manifestly Lorentz invariant form

ψ(i∂/−m)ψ (9.99)

and the Dirac equation is

(i∂/−m)ψ = 0. (9.100)

Note that these are all four by four matrix equations, where we have suppressed matrix

indices. Also, everything is still classical, and the γ matrix algebra is simply a statement

about matrix multiplication, not about quantum operators anticommuting.
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Another property of the γ matrices is that they are not all Hermitian,

γµ† = γµ = gµνγ
ν = γ0γµγ0 (9.101)

but they are self-Dirac adjoint (“self-bar”)

γµ = γµ. (9.102)

The orthonormality conditions on the plane wave solutions are now

u
(r)
~p u

(s)
~p = 2mδrs = −v(r)

~p v
(s)
~p , u

(r)
~p v

(s)
~p = 0 (9.103)

and since i∂/u~p(x) = i(−ip/)u~p(x) = p/u~p(x) and i∂/v~p(x) = i(ip/)v~p(x) = −p/v~p(x), the Dirac

equation implies that the plane wave solutions satisfy

(p/−m)u
(r)
~p = 0 = (p/+m)v

(r)
~p . (9.104)

Taking the Dirac adjoint of Eq. (9.104) gives

u
(r)
~p (p/−m) = 0 = v

(r)
~p (p/+m). (9.105)

The plane wave bispinors also obey the completeness relations

2∑
r=1

u
(r)
~p u

(r)
~p = p/+m,

2∑
r=1

v
(r)
~p v

(r)
~p = p/−m. (9.106)

These will be very useful later on when we calculate cross sections.

9.4.1 Bilinear Forms

We have already seen that ψψ transforms like a scalar and that the components of ψγµψ

form a 4-vector. We could go on indefinitely and construct n component tensors ψγµγν ...γαψ,

but since any collection of γ matrices is simply a four by four matrix there are only be

sixteen independent bilinears which can be constructed out of ψ and ψ. We already have

five - the one component scalar and the four-vector. We can choose the remaining eleven

to transform simply under Lorentz transformations.

Consider first ψγµγνψ. This is a sixteen component object. However, we may split it

up into symmetric and antisymmetric pieces: ψ{γµ, γν}ψ and ψ[γµ, γν ]ψ. Since {γµ, γν} =

2gµν , the symmetric combination is simply 2gµνψψ and so is not an independent bilinear

form. The antisymmetric combination is new. We define

σµν =
i

2
[γµ, γν ] (9.107)

and then the six independent components of ψσµνψ transform like a two index antisym-

metric tensor (note that some books define σµν with an opposite sign to this). This bring

the number of bilinears to eleven, so we need to find five more.
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Skipping to four component objects, we next consider ψγµγνγαγβψ. But if any two

indices are the same, this doesn’t give us anything new. For example,

γ0γ1γ0γ2 = −γ0γ0γ1γ2 = −γ1γ2 = iσ12. (9.108)

So only the matrix γ0γ1γ2γ3 and its various permutations are new. Thus we define a new

matrix γ5:

γ5 = iγ0γ1γ2γ3 =
i

4!
εµναβγ

µγνγαγβ ≡ γ5. (9.109)

Here, εµναβ is a totally antisymmetric four index tensor, and

ε0123 = 1 = −ε1023 = ε1032 = .... (9.110)

γ5 is in many ways the “fifth γ matrix.” It obeys

(γ5)2 = 1, γ5 = γ†5 = −γ5, {γ5, γ
µ} = 0. (9.111)

Since ψεµναβγ
µγνγαγβψ has no free indices, it transforms like a scalar under boosts and

rotations, ψγ5ψ → ψγ5ψ. However, its transformation differs from that of ψψ when we

consider parity transformations. Under parity,

ψ(~x, t)→ βψ(−~x, t) = γ0ψ(−~x, t)
ψ(~x, t)→ ψ(−~x, t)β = ψ(−~x, t)γ0 (9.112)

and so under a parity transformation

ψψ(~x, t)→ ψψ(−~x, t) (9.113)

exactly as a scalar should transform. However,

ψγ5ψ → ψγ0γ5γ
0ψ(−~x, t) = −ψγ5γ

0γ0ψ(−~x, t) = −ψγ5ψ(−~x, t). (9.114)

Thus ψγ5ψ changes sign under a parity transformation, and so transforms like a pseu-

doscalar.

The final four independent bilinear forms are the components of

ψγµγ5ψ (9.115)

which make up an axial vector. Again, we see that under a parity transformation ψγµψ(~x, t)→
ψγ0γµγ0ψ(−~x, t), and so

ψγ0ψ(~x, t)→ ψγ0ψ(−~x, t)
ψγiψ(~x, t)→ −ψγiψ(−~x, t), i = 1..3. (9.116)

The spatial components of ψγµψ flip sign under a reflection whereas the time component is

unchanged, which is how a vector transforms under parity. On the other hand, the addition

of the γ5 means that the axial vector transforms like

ψγ0γ5ψ(~x, t)→ −ψγ0γ5ψ(−~x, t)
ψγiγ5ψ(~x, t)→ ψγiγ5ψ(−~x, t), i = 1..3 (9.117)
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which is the correct transformation law for an axial vector.

Thus, we have chosen the sixteen bilinears which can be formed from a Dirac field and

its adjoint to transform simply under Lorentz transformations. To summarize, we have

S = ψψ (scalar)

V µ = ψγµψ (vector)

Tµν = ψσµνψ (tensor)

P = ψγ5ψ (pseudoscalar)

Aµ = ψγµγ5ψ (axial vector). (9.118)

Given these transformation laws it will be easy to construct Lorentz invariant interaction

terms in the Lagrangian. For example, if we have a vector field Aµ (such as a photon), a

Lorentz invariant interaction is Aµψγµψ. An axial vector field Bµ could couple in a parity

conserving manner as Bµψγµγ5ψ. A scalar field φ (such as a meson) could couple like φψψ,

whereas the coupling φψγ5ψ conserves parity if φ transforms like a pseudoscalar. Finally,

in a parity violating theory (such as the weak interactions) a vector field Wµ could couple

to some linear combination of vector and axial vector currents: Wµψγµ(a + bγ5)ψ. This

interaction is parity violating because there is no way to define the transformation of Wµ

under parity such that this term is parity invariant.

9.4.2 Chirality and γ5

In the Weyl basis, γ5 =

(
1 0

0 −1

)
. We can define the projection operators (in any basis)

PR = 1
2(1 + γ5), PL = 1

2(1− γ5). (9.119)

These satisfy the requirements for projections operators: P 2
R = PR, P 2

L = PL, PRPL = 0,

PR + PL = 1, and they project out the Weyl spinors u+ and u− from the Dirac bispinor:(
u+

0

)
= 1

2(1 + γ5)ψ = PRψ ≡ ψR(
0

u−

)
= 1

2(1− γ5)ψ = PLψ ≡ ψL. (9.120)

We also find that ψR ≡ ψPR = ψγ0PRγ
0 = ψPL and ψL = ψPR. ψL and ψR are just

the left and right-handed pieces of the Dirac bispinor in four component, rather than two

component (u− and u+), notation. The Weyl Lagrangian for right-handed particles may

therefore be written

L = ψi∂/PRψ = ψi∂/P 2
Rψ = ψPLi∂/PRψ = ψRi∂/ψR. (9.121)

Similarly, for left-handed particles we have L = ψLi∂/ψL. The Dirac Lagrangian is

L = ψLi∂/ψL + ψRi∂/ψR −m(ψLψR + ψRψL). (9.122)

As we noticed before, we see that without the mass term the Dirac Lagrangian just describes

two independent helicity eigenstates. The mass term couples the right and left-handed
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fields, so the helicity of the massive field is no longer a good quantum number. As we

argued from physical grounds earlier, this is exactly what must happen for a massive

particle, since its helicity is no longer a Lorentz invariant quantity.

We also note that we may write the parity violating Weyl Lagrangian describing left-

handed neutrinos in the four-component form

L = ψLi∂/ψL. (9.123)

When m 6= 0, the Dirac Lagrangian is invariant under the U(1) symmetry ψL,R →
e−iλψL,R. Because of the mass term, the left and right handed fields must transform the

same way under the internal symmetry. However, when m = 0 this is no longer required,

and the theory has two independent U(1) symmetries,

ψL → e−iλψL, ψR → ψR (9.124)

and

ψR → e−iλψR, ψL → ψL. (9.125)

The independent symmetries are called chiral symmetries, where the term chiral denotes

the fact that the symmetries has a “handedness”, that is, it distinguishes left and right

handed particles. Chiral symmetries play an important role in the study of both the strong

and weak interactions. For example, the weak interactions involve the coupling of vector

fields (the W± and Z bosons) to only the left-handed components of spin 1/2 fields. The

Z boson, for example, is the quantum of the Zµ vector field, which has a coupling of the

form

ZµψLγµψL = Zµψ 1
2γµ(1− γ5)ψ. (9.126)

Such a theory clearly violates parity.
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9.5 Summary of Results for the Dirac Equation

These pages summarize the results we have derived for the Dirac equation, without proofs.

You will find many of these results in Appendix A of Mandl & Shaw; however, they use a

different normalization for the plane wave states.

9.5.1 Dirac Lagrangian, Dirac Equation, Dirac Matrices

The theory is defined by the Lagrange Density

L = ψ†
[
i∂0 + i~α · ~∇− βm

]
ψ. (9.127)

where ψ is a set of four complex fields, arranged in a column vector (a Dirac bispinor) and

the α’s and β are a set of 4×4 Hermitian matrices (the Dirac Matrices). The corresponding

equation of motion is

(i∂0 + i~α · ~∇− βm)ψ = 0. (9.128)

The Dirac matrices obey the following algebra,

{αi, αj} = 2δij , {αi, β} = 0, β2 = 1. (9.129)

Two representations of the Dirac algebra that will be useful to us are the Weyl represen-

tation

~α =

(
~σ 0

0 −~σ

)
, β =

(
0 1

1 0

)
(9.130)

and the standard (or Dirac) representation

~α =

(
0 ~σ

~σ 0

)
, β =

(
1 0

0 −1

)
(9.131)

(where each component represents a 2× 2 matrix).

9.5.2 Space-Time Symmetries

The Dirac equation is invariant under both Lorentz transformations and parity. Under a

Lorentz transformation characterized by a 4× 4 Lorentz matrix Λ,

Λ : ψ(x)→ D(Λ)ψ(Λ−1x). (9.132)

For a boost characterized by rapidity φ in the ê direction,

D (A(êφ)) = e~α·êφ/2 (9.133)

while for a rotation of angle θ about the ê axis,

D (R(êθ)) = e−i
~L·êθ (9.134)

where

~L =
1

2

(
~σ 0

0 ~σ

)
(9.135)

in both the Weyl and standard representations.

Under parity,

P : ψ(~x, t)→ βψ(−~x, t). (9.136)
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9.5.3 Dirac Adjoint, γ Matrices

The Dirac adjoint of a Dirac bispinor is defined by

ψ = ψ†β (9.137)

and the Dirac adjoint of a 4× 4 matrix is

A = βA†β. (9.138)

These obey the usual rules for adjoints, e.g.(
ψAφ

)∗
= φAψ. (9.139)

The γ matrices are defined by

γ0 = β, γi = βαi. (9.140)

From these we can define the γ matrices with lowered indices by

γµ ≡ gµνγν . (9.141)

The γ matrices are not all Hermitian,

γµ† = γµ = gµνγ
ν = γ0γµγ0 (9.142)

but they are self-Dirac adjoint (“self-bar”)

γµ = γµ. (9.143)

They obey the γ algebra

{γµ, γν} = 2gµν (9.144)

and also obey

D(Λ)γµD(Λ) = Λµνγ
ν . (9.145)

For any 4-vector a, we define

a/ = aµγ
µ (9.146)

and from the γ algebra it follows that

a/b/+ b/a/ = 2a · b. (9.147)

In this notation, the Dirac Lagrange density is

ψ(i∂/−m)ψ (9.148)

and the Dirac equation is

(i∂/−m)ψ = 0. (9.149)
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9.5.4 Bilinear Forms

There are sixteen linearly independent bilinear forms we can make from a Dirac bispinor

and its adjoint. We can choose these sixteen to form the components of objects that

transform in simple ways under the Lorentz group and parity. These are

S = ψψ (scalar)

V µ = ψγµψ (vector)

Tµν = ψσµνψ (tensor)

P = ψγ5ψ (pseudoscalar)

Aµ = ψγµγ5ψ (axial vector) (9.150)

where we have defined

σµν =
i

2
[γµ, γν ] (9.151)

and

γ5 = iγ0γ1γ2γ3 =
i

4!
εµναβγ

µγνγαγβ ≡ γ5. (9.152)

Here, εµναβ is a totally antisymmetric four index tensor, and

ε0123 = 1. (9.153)

γ5 is in many ways the “fifth γ matrix.” It obeys

(γ5)2 = 1, γ5 = γ†5 = −γ5, {γ5, γ
µ} = 0. (9.154)

9.5.5 Plane Wave Solutions

The positive-frequency solutions of the Dirac equation are of the form

ψ = ue−ip·x (9.155)

where p2 = m2 and p0 =
√
~p2 +m2. The negative-frequency solutions are of the form

ψ = veip·x. (9.156)

There are two positive-frequency and two negative-frequency solutions for each p. The

Dirac equation implies that

(p/−m)u = 0 = (p/+m)v. (9.157)

For a particle at rest, p = (m,~0), we can choose the independent u’s and v’s in the standard

representation to be

u
(1)
~0

=


√

2m

0

0

0

 , u
(2)
~0

=


0√
2m

0

0

 , v
(1)
~0

=


0

0√
2m

0

 , v
(2)
~0

=


0

0

0√
2m

 . (9.158)
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(Note that these are normalized differently than in Mandl & Shaw. They omit the
√

2m

from the normalization and instead include it in the definition of D, the invariant phase

space factor.) We can construct the solutions for a moving particle, u
(r)
~p and v

(r)
~p , by

applying a Lorentz boost.

These solutions are normalized such that

u
(r)
~p u

(s)
~p = 2mδrs = −v(r)

~p v
(s)
~p , u

(r)
~p v

(s)
~p = 0. (9.159)

They obey the completeness relations

2∑
r=1

u
(r)
~p u

(r)
~p = p/+m,

2∑
r=1

v
(r)
~p v

(r)
~p = p/−m. (9.160)

Another way of expressing the normalization condition is

u
(r)
~p γµu

(s)
~p = 2δrspµ = v

(r)
~p γµv

(s)
~p . (9.161)

This form has a smooth limit as m→ 0.
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10. Quantizing the Dirac Lagrangian

10.1 Canonical Commutation Relations

or, How Not to Quantize the Dirac Lagrangian

We now wish to construct the quantum theory corresponding to the Dirac Lagrangian, and

so we expect to be able to set up canonical commutation relations much in the same way

as for the scalar field. The momentum conjugate to ψ is

Π0
ψ =

∂L
∂(∂0ψ)

= iψ† (10.1)

while the momentum conjugate to ψ† vanishes. Although this seems odd, it is not a

problem. The equations of motion from the Dirac equation are first order in time, and so

ψ and ψ† form a complete set of initial value data. That is, if we know ψ and ψ† at some

initial time, we can find the state of the system at any following time (if the equations were

second order in time, we would also need the time derivatives of the fields at the initial

time). It is only on these fields, which completely define the state of the system, that we

need to impose canonical commutation relations. Therefore we take

[ψa(~x, t), (Π
0
ψ)b(~y, t)] = iδabδ

(3)(~x− ~y). (10.2)

Here we have explicitly displayed the spinor indices a and b. Suppressing the indices, we

have

[ψ(~x, t), ψ†(~y, t)] = δ(3)(~x− ~y), [ψ(~x, t), ψ(~y, t)] = [ψ†(~x, t), ψ†(~y, t)] = 0. (10.3)

Just as in the case of the scalar field, any solution to the free field theory may be written

as a sum of plane wave solutions

ψ(~x, t) =
2∑
r=1

∫
d3~p

(2π)3/2
√

2Ep

[
b
(r)
~p u

(r)
~p e−ip·x + c

(r)†
~p v

(r)
~p eip·x

]
ψ†(~x, t) =

2∑
r=1

∫
d3~p

(2π)3/2
√

2Ep

[
b
(r)†
~p u

(r)†
~p eip·x + c

(r)
~p v

(r)†
~p e−ip·x

]
. (10.4)

In the classical theory, the b’s and c’s are numbers, the Fourier components of the solution,

just as in the case of the scalar field. The u’s and v’s are the four component bispinors

we found explicitly in the previous section. Since there are two spin states for the fields, a

general solution to the Dirac Equation has components with both spin states, and so the

b’s and c’s carry a spin index.

In the quantum theory, the b’s and c’s are replaced by operators. We expect that the

canonical commutation relations Eq. (10.2) will require that the b’s, c’s and their conjugates

be creation and annihilation operators, so to make things simpler let us make the ansatz

[b
(r)
~p , b

(s)†
~p′ ] = Bδrsδ(3)(~p− ~p′)

[c
(r)
~p , c

(s)†
~p′ ] = Cδrsδ(3)(~p− ~p′) (10.5)
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where B and C are constant which we shall solve for. Substituting Eq. (10.5) into the

commutation relations gives

[ψ(~x, t), ψ†(~y, t)] =
∑
r,s

∫
d3~pd3~p′

(2π)3
√

2Ep
√

2Ep′

{
[b

(r)
~p , b

(s)†
~p′ ]u

(r)
~p u

(s)
~p′ γ

0eip·x−ip
′·y

+[c
(r)†
~p , c

(s)
~p′ ]v

(r)
~p v

(s)
~p′ γ

0e−ip·x+ip′·y
}

=
1

(2π)3

∫
d3p

2Ep

{
B(p/+m)γ0e−i~p·(~x−~y)

−C(p/−m)γ0ei~p·(~x−~y)
}

=
1

(2π)3

∫
d3p

2Ep
e−i~p·(~x−~y)

{
B(p0γ

0 + piγ
i +m)γ0

−C(p0γ
0 − piγi −m)γ0

}
. (10.6)

Here we have used the completeness relations
∑

r u
(r)
~p u

(r)
~p = p/+m and

∑
r v

(r)
~p v

(r)
~p = p/−m.

Clearly if B = −C, the piγ
i and m terms cancel, and the p0 = Ep in the numerator cancels

the denominator. So choosing B = −C = 1, we obtain

[ψ(~x, t), ψ†(~y, t)] =
1

(2π)3

∫
d3p e−i~p·(~x−~y) = δ(3)(~x− ~y) (10.7)

as required. Note, however, that the sign in the commutator for the c’s is opposite to what

we might have expected, and suggests that something may not be quite right here.

To see if this is a sensible quantum theory, we should look at the Hamiltonian and see

if the energy is bounded below:

H = Π0
ψ∂0ψ − L = iψγ0∂0ψ − iψγµ∂µψ +mψψ = −iψγi∂iψ +mψψ. (10.8)

Since ψ satisfies the Dirac equation, we can write this as

H = iψγ0∂0ψ = iψ†∂0ψ. (10.9)

In terms of the creation and annihilation operators,

i∂0ψ =
∑
r

∫
d3p

(2π)3/2

√
Ep
2

[
b
(r)
~p u

(r)
~p e−ip·x − c(r)†

~p v
(r)
~p eip·x

]
(10.10)

and so the Hamiltonian is

H =

∫
d3xH

=

∫
d3xψ†i∂0ψ

=
∑
r,s

∫
d3x

d3pd3p′

(2π)3

√
Ep
Ep′

[
b
(r)†
~p′ u

(r)†
~p′ e

ip′·x + c
(r)
~p′ v

(r)†
~p′ e−ip

′·x
]
×[

b
(s)
~p u

(s)
~p e−ip·x − c(r)†

~p v
(r)
~p eip

′·x
]
. (10.11)
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As usual, the d3x integral times the exponential becomes a delta function, and using

u
(r)†
~p u

(s)
~p = u

(r)
~p γ0u

(s)
~p = 2δrsEp = v

(r)†
~p v

(s)
~p , we arrive at

H =
∑
r

∫
d3pEp

[
b
(r)†
~p b

(r)
~p − c

(r)
~p c

(r)†
~p

]
=
∑
r

∫
d3pEp

[
b
(r)†
~p b

(r)
~p − c

(r)†
~p c

(r)
~p + δ(3)(0)

]
. (10.12)

The δ(3)(0) will vanish when we normal order, so we just find

H =
∑
r

∫
d3pEp [Nb(p, r)−Nc(p, r)] (10.13)

where Nb(p, r) and Nc(p, r) are the number operators for b and c type particles.

There is indeed something seriously wrong with this theory - the Hamiltonian is un-

bounded from below! The c-type particles (antiparticles) carry negative energy. The theory

therefore has no ground state, since you can always lower the energy of a state by adding

antiparticles.

Unlike previous problems with positivity of the energy, we can’t fix this problem simply

by changing the sign of the Lagrangian. This will simply force the b particles to carry

negative energy. There is therefore no way to obtain a sensible quantum theory from the

Dirac Lagrangian using canonical commutation relations.

10.2 Canonical Anticommutation Relations

We didn’t spend two lectures on spinors and γ matrices just to throw it all in at the

first sign of trouble. The theory can be rescued, but the canonical commutation relations

must be abandoned and replaced with something else. Recall that for the scalar field

theory we could interpret a†k and ak as creation and annihilation operators because of their

commutation relations with the number operator N =
∫
d3k a†kak (or equivalently, with

the Hamiltonian H =
∫
d3k ωka

†
kak.). Let me remind you that this worked because of the

following useful identity for commutators:

[AB,C] = A[B,C] + [A,C]B. (10.14)

This immediately gives

[N, a†k] =

∫
d3k′ [a†~k′

a~k′ , a
†
k] = a†k (10.15)

and also

[N, ak] = −ak. (10.16)

Therefore a†k acting on a state raises the eigenvalue of N by one and the energy by ωk,

while ak acting on the states lowers both eigenvalues, exactly as expected for creation and

annihilation operators. However, there is another useful identity for commutators

[AB,C] = A{B,C} − {A,C}B (10.17)
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where {A,B} ≡ AB + BA is the anticommutator of A and B. This is extremely useful,

because it means that if we were to impose anticommutation relations on the a†k’s and ak’s,

they could still be interpreted as creation and annihilation operators. That is, let us impose

the relations

{ak, a†k′} = δ(3)(~k − ~k′)
{ak, ak′} = {a†k, a

†
k′} = 0. (10.18)

We then find, using Eq. (10.17)

[N, a†k] =

∫
d3k′ [a†~k′

a~k′ , a
†
k] =

∫
d3k′ a†k′{ak′ , a

†
k} = a†k

[N, ak] =

∫
d3k′ [a†~k′

a~k′ , ak] = −
∫
d3k′ {a†k′ , ak}ak′ = −ak (10.19)

exactly as required. This suggests we try the following anticommutation relations for the

b’s and c’s:

{b(r)~p , b
(s)†
~p′ } = δrsδ(3)(~p− ~p′)

{c(r)
~p , c

(s)†
~p′ } = δrsδ(3)(~p− ~p′)

{b(r)~p , b
(s)
~p′ } = {b(r)†~p , b

(s)†
~p′ } = 0

{c(r)
~p , c

(s)
~p′ } = {c(r)

~p , c
(s)
~p′ } = {b(r)~p , c

(s)†
~p′ } = ... = 0. (10.20)

Not surprisingly, substituting these anticommutation relations into the field expansions

we find that the equal-time commutation relations are replaced by now obey equal time

anticommutation relations

{ψ(~x, t), ψ†(~y, t)} = δ(3)(~x− ~y)

{ψ(~x, t), ψ(~y, t)} = {ψ†(~x, t), ψ†(~y, t)} = 0. (10.21)

Note that you have to be careful when dealing with anticommuting fields, since the order

is always important. For example, ψ(~x, t)ψ(~y, t) = −ψ(~y, t)ψ(~x, t).

The crucial step is now to see if this modification gives us an energy bounded from

below. It is easy to see that it does, since the previous derivation of the Hamiltonian goes

through completely unchanged up until the last line:

H =
∑
r

∫
d3pEp

[
b
(r)†
~p b

(r)
~p − c

(r)
~p c

(r)†
~p

]
=
∑
r

∫
d3pEp

[
b
(r)†
~p b

(r)
~p + c

(r)†
~p c

(r)
~p + δ(3)(0)

]
. (10.22)

The anticommutation relations have given us a crucial sign change in the second term.

Throwing away the δ(3)(0) as usual, we now have

H =
∑
r

∫
d3pEp [Nb(p, r) +Nc(p, r)] (10.23)

which is bounded from below. Both b and c particles carry positive energy.
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10.3 Fermi-Dirac Statistics

We have saved the theory, but at the price of imposing anticommutation relations on the

creation and annihilation operators, and we must now examine the consequences of this.

First consider the single particle states in the theory. We label these by the spin r (where

r = 1 or 2 labels spin up and down, as we did when in the last chapter when writing

down the explicit form of the plane wave solutions) as well as the momentum ~p. As usual,

they are produced by the action of a creation operator on the vacuum (for definiteness, we

consider particle states, not antiparticle states, although the arguments will clearly apply

in both cases):

| ~p, r〉 = b
(r)†
~p | 0〉

〈~p′, s |~p, r〉 = 〈0 |b(s)~p′ b
(r)†
~p | 0〉

= 〈0 |{b(s)~p′ , b
(r)†
~p }| 0〉

= δrsδ(3)(~p− ~p′) (10.24)

and so the states have the correct normalization, just as they did in the scalar case. How-

ever, the multiparticle states are different from the spin 0 case. We find

| ~p1, r; ~p2, s〉 = b
(r)†
~p1

b
(s)†
~p2
| 0〉 = −b(s)†~p2

b
(r)†
~p1
| 0〉 = −| ~p2, s; ~p1, r〉 (10.25)

and so the states of the theory change sign under the exchange of identical particles. Thus,

the particle obey Fermi-Dirac statistics, instead of Bose-Einstein statistics. Consistency of

the theory has demanded that we quantize the particles as fermions instead of bosons. In

particular, the Pauli exclusion principle follows immediately from(
b
(r)
~p1

)2
= −

(
b
(r)
~p1

)2
= 0 (10.26)

which means that there is no two-particle state made up of two identical particles in the

same state

| ~p1, r; ~p1, r〉 = 0. (10.27)

Thus, it is impossible to put two identical fermions in the same state.

It isn’t immediately obvious that a theory with Fermi-Dirac statistics will be causal.

For bosons, we said that [φ(x), φ(y)] = 0 for (x − y)2 < 0 guaranteed that spacelike

separated observables, which are constructed out of the fields, couldn’t interfere with one

another:

[O(x), O(y)] = 0, (x− y)2 < 0. (10.28)

However, for fermi fields we now have the relation {ψ(x), ψ(y)} = 0 as well as {ψ(x), ψ†(y)} =

0 for (x−y)2 < 0 (this follows from the analogous calculation to that from which we derived

∆+(x−y) = 0 for (x−y)2 < 0.) How do we see that this requirement guarantees causality

in the quantum theory?
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The reason it does it that observables are always bilinear in the fields. For example,

the energy, momentum and conserved charge are given by

H = i

∫
d3xψ†(~x, t)∂0ψ(~x, t)

Pi = −i
∫
d3xψ†(~x, t)∂iψ(~x, t)

Q =

∫
d3xψ†(~x, t)ψ(~x, t). (10.29)

This is not surprising. We know that spinors form a double-valued representation of the

Lorentz group since they change sign under rotation by 2π. Observables, on the other

hand, are unaffected by a rotation by 2π and so must be composed of an even number

of spinor fields. Using the anticommutation relations (10.21), we can easily verify that

observables bilinear in the fields commute for spacelike separation, as required.

The fact that particles with integer spin must be quantized as bosons while particles

with half-integral spin must be quantized as fermions is a general result in field theory,

and is known as the spin-statistics theorem. We have, at least for spin 1/2 fields, demon-

strated the second part of the theorem. The first part of the theorem, the fact that

particles with integral spin must be quantized as bosons, follows from that observation

that if we were to attempt to impose canonical anticommutation relations on the creation

and annihilation operators for a scalar field we would find that the fields obeyed neither

[φ(x), φ(y)](x−y)2<0 = 0 nor {φ(x), φ(y)}(x−y)2<0 = 0. The theory would therefore not be

causal. This is the gist of the spin-statistics theorem: quantizing integral spin fields as

fermions leads to an acausal theory, while quantizing half-integral spin fields as bosons

leads to a theory with energy unbounded below (and so with no ground state).

10.4 Perturbation Theory for Spinors

Now that we understand free field theory for spin 1/2 fields, we can introduce interaction

terms into the Lagrangian and build up the Feynman rules for perturbation theory. Let us

consider a simple nucleon-meson theory (now that the nucleons are fermions, we no longer

need to enclose the word in quotations)

L = ψ(i∂/−m)ψ +
1

2
(∂µφ)2 − µ2

2
φ2 − gψΓψφ (10.30)

where we either take Γ = 1, in which case φ is a scalar, or Γ = iγ5, in which case φ

is a pseudoscalar (we include the i so that the Lagrangian is Hermitian, L = L†.). The

theory with Γ = 1 is known as Yukawa theory; it was originally invented by Yukawa to

describe the interaction between real pions and nucleons. It turns out that Yukawa theory

does not, in fact, provide the correct description of nucleon-meson interactions even at low

energies (where the internal structure of the nucleons and pions is irrelevant, so they may

be treated as fundamental particles). However, in modern particle theory the Standard

Model contains Yukawa interaction terms coupling the scalar Higgs field to the quarks and

leptons.
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Dyson’s formula and Wick’s theorem go through for fermi fields in almost the same

way as for scalars. However, the anticommutation relations introduce a crucial difference.

Recall that when (x − y)2 < 0, time ordering is not a Lorentz invariant concept. In one

frame x0 > y0 while in another y0 > x0. Nevertheless, the T -product of two scalar fields is

Lorentz invariant because the fields commute when (x − y)2 < 0, so φ(x)φ(y) = φ(y)φ(x)

and the order is unimportant. However, for fermions this no longer holds. If (x− y)2 < 0,

fermi fields anticommute. So for spacelike separation,

T (ψ(x)ψ(y)) = ψ(x)ψ(y) (10.31)

in the frame where x0 > y0, but

T (ψ(x)ψ(y)) = ψ(y)ψ(x) = −ψ(x)ψ(y) (10.32)

in the frame where y0 > x0. Therefore we must modify our definition of the T-produce of

fermi fields to make it Lorentz invariant. The solution is simple: just define the T-product

to include a factor of (−1)N , where N is the number of exchanges of fermi fields required

to time order the fields. Thus, for two fields

T (ψ(x)ψ(y)) =

{
ψ(x)ψ(y), x0 > y0;

−ψ(y)ψ(x), y0 > x0.
(10.33)

since for y0 > x0 we must perform one exchange of fermi fields to time order them. When

(x − y)2 < 0 the fields anticommute and the T -product is the same in any frame. Also,

from Eq. (10.33) and the anticommutation relations, we have

T (ψ1(x1)ψ2(x2)) = −T (ψ2(x2)ψ1(x1)). (10.34)

Therefore we treat fermi fields as anticommuting inside the time ordering symbol. (Note

that in this discussion of T -products I am using ψ to represent any generic fermi field,

including ψ†).

The normal-ordered product is defined as before. Writing ψ = ψ(+) +ψ(−), where ψ(+)

multiplies an annihilation operator and ψ(−) multiplies a creation operator, the normal-

ordered product : ψ1ψ2 : is

: ψ1ψ2 : = :
[
ψ

(+)
1 ψ

(+)
2 + ψ

(+)
1 ψ

(−)
2 + ψ

(−)
1 ψ

(−)
2 + ψ

(−)
1 ψ

(+)
2

]
:

=
[
ψ

(+)
1 ψ

(+)
2 − ψ(−)

2 ψ
(+)
1 + ψ

(−)
1 ψ

(−)
2 + ψ

(−)
1 ψ

(+)
2

]
(10.35)

where the second term has picked up a factor of (−1) because of the interchange of two

fermi fields. Just as for the T -product, fermi fields can be treated as anticommuting inside

a normal ordered product,

: ψ1ψ2 := − : ψ2ψ1 : . (10.36)

(Recall that bose fields commuted inside T -products and N -products; that is, their order

was unimportant).
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With this modified definition of the time-ordered product, Dyson’s formula and Wick’s

theorem go through as before. Note, however, that we must be careful with contractions

in Wick’s theorem, for example for fermion fields A1 −A4 we have

:
−−−−−
A1A2A3A4 := − :

−
A1A3A2A4 := −

−
A1A3 : A2A4 : (10.37)

and so pulling this particular contraction out of the normal-ordered product introduces a

minus sign. In general, pulling a contraction out of a normal-ordered product introduces a

factor of (−1)N , where N is the number of interchanges of fermi fields required.

10.4.1 The Fermion Propagator

The fermion propagator is obtained from the contraction
−−−−
ψ(x)ψ(y) (note that this is a four

by four matrix: Sab =
−−−−−
ψ(x)aψ(y)b. As with scalar fields, this is number (or rather a matrix

of numbers) instead of an operator, so

−−−−
ψ(x)ψ(y) = 〈0 |

−−−−
ψ(x)ψ(y)| 0〉

= 〈0 |T (ψ(x)ψ(y))− : ψ(x)ψ(y) : | 0〉
= 〈0 |T (ψ(x)ψ(y))| 0〉. (10.38)

First consider the case x0 > y0. Then T (ψ(x)ψ(y)) = ψ(x)ψ(y). Putting in the explicit

expressions for the fields and using the completeness relations for the plane wave states∑
r u

(r)
~p u

(r)
~p = p/+m we find

−−−−
ψ(x)ψ(y) =

∫
d3p

(2π)32Ep
e−ip·(x−y)(p/+m)

= (i∂/x +m)D(x− y) (x0 > y0) (10.39)

where

D(x− y) =

∫
d3p

(2π)32Ep
e−ip·(x−y) (10.40)

was defined in Chapter 2. Performing a similar calculation for x0 < y0, we find14

−−−−
ψ(x)ψ(y) = θ(x0 − y0)(i∂/x +m)D(x− y) + θ(y0 − x0)(i∂/x +m)D(y − x)

= (i∂/x +m) (θ(x0 − y0)D(x− y) + θ(y0 − x0)D(y − x))

= (i∂/x +m)
−−−
φ(x)φ(y) (10.41)

where
−−−
φ(x)φ(y) =

∫
d4p

(2π)4
e−ip·(x−y) i

p2 −m2 + iε
. (10.42)

14Note that it is legitimate to pull the derivative outside of the θ function because the additional term

which arises when a time derivative acts on the θ function vanishes.
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We have now related the fermion propagator to the scalar propagator. Moving the

derivative back inside the integral we have

−−−−−
ψ(x)aψ(y)b =

∫
d4p

(2π)4

i(p/ab +mIab)

p2 −m2 + iε
e−ip·(x−y). (10.43)

(where we have explicitly included the matrix indices, and I is the four by four identity

matrix). We immediately see that this gives the Feynman rule for the fermion propagator

shown in Fig. (38). Note that the propagator is odd in p, so it matters that p and

Figure 38: The fermion propagator.

the conserved charge (the arrow on the propagator) are pointing in the same direction.

When they point in opposite directions the sign of p is reversed (Fig. (39)). Note that

Figure 39: The fermion propagator is odd in p.

p2 −m2 + iε = (p/+m− iε)(p/−m+ iε), so the propagator is often written as

i(p/+m)

(p/+m− iε)(p/−m+ iε)
=

i

p/−m+ iε
(10.44)

(the iε in the p/+m term in the denominator does not affect the location of the pole, so in

the limit ε→ 0 we may cancel this against the numerator).

Of course, just as in the scalar theory, contractions of fields which don’t create and

then annihilate the same particle vanish,

−−−
φ(x)ψ(y)a = 0
−−−−−
ψ(x)aψ(y)b = 0
−−−−−
ψ(x)aψ(y)b = 0. (10.45)

10.4.2 Feynman Rules

We can deduce the Feynman rules for this theory by explicitly calculating the amplitudes

for several scattering processes. The O(g2) term in Dyson’s formula is

(−ig)2

2!

∫
d4x1 d

4x2 T
[
ψa(x1)Γab(x1)ψb(x1)φ(x1)ψc(x2)Γcdψd(x2)φ(x2)

]
(10.46)

where we have included the spinor indices, and we are using the convention that repeated

spinor indices are summed over (so this is just matrix multiplication). This term contributes
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to a variety of processes. First we consider nucleon-meson scattering, N + φ → N + φ.

There are two contractions which contribute:

: ψa(x1)Γab
−−−−−−−−−−−−−
ψb(x1)φ(x1)ψc(x2)Γcdψd(x2)φ(x2) :

:
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ψa(x1)Γabψb(x1)φ(x1)ψc(x2)Γcdψd(x2)φ(x2) : . (10.47)

Anticommuting the fields inside the normal-ordered product, we can rewrite the second

term as

: ψc(x2)Γcd
−−−−−−−−−−−−−
ψd(x2)φ(x2)ψa(x1)Γabψb(x1)φ(x1) : (−1)4 (10.48)

since there are four permutations of fermion fields required (note that fermi fields commute

with bose fields). This only differs from the first time by the interchange of x1 and x2,

and since we are symmetrically integrating over x1 and x2, the two terms give identical

contributions. Just as before, this cancels the 1/2! in Dyson’s formula.

We can pull the propagator out of the first term, and since this involves an even number

of exchanges of fermi fields (two), we get

: ψa(x1)Γab
−−−−−−−−−−−−−
ψb(x1)φ(x1)ψc(x2)Γcdψd(x2)φ(x2) :=

−−−−−−
ψb(x1)ψc(x2) : ψa(x1)Γabφ(x1)Γcdψd(x2)φ(x2) : . (10.49)

The ψ field inside the normal product must now annihilate the nucleon. For the relativis-

tically normalized nucleon state |N(p, r)〉 (momentum p, spin r) we have

〈0 |ψ(x2)|N(p, r)〉 = e−ip·x2 × u(r)
~p (10.50)

and similarly

〈N(p′, r′) |ψ(x1)| 0〉 = eip
′·x1 × u(r′)

~p′ (10.51)

This immediately gives us two additional Feynman rules:

• For each incoming fermion with momentum p and spin r, include a factor of u
(r)
~p

• For each outgoing fermion with momentum p and spin r, include a factor of u
(r)
~p

(see Fig. (40).) Finally, each interaction vertex corresponds to a factor of −igΓ (see Fig.

ū(r)
p

p

p

Figure 40: Feynman rules for external fermion legs.

(41).) The vertices and fermion propagators are four by four matrices while the bispinors

are four component column vectors. The amplitude is given by multiplying all of these

– 143 –



−igΓ

Figure 41: Fermion-scalar interaction vertex.

factors together. From Eq. (10.49) we see that the matrices are multiplied together in

the order u
(r′)
~p′ ΓSΓu

(r)
~p , where Sab is the fermion propagator. Diagrammatrically, this just

corresponds to starting at the head of the arrow and working back to the start, including

each matrix as it is encountered along the fermion line.

That last point is important, so I’m going to say it again. When calculating Feynman

diagrams for spinors, the order of matrix multiplication is given by starting at the head of

an arrow and working back to the start, including each matrix as it is encountered along

the fermion line.

The φ fields act as they always did on the meson states, and as before we get two

Feynman diagrams corresponding to the two choices of which φ field creates or annihilates

which meson, as shown in Fig. (42). Applying the Feynman rules, we find the invariant

q

q q q

a) b)

p, r p′, r′

p, r

p′, r′

Figure 42: Feynman diagrams contributing to nucleon-meson scattering.

amplitude for this process to be

iA = (−ig)2u
(r′)
~p′ Γ

[
i(p/+ q/+m)

(p+ q)2 −m2 + iε
+

i(p/− q/′ +m)

(p− q′)2 −m2 + iε

]
Γu

(r)
~p . (10.52)

We next consider antinucleon-meson scattering, N + φ → N + φ. This is almost

identical to the previous process, but now the ψ field annihilates the incoming antinucleon

and the ψ field creates the outgoing antinucleon. So in the normal-ordered product :

ψ(x1)Γφ(x1)Γψ(x2)φ(x2) : the ψ field has to be moved to the right of the ψ field in order

to annihilate the incoming state, introducing a factor of −1 because of the interchange of

the two fermion fields. When acting on the external states, the fields now include factors

of v and v:

〈0 |ψ(x1)|N(p, r)〉 = e−ip·x1 × v(r)
~p

〈N(p′, r′) |ψ(x2)| 0〉 = eip
′·x2 × v(r′)

~p′ (10.53)

This leads to three more Feynman rules:
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• For each incoming antifermion with momentum p and spin r, include a factor of v
(r)
~p .

• For each outgoing antifermion with momentum p and spin r, include a factor of v
(r)
~p .

v̄(r)p

v(r)p

p

p

Figure 43: Feynman rules for external fermion legs.

• Include the appropriate minus signs from Fermi statistics.

This time the matrices are multiplied by starting at the incoming antinucleon and

working back to the outgoing nucleon. Diagrammatically, it’s the same as before: start at

the end of the arrow (with a factor of v
(r)
~p this time, instead of u

(r)
~p ) and work along the

line to the start of the arrow. The two diagrams contributing to the process are shown in

Fig. (44). The amplitude is

q

q q q

a) b)

p′, r′

p, r

p, r p′, r′

Figure 44: Feynman diagrams contributing to antinucleon-meson scattering.

iA = −(−ig)2v
(r)
~p Γ

[
i(−p/− q/+m)

(p+ q)2 −m2 + iε
+

i(−p/+ q/′ +m)

(p− q′)2 −m2 + iε

]
Γv

(r′)
~p′ . (10.54)

The overall −1 is clearly irrelevant, since it vanishes when the amplitude is squared. How-

ever, the fermi minus signs will be significant in the next example, because they will differ

between the two diagrams.

Finally, we consider nucleon-nucleon scattering, N +N → N +N . In this case the φ

fields are contracted, leaving us with the matrix element

〈N(p′, r′);N(q′, s′) | : ψΓψ(x1)ψΓψ(x2) : |N(p, r);N(q, s)〉. (10.55)

Now we have to be careful. The (relativistically normalized) state |N(p, r);N(q, s)〉 can

be defined either as

(2π)3(2ωq)
1/2(2ωp)

1/2b
(s)†
~q b

(r)†
~p | 0〉 (10.56)

or

(2π)3(2ωq)
1/2(2ωp)

1/2b
(r)†
~p b

(s)†
~q | 0〉. (10.57)
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Because of Fermi statistics, the two definitions differ by a relative minus sign. So for

definiteness, let us choose the first definition. This sets the convention, and so we have

now choice but to define the corresponding bra as

〈N(p′, r′);N(q′, s′) | = (2π)3(2ωq′)
1/2(2ωp′)

1/2〈0 |b(r
′)

~p′ b
(s′)
~q′ (10.58)

and so the matrix element in Eq. (10.55) becomes

4(2π)6(ωq′ωp′ωqωp)
1/2〈0 |b(r

′)
~p′ b

(s′)
~q′ : ψΓψ(x1)ψΓψ(x2) : b

(s)†
~q b

(r)†
~p | 0〉. (10.59)

There are now two possibilities: either ψ(x1) or ψ(x2) can annihilate the nucleon with

momentum q. First we choose the case where ψ(x2) annihilates the nucleon. Using the

field expansion for ψ, we then obtain

〈0 |b(r
′)

~p′ b
(s′)
~q′ : ψΓψ(x1)ψ(x2)Γu

(s)
~q b

(r)†
~p | 0〉e−iq·x2

= −〈0 |b(r
′)

~p′ b
(s′)
~q′ : ψ(x1)Γψ(x2)Γu

(s)
~q ψ(x1)b

(r)†
~p | 0〉e−iq·x2

= −〈0 |b(r
′)

~p′ b
(s′)
~q′ : ψ(x1)Γu

(r)
~p ψ(x2)Γu

(s)
~q | 0〉e−iq·x2−ip·x1

(10.60)

where in the last line we have put the factor of u
(r)
~p (which is not an operator, so it commutes

with the fields) in the correct position as far as matrix multiplication goes.

Now there are two choices for which ψ field creates which nucleon. The crucial obser-

vation is that the two choices differ by a relative minus sign. If ψ(x1) creates the nucleon

with q′, then there is no relative minus sign. However, if ψ(x2) creates the nucleon, the

fields must be anticommuted, and there is an additional minus sign. Thus, we find two

terms

−u(s′)
~q′ Γu

(s)
~q u

(r′)
~p′ Γu

(r)
~p e−i((q−q

′)·x2+(p−p′)·x1) (10.61)

and

u
(s′)
~q′ Γu

(r)
~p u

(r′)
~p′ Γu

(s)
~q e−i((q−p

′)·x2+(p−q′)·x1). (10.62)

We could now follow through the same line or reasoning, except choosing ψ(x1) to annihilate

the nucleon with momentum q, and we would find the same result with the interchange

x1 ↔ x2. Since we are integrating over x1 and x2 symmetrically, once again this cancels

the 1/2! in Dyson’s formula.

The two terms clearly correspond to the diagrams in Fig. (45), and the two graphs

have a relative minus sign. Therefore the amplitude for the process is

−ig2

u(s′)
~q′ Γu

(s)
~q u

(r′)
~p′ Γu

(r)
~p

(q − q′)2 − µ2 + iε
−
u

(s′)
~q′ Γu

(r)
~p u

(r′)
~p′ Γu

(s)
~q

(q − p′)2 − µ2 + iε

 (10.63)

Note that since the overall sign of the graphs is unimportant. It is only the relative minus

sign which is significant. Also note that in this case there are two sets of arrowed lines,

corresponding to two independent matrix multiplications. Again, the rule is to follow each
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p, r p′, r′

q, s q′, s′

p, r

p′, r′q, s

q′, s′

Figure 45: Feynman diagrams contributing to nucleon-nucleon scattering.

arrowed line from finish to start, multiplying matrices as you come to them. In these

diagram you simply have to do this twice.

The two graphs differ only by the interchange of identical fermions in the final state.

As expected, our theory automatically incorporates fermi statistics. The two amplitudes

interfere with a relative minus sign.

A similar situation arises in nucleon-antinucleon scattering. It is straightforward to

show, using the techniques of this section, that two diagrams which differ by the exchange

of a fermion in the final state and an antifermion in the initial state (or vice versa) also

interfere with a relative minus sign.

10.5 Spin Sums and Cross Sections

Our Feynman rules allow us to calculate amplitudes in terms of plane-wave solutions u and

v. To calculate the rate for a process with given initial and final spins, we could simply use

the explicit forms of the u’s and v’s that we found earlier. However, in many cases this is

not necessary. In a large number of experimental situations the spins of the initial particles

are unknown, and so a given particle has a 50% chance to be in either spin state. Similarly,

the final spins are often not measured, so we are interested in cross sections or decay rates

in which we sum over all possible spins of the final particles. In such situations we can use

the completeness relations for the spinors to perform the averaging and summing without

ever writing down the explicit form of the plane wave states. We will demonstrate this in

a worked example, nucleon-meson scattering in the “pseudoscalar” theory, Γ = iγ5. This

example also shows you several other tricks which are useful for evaluating amplitudes with

Fermi fields.

From Eq. (10.52) the invariant Feynman amplitude for nucleon-meson scattering is

iA = ig2u
(r′)
~p′ γ5

[
(p/+ q/+m)

(p+ q)2 −m2 + iε
+

(p/− q/′ +m)

(p− q′)2 −m2 + iε

]
γ5u

(r)
~p . (10.64)

Using γ2
5 = 1 and {γ5, γµ} = 0, we can anticommute the second γ5 through the propagators,

where it hits the first γ5 and the two square to one. Also, by conservation of momentum,

p− q′ = p′ − q, so we may rewrite the amplitude as

iA = ig2u
(r′)
~p′

[
(−p/− q/+m)

(p+ q)2 −m2 + iε
+

(−p/′ + q/+m)

(p′ − q)2 −m2 + iε

]
u

(r)
~p . (10.65)
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Next we use the fact that the spinors obey (p/ −m)u
(r)
~p = u

(r)
~p (p/ −m) = 0 as well as the

mass-shell conditions p2 = p′2 = m2, q2 = q′2 = µ2 to write this as

iA = ig2u
(r′)
~p′ q/u

(r)
~p

[
1

2p · q + µ2 + iε
+

1

2p′ · q − µ2 + iε

]
. (10.66)

Let us call the expression in the square bracket F (p, p′, q). Squaring the amplitude we get

|A|2 = g4F (p, p′, q)2|u(r′)
~p′ q/u

(r)
~p |2

= g4F (p, p′, q)2qµqνu
(r′)
~p′ γ

µu
(r)
~p u

(r)†
~p γ0γ0γν†γ0u

(r′)
~p′

= g4F (p, p′, q)2qµqνu
(r′)
~p′ γ

µu
(r)
~p u

(r)
~p γνu

(r′)
~p′ (10.67)

where we have use the relations γ2
0 = 1 and γ0γ

µγ0 = γµ†. The collection of spinors and

gamma matrices is simply a number (a one by one matrix) and so is equal to its trace. The

reason for writing it in this way is that a trace of a product of matrices is invariant under

cyclic permutations of the factors. Therefore

|A2| = g4F (p, p′, q)2qµqνTr
[
u

(r′)
~p′ γ

µu
(r)
~p u

(r)
~p γνu

(r′)
~p′

]
= g4F (p, p′, q)2qµqνTr

[
u

(r′)
~p′ u

(r′)
~p′ γ

µu
(r)
~p u

(r)
~p γν

]
. (10.68)

Now the completeness relations comes in. Averaging over initial spins (corresponding to
1
2

∑
r |A|2) and summing over final spins (corresponding to

∑
r′ |A|2) we obtain

1

2

∑
r,r′

|A|2 =
1

2

∑
r,r′

g4F (p, p′, q)2qµqνTr
[
u

(r′)
~p′ u

(r′)
~p′ γ

µu
(r)
~p u

(r)
~p γν

]
=

1

2
g4F (p, p′, q)2qµqνTr

[
(p/′ +m)γµ(p/+m)γν

]
. (10.69)

The traces of products of γ matrices have simple expressions, which are straightforward

to prove just using the anticommutation relations and the cyclic property of traces. Some

useful formulas are:

Tr (γµγν) =
1

2
Tr ({γµ, γν}) = gµνTr (1) = 4gµν

Tr
(
γµγνγαγβ

)
= 4(gµνgαβ + gµβgνα − gµαgνβ)

Tr (odd number of γ matrices) = 0

Tr (γµγ5) = Tr (γµγνγ5) = Tr (γµγνγαγ5) = 0

Tr
(
γµγνγαγβγ5

)
= 4iεµναβ . (10.70)

Applying these trace theorems to our expression gives

1

2

∑
r,r′

|A|2 = 2g4F (p, p′, q)2qµqν
[
p′µpν + p′νpµ − gµνp · p′ +m2gµν

]
= 2g4F (p, p′, q)2

[
2(p′ · q)(p · q)− p · p′µ2 +m2µ2

]
. (10.71)

At this point it is straightforward, if somewhat tedious, to go to the centre of mass frame,

substitute explicit expressions for the external momenta and perform the phase space

integrals to obtain the total cross section for meson nucleon scattering.
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11. Vector Fields and Quantum Electrodynamics

Quantizing a scalar field theory led to a theory of mesons, while the quantized spinor field

allowed us to describe the interactions of spin 1/2 fermions. In this section we will see

that a classical free field theory of a massless vector field is simply Maxwell’s equations in

free space. Quantizing the theory will give us the theory of the quantized electromagnetic

field, Quantum Electrodynamics. The particles associated with the quantized vector field

will be photons. However, quantizing a massless vector field is a delicate procedure, due to

complications arising from gauge invariance of the classical theory. In this section we will

finesse these problems by quantizing the theory of a massive vector field and then taking

the massless limit and tackling any problems that arise at that stage.

11.1 The Classical Theory

A vector field is a four component field whose components transform in the familiar way

under Lorentz transformations,

A′µ(x) = ΛµνA
ν(Λ−1x). (11.1)

Since we already know how products of four-vectors transform, we can go straight to writing

down Lagrangians. As before, we want to construct the simplest L which is quadratic in

the fields (so that the resulting equations of motion are linear), has no more than two

derivatives (a simplifying assumption) and is Lorentz invariant. This gives the following

terms:

• 0 derivatives: there is only one possibility,

AµAµ.

• 1 derivative: there are no possible Lorentz invariant terms in four dimensions.

• 2 derivatives: there are two independent terms,

∂µA
ν∂µAν , ∂µA

µ∂νAν .

Any other term may be written as a sum of these terms and a total derivative, and

so gives the same contribution to the action. For example, up to total derivatives,

∂µA
ν∂νA

µ ∼ Aν∂µ∂νAµ ∼ ∂νAν∂µAµ.

The most general Lagrangian satisfying these requirements is then

L = ±1

2
[∂µA

ν∂νA
ν + a∂µA

µ∂νA
ν + bAµA

µ] (11.2)

for some constants a and b. This leads to the equations of motion

−2Aν − a∂ν∂µAµ + bAν = 0. (11.3)
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As before, we look for plane wave solutions of the form

Aν(x) = ενe
−ik·x (11.4)

for some constant 4-vector εν . This leads to

k2εν + akνk · ε+ bεν = 0. (11.5)

The solutions to Eq. (11.5) may be classified in a Lorentz invariant manner into two classes,

1. ε ∝ k (4-D longitudinal)

2. ε · k = 0 (4-D transverse).

In the rest frame of the field, these two types of solution correspond to ε = (ε0,~0) and

ε = (0, ~ε), respectively. The lead to the equations of motion

1. (4-D longitudinal)

k2kν + ak2kν + bkν = 0 ⇒ (k2(1 + a) + b)kν = 0

⇒ k2 =
−b

1 + a
≡ µ2

L (11.6)

This solution has the right dispersion relation for a particle of mass µ2
L.

2. (4-D transverse)

k2εν + bεν = 0⇒ k2 = −b ≡ µ2
T . (11.7)

This solution describes a field of mass µ2
T .

The 4-D transverse solution appears to be what we are looking for, since the ε’s clearly

correspond to the three polarization state of a massive spin one particle. The 4-D longi-

tudinal solution, however, isn’t very interesting. This type of solution looks exactly like a

scalar field. Since we already know how to quantize scalar field theory, this doesn’t lead

to anything new. It would be nice to get rid of this solution altogether. This is simple

enough to do: if b 6= 0 (that is, if the 4-D transverse field is massive), setting a = −1 takes

µL to ∞, removing it from the spectrum. Or, if you prefer, when a = −1 and b 6= 0, the

equation of motion Eq. (11.6) has no solutions15. Therefore the longitudinal solutions are

absent from the Lagrangian

L = ±1

2

[
(∂µAν)2 − (∂µA

µ)2 − µ2A2
]

(11.8)

where µ2 ≡ µ2
T . This leads to the equations of motion

2Aν − ∂ν∂µAµ + µ2Aν = 0. (11.9)

15When a = −1 and b = 0, any k is a solution to Eq. (11.6). It is this arbitrariness in the solution to the

classical theory which makes the massless theory difficult to quantize.
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This can be written in a more compact form by introducing some more notation. Define

the field strength tensor

Fµν ≡ ∂µAν − ∂νAµ. (11.10)

In terms of Fµν , the Lagrangian is

L = ±
[

1

4
FµνF

µν − 1

2
µ2AµA

µ

]
(11.11)

and the equations of motion are

∂µF
µν + µ2Aν = 0. (11.12)

Equation (11.12) is known as the Proca Equation. Using the fact that Fµν is antisymmetric,

Fµν = −Fνµ, we derive the requirement that the field is transverse

∂µ∂νF
µν = 0⇒ ∂µA

µ = 0. (11.13)

Substituting this condition into the Proca equation, each component of Aµ is found to

satisfy the massive Klein-Gordon equation,

(2 + µ2)Aν = 0. (11.14)

Equations (11.13) and (11.14) are equivalent to the Proca equation, although in this form

it is not clear how to derive them from a Lagrangian. They look promising, however. At

the level of these two equations the µ2 → 0 limit is smooth,

2Aµ = 0, ∂µA
µ = 0. (11.15)

These are just Maxwell’s equations in free space. Recall that in classical electromagnetism

the scalar and vector potentials φ and ~A make up the components of the four-vector

Aµ = (φ, ~A). In the gauge where ∂µA
µ = 0, each component of Aµ satisfies the massless

wave equation. The vector field Aµ is thus the familiar vector potential of classical electro-

dynamics, while the components of the field strength tensor are the electric and magnetic

fields

~E = −~∇φ− ∂ ~A

∂t
~B = ~∇× ~A. (11.16)

By direct substitution, we easily find

Fµν =


0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0

 . (11.17)

We may also verify directly that the massless Proca equation, ∂µF
µν = 0, corresponds to

the free-space Maxwell Equations

~∇× ~B =
∂ ~E

∂t
, ~∇ · ~E = 0 (11.18)
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while the remaining two equations,

~∇× ~E = −∂
~B

∂t
, ~∇ · ~B = 0 (11.19)

immediately follow from the definitions Eq. (11.16). However, things aren’t quite so simple.

The condition ∂µA
µ = 0 could only be derived when µ2 6= 0. Therefore we will stick with

finite µ2 for a while longer.

Returning to the plane wave solutions to the Proca equation, Aµ = εµe
−ik·x, there are

three linearly independent polarization vectors ε
(r)
µ , r = 1..3. In the rest frame, we could

choose the basis

ε(1) = (0, 1, 0, 0), ε(2) = (0, 0, 1, 0), ε(3) = (0, 0, 0, 1) (11.20)

but in fact it is usually more convenient to choose the basis vectors to be eigenstates of Jz:

ε(1) =
1√
2

(0, 1, i, 0), ε(2) =
1√
2

(0, 1,−i, 0), ε(3) = (0, 0, 0, 1) (11.21)

which have Jz = +1,−1 and 0 respectively. In any basis, the basis states are chosen to

obey orthonormality

ε(r)
µ εµ(s)∗ = −δrs (11.22)

and completeness
3∑
r=1

ε(r)
µ ε(r)

ν

∗
= −gµν +

kµkν
µ2

(11.23)

relations. The minus sign in Eq. (11.22) arises because the polarization vectors are space-

like. The orthonormality and completeness relations are Lorentz covariant, so are true in

any frame, not just the rest frame.

The sign of the Lagrangian may be fixed by demanding that the energy be bounded

below, as usual. Denoting spatial indices by Roman characters, the Lagrangian may be

written as

L = ±
[

1

2
F0iF

0i +
1

4
FijF

ij − µ2

2
AiA

i − µ2

2
A0A

0

]
(11.24)

and so the time components of the canonical momenta are

∂L
∂(∂0Ai)

= ±F 0i

∂L
∂(∂0A0)

= 0. (11.25)

The fact that the momentum conjugate to A0 vanishes does not constitute a problem.

Because ∂µA
µ = 0, there are fewer degrees of freedom than one would näıvely expect, and

the spatial Ai’s and their canonical momenta are sufficient to define the state of the system.
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The Hamiltonian is

H = ±F0i∂
0Ai − L

= ±F0iF
0i ± F0i∂

iA0 − L
= ±F0iF

0i ∓ ∂iF0iA
0 − L

= ±F0iF
0i ∓ µ2A0A

0 − L

= ±
[

1

2
F0iF

0i − 1

4
FijF

ij +
µ2

2
AiA

i − µ2

2
A0A

0

]
(11.26)

where we have integrated by parts and used the equation of motion ∂µF
µ0 = ∂iF

i0 =

−µ2A0. The metric tensor obscures it, but each term in the square brackets is a sum of

squares with a negative coefficient and so is negative (for example, −AiAi = AiAi > 0),

and so the Lagrangian has an overall minus sign,

L = −1

4
FµνF

µν +
µ2

2
AµA

µ. (11.27)

11.2 The Quantum Theory

Canonically quantizing the theory is a straightforward generalization of the scalar field

theory case, so we will skip some of the steps. Since the spatial components Ai and their

conjugate momenta form a complete set of initial conditions, it is only on these fields that

we impose the canonical commutation relations

[Ai(~x, t), F
j0(~y, t)] = iδji δ

(3)(~x− ~y)

[Ai(~x, t), Aj(~y, t)] = [F i0(~x, t), F j0(~y, t)] = 0. (11.28)

Expanding the field in terms of plane wave solutions times operator-valued coefficients ak
(r)

and a†k
(r)

Aµ(x) =

3∑
r=1

∫
d3k

(2π)3/2
√

2ωk

[
ak

(r)ε(r)
µ (k)e−ik·x + a†k

(r)
ε(r)
µ

∗
(k)eik·x

]
(11.29)

and substituting this into the canonical commutation relations gives, not unexpectedly, the

commutation relations

[ak
(r), a†k′

(s)
] = δrsδ(3)(~k − ~k′)

[ak
(r), a

(s)
k′ ] = [a†k

(r)
, a†k′

(s)
] = 0. (11.30)

The Hamiltonian also has the expected form

: H :=
∑
r

∫
d3k ωka

†
k

(r)
ak

(r) (11.31)

and so we can interpret a†k
(r)

and ak
(r) as creation and annihilation operators for spin one

particles with polarization r.
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The propagator
−−−−−

Aµ(x)Aν(y) may be calculated in a similar manner as the spinor case.

Proceeding as before, we write

−−−−−
Aµ(x)Aν(y) = 〈0 |T (Aµ(x)Aν(y))| 0〉 (11.32)

If x0 > y0,

−−−−−
Aµ(x)Aν(y) = 〈0 |A(+)

µ (x)A(−)
ν (y)| 0〉

= 〈0 |[A(+)
µ (x), A(−)

ν (y)]| 0〉
= [A(+)

µ (x), A(−)
ν (y)] (11.33)

where we have split Aµ into the piece containing the creation operator, A
(−)
µ and a piece

A
(+)
µ containing the annihilation operator. From the expansion of Aµ(x), it is straightfor-

ward to show that

[A(+)
µ (x), A(−)

ν (y)] =

∫
d3k

(2π)32ωk
e−ik·(x−y)

∑
r

ε(r)
µ (k)ε(r)

ν

∗
(k)

=

∫
d3k

(2π)32ωk
e−ik·(x−y)

(
−gµν +

kµkν
µ2

)
=

(
−gµν −

∂yµ∂
y
ν

µ2

)
i∆+(x− y) (11.34)

where

i∆+(x− y) =

∫
d3k

(2π)32ωk
e−ik·(x−y) (11.35)

and ∂yµ ≡ ∂/∂yµ. After including the y0 > x0 term we obtain

−−−−−
Aµ(x)Aν(y) = θ(x0 − y0)

(
−gµν −

∂yµ∂
y
ν

µ2

)
i∆+(x− y)

+θ(y0 − x0)

(
−gµν −

∂yµ∂
y
ν

µ2

)
i∆+(y − x). (11.36)

Now, the scalar propagator is

−−−
φ(x)φ(y) = θ(x0 − y0)i∆+(x− y) + θ(y0 − x0)i∆+(y − x)

=

∫
d4k

(2π)4
e−ik·(x−y) i

k2 − µ2 + iε
(11.37)

and so we would like to commute the θ functions and derivatives in Eq. (11.36) to obtain

−−−−−
Aµ(x)Aν(y) =

(
−gµν −

∂yµ∂
y
ν

µ2

)
(θ(x0 − y0)i∆+(x− y) + θ(y0 − x0)i∆+(y − x))

=

∫
d4k

(2π)4

(
−gµν +

kµkν
µ2

)
e−ik·(x−y) i

k2 − µ2 + iε
. (11.38)
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µ ν −ig
µν − kµkν/µ2

k2 − µ2 + iǫ

k

Figure 46: The propagator for a massive vector field.

This leads to the propagator for a massive vector field, which is represented by a wavy line:

−i
(
gµν − kµkν

µ2

)
k2 − µ2 + iε

. (11.39)

Note that the vector propagator carries Lorentz indices: one end of the line corresponds

to a field created by Aµ while the other corresponds to the field created by Aν .

While this is correct, the derivation was not quite right when µ = ν = 0. In this case,

the time derivatives don’t commute with the θ functions and there is the additional term

when one of the derivatives acts on the θ function, giving a factor of δ(x0 − y0), and the

other acts on the ∆+ function. This wasn’t a problem in the spinor case because there was

only a single time derivative, and the term vanished because ∆(x− y) = 0 when x0 = y0.

In this case, however, the time derivative of ∆(x − y) does not vanish when x0 = y0 and

so there is an additional term. The fact that this term does not contribute is not obvious

in the canonical quantization procedure. The path integral formulation of quantum field

theory, which we will not discuss in this course, puts this derivation on sounder footing.

If you like, you can use the derivation above for (µ, ν) 6= (0, 0), and then argue that by

Lorentz invariance the result must have this form for (µ, ν) = (0, 0) as well.16

Now consider adding a fermion such as an electron to the theory. A simple interaction

term between the fermi field ψ and Aµ is

LI = −gψγµΓψAµ = −gψA/Γψ (11.40)

where Γ has the general form Γ = a+ bγ5 by Lorentz Invariance. As we discussed before,

when both a and b are nonzero this theory violates parity, since there is no choice of

transformation for Aµ under which the interaction term Eq. (11.40) is invariant. A parity

conserving theory may have either Γ = 1 (vector coupling) or Γ = γ5 (axial vector coupling),

in which case the components of Aµ transform under parity as a vector or an axial vector,

respectively.

From our previous experience with interacting theories, the interaction term Eq. (11.40)

leads to the interaction vertex shown in Fig. (47). We note at this stage that there is a

simple rule for writing down the Feynman rule associated with an interaction term in L.

When all the fields in the interaction term are different, the resulting Feynman rule is just

−i times the interaction Hamiltonian, or i times the interaction Lagrangian. A term with

n identical fields has a combinatoric factor of n! in the Feynman rule, corresponding to the

n! different way of choosing which field corresponds to which line in the vertex.

16This sort of difficulty arises in the canonical quantization procedure because it breaks manifest Lorentz

invariance, by treating temporal indices different from spatial indices. The path integral formulation treats

space and time in a symmetric fashion.
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µ

−igγµΓ

Figure 47: Fermion-vector interaction vertex

Finally, evaluating Dyson’s formula requires matrix elements of the Aµ field between

incoming and outgoing vector meson states and the vacuum. From the field expansion,

〈0 |Aµ(x)|V (k, r)〉 =

3∑
r′=1

∫
d3k′

(2π)3/2
√

2ωk′
ε(r′)
µ (k′)e−ik

′·x〈0 |a(r′)
k′
√

2ωk(2π)3/2a†k
(r)| 0〉

=
3∑

r′=1

∫
d3k′

√
ωk
ωk′

ε(r′)
µ (k′)e−ik

′·x〈0 |a(r′)
k′ a

†
k

(r)| 0〉

=
3∑

r′=1

∫
d3k′

√
ωk
ωk′

ε(r′)
µ (k′)e−ik

′·x〈0 |[a(r)
k′ , a

†
k

(r)
]| 0〉

= ε(r)
µ (k)e−ik·x (11.41)

where |V (k, r)〉 is a relativistically normalized single particle state containing a vector

meson with momentum k and polarization r. Therefore, each incoming vector meson

contributes a factor of ε
(r)
µ to the amplitude in addition to the usual exponential factor.

Equation (11.41) and its complex conjugate lead to the Feynman rule

• For every

{
incoming

outgoing

}
vector meson with momentum k and polarization r, include

a factor of

{
ε

(r)
µ (k)

ε
(r)
µ

∗
(k)

}
.

µ
k

k
µ

(r)
µ (k)

(r)∗
µ (k)

Figure 48: Feynman rules for external vector particles.

11.3 The Massless Theory

To obtain a quantum theory of electromagnetism, the limit µ → 0 must be taken of the

results in the previous section. This limit looks bad for several reasons. In the quantum

theory, there is a factor of kµkν/µ2 in the vector propagator. This will turn out to be
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closely related to a problem which arises at the classical level. Consider L coupled to a

source J µ(x)

L = L0 −AµJ µ(x). (11.42)

The equations of motion in this theory are

∂µF
µν + µ2Aν = J ν (11.43)

which leads to

∂µA
µ =

1

µ2
∂µJ µ. (11.44)

Again, this looks bad in the limit µ→ 0. However, it gives a clue to how to obtain a theory

with a sensible µ→ 0 limit: the limit exists only if Aµ couples to a conserved current. In

this case, ∂µJ µ = 0 and the µ→ 0 limit of Eq. (11.44) is well defined.

Fortunately, we’re old hands at finding conserved currents. Recall that Noether’s the-

orem ensures that any internal symmetry has an associated conserved current and charge,

the simplest example being a U(1) symmetry associated with the transformation

φa(x)→ e−iλqaφa(x) (11.45)

for some set of fields (not necessarily scalar fields) {φa}. There is no implied sum over a in

Eq. (11.45), and the qa’s are numbers (the charge of each field), not operators. Note that

the qa’s are arbitrary up to a multiplicative constant; that is, if φa → exp(−iqaλ)φa is a

symmetry, so is (for example) φa → exp(−2iqaλ)φa. There is no physics in this ambiguity

- if jµ is a conserved current, so is any multiple of jµ.

If Eq. (11.45) is a symmetry, DL = 0 and the current

jµ =
∑
a

Πµ
aDφa = −i

∑
a

Πµ
aqaφa (11.46)

is conserved. For example, the Dirac Lagrangian is invariant under the transformation

ψ → e−iλψ, ψ → eiλψ. (11.47)

Therefore the corresponding qa’s are

qψ = 1, qψ = −1 (11.48)

and Dψ = −iψ, Dψ = iψ. The conjugate momenta are

Πµ
ψ = iψγµ, Πµ

ψ
= 0 (11.49)

and so the conserved current is

jµ = ψγµψ. (11.50)

For a charged scalar field17 ϕ we have

Πµ
ϕ = ∂µϕ∗, Πµ

ϕ∗ = ∂µϕ (11.51)

17To avoid confusion with fermi fields ψ, we switch our notation for charged scalars at this point from ψ

to ϕ.
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and so the conserved current is

jµ = −i(∂µϕ∗)ϕ+ i(∂µϕ)ϕ∗. (11.52)

Therefore, we might hope that if we couple a vector field Aµ only to these conserved

currents we will obtain a theory with a well-defined µ → 0 limit. So we might try the

following interaction terms:

• Fermions:

LI = −gψγµAµψ = −gψA/ψ (11.53)

This is the interaction we had written down earlier, but with Γ = 1. For massive

fermions, only the vector current ψγµψ is conserved; the axial vector current ψγµγ5ψ

isn’t associated with an internal symmetry and is not conserved.18 Therefore we

expect that only the theory where the vector field couples to the vector current will

have a smooth µ→ 0 limit.

• Charged scalars:

LI = −ig [(∂µϕ∗)ϕ− (∂µϕ)ϕ∗]Aµ (11.54)

The situation here is not as nice as it was for fermions. The interaction term contains

derivatives of the fields, so it changes the canonical momenta of the theory, thereby

changing the expression for jµ. So although this theory still has a U(1) symmetry

and a conserved current, the conserved current is no longer given by Eq. (11.51), and

therefore this theory is not expected to have a smooth µ→ 0 limit.

We see from the scalar case that it’s not always so easy to ensure that Aµ always couples

to a conserved current, because the coupling itself will in general change the expression for

the current. Fortunately, there is a magic prescription which guarantees that Aµ always

couples to a conserved current. It is called minimal coupling.

11.3.1 Minimal Coupling

The minimal coupling prescription is very simple. Given a Lagrangian as a function of the

fields and their derivatives, LM (φa, ∂µφa), which is invariant under the U(1) transformation

φa → e−iλqaφa, replace it by LM (φa, Dµφa), where

Dµφa ≡ ∂µφa + ieAµqaφa (11.55)

(no sum on a). Dµ is called the gauge covariant derivative. (Note that again there is

an ambiguity in the qa’s; this just corresponds to the freedom to choose the overall cou-

pling constant for the interaction term. For quantum electrodynamics, if we choose the

dimensionless coupling constant e to be the fundamental electric charge, then q will be

the electric charge of the field measured in units of e.) The resulting Lagrangian has the

following two properties:
18For massless fermions, we saw in the chapter on the Dirac Lagrangian that the theory has two U(1)

symmetries and therefore two conserved currents, jµL,R = ψL,Rγ
µψL,R = 1

2
ψγµ(1 ∓ γ5)ψ. Since any linear

combinations of these currents are conserved, both ψγµψ and ψγµγ5ψ are conserved. Thus, it is possible

to couple a massless vector field to the axial vector current in the special case of massless fermions. The

mass term breaks the axial U(1) symmetry associated with ψγµγ5ψ but not the vector U(1).
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1. LM is still invariant under the U(1) transformation, and

2. Aµ is coupled to a conserved current. That is

∂LI
∂Aµ

= −ejµ (11.56)

and

∂µj
µ = 0. (11.57)

This is straightforward to show. Under a U(1) transformation,

Dµφa → Dµ

(
e−iλqaφa

)
= ∂µ

(
e−iλqaφa

)
+ ieAµqa

(
e−iλqaφa

)
= e−iλqaDµφa (11.58)

and so Dµφa transforms in the same way as ∂µφa. Therefore if L(φa, ∂µφa) is invariant

under the U(1) symmetry, so is L(φa, Dµφa). This proves the first assertion.

In terms of the canonical momenta, the conserved current is

jµ =
∑
a

Πµ
aDφa =

∑
a

Πµ
a(−iqaφa). (11.59)

From the definition of the gauge covariant derivative, we also have

∂(Dνφa)

∂Aµ
= ieqaφaδ

µ
ν (11.60)

and so we find

∂LI
∂Aµ

=
∂LM
∂Aµ

=
∑
a

∂LM
∂(Dνφa)

∂(Dνφa)

∂Aµ

=
∑
a

∂LM
∂(∂νφa)

ieqaφa

=
∑
a

Πµ
aieqaφa

= −ejµ (11.61)

as required, proving the second assertion.

Going back to our examples, the minimally coupled Dirac Lagrangian for a fermion

with charge q (in units of the elementary charge e) is

L = ψ(iD/−m)ψ = ψ(i∂/− eqA/−m)ψ (11.62)

which is just what we had before. However, the minimally coupled scalar Lagrangian for

a scalar with charge q is

L = Dµϕ
∗Dµϕ−m2AµAµ

= (∂µ − ieqAµ)ϕ∗(∂µ + ieqAµ)ϕ−m2AµAµ

= ∂µϕ
∗∂µϕ− ieqAµ(ϕ∗∂µϕ− ϕ∂µϕ∗) + e2q2AµA

µϕ∗ϕ. (11.63)
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The term linear in Aµ is what we had before, but there is a new term quadratic in Aµ.

This will lead to a new kind of vertex, with the Feynman rule in Fig. (49), the so-called

“seagull graph” (to avoid confusion with fermion lines, we will denote charged scalars by

dashed lines in this chapter). Only the theory defined by Lagrangian Eq. (11.63) with all

µ ν

2ie2q2gµν

Figure 49: The “seagull graph” for charged scalar-photon interactions.

the interaction terms given by minimal coupling has a well-defined limit as µ→ 0.

The Feynman rule for the term in Eq. (11.63) linear in Aµ is slightly subtle, but it turns

out that the näıve approach gives the correct answer. Näıvely, we notice that a derivative

∂µ acting on the piece of the field which annihilates an incoming state (and so has a factor

of exp(−ip · x)) brings down a factor of −ipµ. Similarly, when acting on the piece of the

field which creates an outgoing state, it brings down a factor of ipµ. Therefore, we expect

the Feynman rule shown in Fig. (50). There are two problems with this derivation.

iqe(p+ p )µ
p

p

µ

Figure 50: Feynman rule for the derivately coupled charged scalar.

First of all, the derivative interaction changes the canonical momenta in the theory, and so

changes the canonical commutation relations. Second, in Dyson’s formula the derivative

cannot be pulled out of the time ordered product. However, it turns out (we won’t prove

this here) that these two problems cancel one another, and that the näıve Feynman rule is

actually correct.

We now justify the assertion that the coupling constant e arising in the covariant

derivative is just the elementary charge. We will show this for the Dirac field. Recall

that in the scalar case the U(1) charge was just proportional to the number of particles

minus the number of antiparticles, indicating that particle and antiparticle carried opposite

charges. The same is true for Dirac fields: the conserved charge is

Q =

∫
d3xψγ0ψ

=

∫
d3xψ†ψ. (11.64)

Substituting the field expansion in terms of creation and annihilation operators, it is
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straightforward to show that this is

Q =
∑
r

∫
d3k

(
b
(r)†
~k

b
(r)
~k
− c(r)†

~k
c

(r)
~k

)
= Nb −Nc. (11.65)

If the particles annihilated by ψ have electric charge q in units of the elementary charge e,

the total electric charge of the system is therefore Qe.m. = qeQ, and the electromagnetic

four-current is therefore jµe.m. = qeψγµψ. Thus, for electrons (q = −1), the electric charge

and electromagnetic current are

Qe.m. = −e
∫
d3xψ†(x)ψ(x)

jµe.m. = −eψγµψ. (11.66)

The Euler-Lagrange equation for a massless vector field Aµ is therefore

∂µF
µν = −eψγνψ

= jνe.m (11.67)

which is just Maxwell’s equations in the presence of an electromagnetic current jνe.m..

The elementary charge is often expressed in terms of the “fine-structure constant” α,

where

α =
e2

4π~c
=

1

137.035
(11.68)

and so in natural units

e =
√

4πα. (11.69)

11.3.2 Gauge Transformations

The minimally coupled Lagrangian LM (φa, Dµφa) is invariant under a much larger group

of symmetries than LM (φa, ∂µφa). It is invariant under the strange-looking transformation

λ(x) : φa(x) → e−iqaλ(x)φa(x)

Aµ(x) → Aµ(x) +
1

e
∂µλ(x) (11.70)

for any space-time dependent function λ(x). Note that when λ(x) is a constant and not

a function of space-time this is just the usual U(1) transformation on the φa’s (note that

the Aµ field is invariant if λ is constant). This kind of symmetry is called a global U(1)

symmetry, since λ is the same at all points.

The transformation Eq. (11.70) is called a local or gauge transformation, and LM is said

to have a U(1) gauge symmetry. Since λ(x) is now a function of space-time, the theory

is invariant under different U(1) transformations at each point in space-time. The odd

transformation law of the Aµ fields is crucial here: the Dirac Lagrangian is not invariant
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under gauge transformations, since ψ∂/ψ picks up a term proportional to (∂µλ)ψγµψ. The

transformation property of Aµ is chosen precisely to cancel this term:

Dµφa = (∂µ + ieAµqa)φa

→ (∂µ + ieAµqa + iqa∂µλ(x))
(
e−iqaλ(x)φa

)
= e−iqaλ(x))(∂µ − iqa∂µλ(x) + ieAµqa + iqa∂µλ(x))φa

= e−iqaλ(x)Dµφa. (11.71)

Therefore unlike the usual derivative ∂µφa, the gauge covariant derivative Dµφa transforms

in the same way under a gauge transformation as it does under a global transformation.

Thus, if LM (φa, ∂µφa) is invariant under a global U(1) transformation, LM (φa, Dµφa) is

invariant under a gauged U(1) transformation. Therefore, every time we use the minimal

coupling prescription we end up with a theory in which LM is invariant under a gauge

symmetry.

So far we have just looked at LM , the “matter” (fermions and scalars) Lagrangian,

and ignored the free part of the vector Lagrangian, −1
4FµνF

µν + µ2

2 AµA
µ. Since Fµν is

antisymmetric in its indices, it is also gauge invariant,

λ(x) : Fµν → Fµν +
1

e
(∂µ∂νλ(x)− ∂ν∂µλ(x)) = Fµν . (11.72)

However, the vector meson mass term µ2

2 AµA
µ is not gauge invariant:

λ(x) : AµA
µ → AµA

µ +
2

e
∂µλ(x)Aµ +

1

e
∂µλ(x)∂µλ(x). (11.73)

The complete Lagrangian is only gauge invariant when µ = 0.

In quantum electrodynamics, which is the vector theory we are really interested in,

the photon is massless and so the theory has exact gauge invariance. Rather than being a

help in solving the theory, this gauge invariance complicates things tremendously, making

it difficult to quantize the massless theory directly. The problem arises at the classical

level: if {Aµ(x), φa(x)} is a set of fields which form a solution to the equations of motion

then so is the set {
Aµ(x) +

1

e
∂µλ(x), e−iλ(x)qaφa(x)

}
(11.74)

for some arbitrary function λ(x). Therefore the problem of finding the time-evolution of

the fields from some initial values is ill-defined. No matter how much initial value data

I have at t = 0 (the fields, their first, second, third ... derivatives), I can never uniquely

predict the field configuration at some later time, since their exist an infinite number of

gauge transformed solutions of the equations of motion which also have the same initial

value data. These field configurations just differ by a gauge transformation which vanishes

at t = 0.

Furthermore, in the massless theory the condition ∂µA
µ = 0 implied by the Proca

equation is no longer implied by the equations of motion. If Aµ(x) is a solution to the
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equations of motion satisfying ∂µA
µ = 0, then another solution to the equations of motion

is A′µ(x) = Aµ(x) + ∂µλ(x)/e, which satifies

∂µA
µ′(x) =

1

e
2λ(x) 6= 0. (11.75)

The four dimensionally longitudinal mode which we had banished has come back to haunt

us. ∂µA
µ is no longer zero, but arbitrary.

Things are not actually so badly defined. Fµν is gauge invariant, and therefore so are

the electric and magnetic fields ~E and ~B. In fact, any observable is gauge invariant. Two

systems different by a gauge transformation contain identical physics; they just differ in

the choice of description. So we can fix the description by fixing the gauge once and for

all. Some popular gauge choices are

~∇ · ~A = 0 (Coulomb gauge)

∂µA
µ = 0 (Lorenz19 gauge)

A0 = 0 (temporal gauge)

A3 = 0 (axial gauge)

The trick is then to canonically quantize the theory in the given gauge, that is, subject

to the corresponding constraint20. In perturbation theory, different choices of gauge result

in extra terms in the photon propagator proportional to kµkν . However, as we will see in

the next section, these terms in the propagator do not contribute in a minimally coupled

theory and so, as expected, physical amplitudes are independent of gauge.

11.4 The Limit µ→ 0

Since we are avoiding quantizing the gauge invariant massless theory directly, we will

instead derive the Feynman rules for Quantum Electrodynamics by examining at the µ→ 0

of the theory of a minimally coupled massive vector field. With any luck the minimal

coupling prescription will have solved the problems we previously noted in taking this

limit. Indeed, in this section we will see by direct calculation that the factors of 1/µ2 in

the quantum theory do not contribute to amplitudes when the theory is minimally coupled,

and that the massless theory does in fact have sensible Feynman rules.

First consider the process e+e− → µ+µ−, where e and µ are two different fermion

fields (electrons and muons), minimally coupled to a massive gauge boson. In the limit

µ → 0 this is just the pair production process e+e− → µ+µ− in QED. There is only one

graph at O(g2) which contributes to this process, shown in Fig. (51). The 1/µ2 term in

19Until recently, this was known as “Lorentz” gauge, after H. A. Lorentz, but it is now attributed to L.

V. Lorenz. See Griffiths, “Introduction to Electrodynamics”, Chapter 10.
20See Chapter 5 of Mandl & Shaw for a discussion of the Gupta-Bleurer method of canonically quantizing

the massless theory.
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p−, s p′−, s
′

p′+, r
′

Figure 51: Feynman diagram contributing to e+e− → µ+µ−.

the amplitude is

i
e2

µ2
v

(r)
~p+
γµu

(s)
~p−

kµkν
k2 − µ2 + iε

u
(r′)
~p′−
γνv

(s′)
~p′+

= i
e2

µ2(k2 − µ2 + iε)
v

(r)
~p+
k/u

(s)
~p−
u

(r′)
~p′−
k/v

(s′)
~p′+
. (11.76)

But by the Dirac equation,

v
(r)
~p+
k/u

(s)
~p−

= v
(r)
~p+

(p/− + p/+)u
(s)
~p−

= v
(r)
~p+

(me −me)u
(s)
~p−

= 0. (11.77)

So this term vanishes before taking µ to zero. Of course, this is no accident (there are no

accidents in field theory). It just follows from current conservation:

∂µj
µ = 0⇒ 〈0 |∂µjµ| e+e−〉 = 〈0 |∂µeγµe| e+e−〉

= ∂µ(v
(r)
~p+
γµu

(s)
~p−
e−i(p++p−)·x)

= −i(p+ + p−)v
(r)
~p+
γµu

(s)
~p−
e−i(p++p−)·x

= −iv(r)
~p+
k/u

(s)
~p−
e−i(p++p−)·x (11.78)

and so vk/u = 0. Although we have just demonstrated it in one process, this is a very

general feature of minimal coupling, and it means that in such theories we can completely

ignore the piece of the propagator proportional to kµkν . Therefore, in the µ→ 0 limit the

vector boson is the photon of quantum electrodynamics, with the propagator shown in Fig.

(52).

µ ν

k

Figure 52: The photon propagator.

In a similar vein, you might worry about the factor of 1/µ2 in the polarization sum,

Eq. (11.23), but a similar thing happens here. We can demonstrate this by looking at

Compton scattering of a massive vector boson off an electron, V e− → V e−. Two diagrams

contribute to this process, giving

iA = −ie2u
(s′)
~p′

[
γµ(p/′ + k/′ +m)γν

(p′ + k′)2 −m2
+
γν(p/′ − k/+m)γµ

(p′ − k)2 −m2

]
u

(s)
~p ε(r′)

µ

∗
(k′)ε(r)

ν (k)

≡ Mµνε(r′)
µ

∗
(k′)ε(r)

ν (k). (11.79)
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Squaring and summing over final spins of the vector particles and averaging over initial

spins will give a result proportional to

MµνMαβ

[
−gµα +

k′µk
′
α

µ2

] [
−gνβ +

kνkβ
µ2

]
(11.80)

and so the terms proportional to k′µM
µν and kνM

µν look bad as µ→ 0. However, just as

before, the contributions from these terms vanish:

k′µMµν ∝ u
(s′)
~p′

[
k/′(p/′ + k/′ +m)γν

2p′ · k′ +
γν(p/′ − k/+m)k/′

−2p · k′
]
u

(s)
~p

= u
(s′)
~p′

[
(−p/′k/′ +mk/′ + 2p′ · k′)γν

2p′ · k′ − γν(mk/′ − k/′p/+ 2p · k′)
2p · k′

]
u

(s)
~p

= u
(s′)
~p′

[
(−mk/′ +mk/′ + 2p′ · k′)γν

2p′ · k′ − γν(mk/′ − k/′m+ 2p · k′)
2p · k′

]
u

(s)
~p

= u
(s′)
~p′ [γν − γν ]u

(s)
~p = 0. (11.81)

Similarly, kνMµν = 0, and so the kµkν term doesn’t contribute to the polarization sum.

11.4.1 Decoupling of the Helicity 0 Mode

The result that k′µMµν = 0 has another consequence in the µ→ 0 limit. A massive spin 1

particle has three spin states, Jz = ±1, 0, whereas a massless gauge boson like the photon

only has two helicity states, ±1 (once again, this is only possible because the photon is

massless. For a massive particle you can always boost to its rest frame and perform a

rotation to change a Jz = 1 state to a Jz = 0 state.) This corresponds to the fact that

classical electromagnetic waves are always transverse. The absence of a longitudinal mode

corresponds to the absence of a (3-dimensionally) longitudinal photon, ~ε ∝ ~k. (We call

mode satisfying ~ε ∝ ~k “3D longitudinal” to distinguish it from the 4D longitudinal mode

discussed earlier, ε ∝ k.) How is this apparently discontinuous behaviour possible if the

µ→ 0 limit of the theory is smooth?

A massive vector particle travelling in the z direction has four-momentum kµ =

(
√
k2 + µ2, 0, 0, k) and three possible polarization states ε

(r)
µ , where

ε(1) = (0, 1, i, 0)

ε(2) = (0, 1,−i, 0)

ε(3) =
1

µ
(k, 0, 0,

√
k2 + µ2) (11.82)

ε(3) is the 3D longitudinal polarization state, satisfying ε(3) · ε(3) = −1, ε(3) · k = 0,

~ε(3) ∝ ~k. The amplitude for a longitudinal vector boson to be produced in any process

(like the Compton scattering process from the previous section) is proportional to

ε(3)
µ

∗Mµ (11.83)

where the tensor Mµ satisfies

kµMµ = 0⇒M0 = −M3
k√

k2 + µ2
= −M3

(
1 +O

(
µ2

k2

))
. (11.84)
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The amplitude to produce the helicity 0 state is therefore proportional to

ε(e)
µ

∗Mµ =
1

µ
M3

[
−k
(

1 +O
(
µ2

k2

))
+ k

(
1 +O

(
µ2

k2

))]
= −k

µ
O
(
µ2

k2

)
→ 0 as

µ

k
→ 0. (11.85)

Therefore, as a result of current conservation, the amplitude to produce a 3D longitudinally

polarized vector meson vanishes as µ → 0. The helicity zero mode smoothly decouples in

this limit, and for µ = 0 is absent as a physical state. (Nothing special happens to the

transverse modes in this limit). Therefore, in the massless theory, there are only two

physical polarization states of the vector boson, both of which are 3D transverse. The

appropriate form of the polarization sum is

2∑
r=1

ε(r)
µ ε(r)

ν

∗
= −gµν . (11.86)

11.5 QED

At this point it is worth summarizing our results. We set out to find a quantum theory

of a massless vector field, the photon. We discovered that the massless limit is in general

ill-defined, unless the vector field couples to a conserved current. This requirement gave us

the interaction between the photon and charged scalars and Dirac fields (up to the overall

coupling constant). The resulting theory is quantum electrodynamics, the quantum theory

of electromagnetism. The QED Lagrangian for a theory with a single charged scalar ϕ and

a single charged fermion ψ with charges qϕ and qψ respectively, is

L = Dµϕ
∗Dµϕ− µ2ϕ∗ϕ+ ψ (iD/−m)ψ − 1

4
FµνFµν

= ∂µϕ
∗∂µϕ− ieqϕAµ(ϕ∗∂µϕ− ϕ∂µϕ∗) + e2q2

ϕAµA
µϕ∗ϕ

+ψ (i∂/−m)ψ − eqψψA/ψ −
1

4
FµνFµν (11.87)

The Feynman rules for the Feynman amplitude iA in QED are illustrated in Fig. (53).

1. For each interaction vertex (fermion-fermion-photon, scalar-scalar-photon, or scalar-

scalar-photon-photon) write down the appropriate factor.

2. For each internal line, include a factor of the corresponding propagator.

3. For each external fermion or photon, include the appropriate factor of the four-spinor

or polarization vector.

4. The spinor factors (γ matrices, four-spinors) for each fermion line are ordered so that,

reading from left to right, they follow the fermion line from the end of an arrow to

the start.

5. The four-momenta associated with the lines meeting at each vertex satisfy energy-

momentum conservation.
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Fermion-Photon

       Vertex Charged Scalar-Photon Vertices

Incoming/outgoing

Fermions (particles)

Incoming/outgoing

Fermions (antiparticles)
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Scalar Propagator

Photon Propagator

ū(r)
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p

p
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p

p

p
p

µ

µ
k k

µ(r)
µ (k) (r)∗

µ (k)

µ

µ ν

µ ν

k

Figure 53: Feynman rules for QED

6. Multiply the expression by a phase factor δ which is equal to +1 (−1) if an even (odd)

number of interchanges of neighbourhing fermion operators is required to write the

fermion operators in the correct normal order.

There are additional rules for diagrams with loops, which we have not considered because

we are just working at tree-level in this theory.

In some future version of these notes, I will include a few worked examples for QED

processes. In the meantime, you should read Chapter 8 of Mandl & Shaw and work

through Sections 8.4 (lepton pair production), 8.5 (Bhabha scattering) and 8.6 (Compton

scattering). Note than M&S use differently normalized fermion fields than we do; however,

the final answers are independent of normalization.

11.6 Renormalizability of Gauge Theories

In this chapter we started with the theory of a massive vector boson and showed that,

despite appearances, it was possible to take the µ→ 0 limit, in which case the theory had

a larger symmetry, that of gauge invariance. Now we will go one step further and assert

that gauge-invariance is required in order for a theory of vector bosons to make sense as a

fundamental theory (I will explain what I mean by “fundamental” in a moment). To see

why this is so, let’s go back to the discussion of the previous section.
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If a vector boson is coupled to a non-conserved current, the cancellation in Eq. (11.85)

does not occur, and instead of being suppressed, the amplitude to produce a helicity 0

mode grows like k/µ. Thus, the probability of producing this mode grows with increasing

energy without bound. This is in fact a Bad Thing, because at some energy the probability

will become greater than 1! (This is known as “unitarity violation”). At this energy the

theory has clearly stopped making sense (at least perturbatively).

There is nothing a priori wrong with this; we just have to interpret our theory a bit

differently - not as a fundamental theory (valid up to arbitrary energy scales), but as an

effective field theory. This kind of thing is very familiar in physics. If we are interested in

fluid dynamics, for example, we don’t have to consider the single atoms which make up the

fluid. It makes much more sense to consider the fluid as a continuous medium. Similarly, if

we are interested in the hydrogen atom we can treat the proton as a point object, despite

the fact that we know it is made up of quarks and gluons. Many aspects of nuclear physics

can be described by a field theory of nucleons and pions, despite the fact that we know that

these particles aren’t “fundamental.” It all depends on the scale of physics we’re interested

in.

In our case, what the theory is telling us is that a theory of massive vector mesons

coupled to a nonconserved current is a perfectly fine theory at low energies, but that it can’t

be valid up to arbitrarily high energy scales (that is, down to arbitrarily short distances).

At some scale (typically set by the mass of the particle, since that’s the only dimensionful

parameter in the theory), this theory has to break down in some way - for example, the

vector boson could be revealed not to be fundamental, but to be a composite particle,

and so its dynamics would change at the scale of order the size of the particle. What is

fascinating is that the theory carries within itself the seeds of its own destruction.

This property of a theory, that it be valid up to arbitrarily high energies and so

not predict its own demise, is related to a property known as “renormalizability.” Roughly

speaking, renormalizability is the extension of the above discussion to radiative corrections.

You recall that internal loops in a Feynman diagram come with a factor of∫
d4k

(2π)4

since the momentum running through the loop is unconstrained. As a result, arbitrarily

high momenta run through loop graphs, even if the process being considered is a low-energy

process. It is perhaps not surprising, then, that if the theory breaks down at a certain scale,

this will affect loop graphs even for low-energy processes. Without getting into the details

of radiative corrections, I will just assert that if one attempts to calculate loop graphs in

a theory of a massive vector boson coupled to a non-conserved current one is again led to

the conclusion that the theory cannot be fundamental.

So what are the requirements for a theory to be renormalizable? It is easy to get an

idea, just by unitarity arguments. Imagine a theory with a four-fermion interaction term

LI = − g

M2
ψψψψ.

Now let’s do some dimensional analysis. You showed on an early problem set that in 4

dimensions, the Lagrangian density has dimensions of [mass]4. From the Dirac Lagrangian,
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we conclude that the dimensions of ψ are [mass]3/2 (so thatmψψ has the right units). ψψψψ

has dimension [mass]6, so the coupling must have dimensions [mass]−2, which I have made

explicit by writing it as g/M2 (g is dimensionless).

Now, a cross-section has units of area, or [mass]−2. Since the amplitude from the four-

fermion interaction goes like 1/M2, the cross section for fermion-fermion scattering in this

theory must be proportional to 1/M4. By dimensional analysis, at high energies where we

may ignore the fermion masses, we must therefore have

σ ∝ s

M4
(11.88)

where s = (p1 + p2)2 is the squared centre of mass energy of the collision. Since the cross-

section grows without bound, once again the probability must grow without bound, and

again the theory must break down at some energy scale set by M .

Just by dimensional analysis, you can see that this will happen in ANY theory with

coupling constants which are inverse power of a mass. Thus, for a theory to be renor-

malizable, all terms in the Lagrangian must have mass dimension ≤ 4. This answers a

question which may have been bothering you all along in this course: why do we always

study theories with such simple interaction terms? Why can’t we have an interaction term

like

−gψψ cos ln (1 + ϕ/M)?

The answer is that this is not a renormalizable interaction. Therefore interaction terms like

φ4, ψψφ and φ3 (dimension 4, 4 and 3, respectively) are allowed in a fundamental theory,

but interactions like ψψψψ, φ5, φ2ψψ (dimension 6, 5 and 5, respectively) are not. This is

why we only considered very simple interaction terms - anything more complicated leads

to a non-renormalizable theory.

Of course, there is no reason to only consider theories which are valid up to arbitrary

energy scales. After all, we can only do experiments at finite energies. However, since

higher-dimension operators come with coupling constants which are proportional to inverse

powers of the scale at which the theory breaks down, the effects of these terms are negligible

at low energies. Their effects are proportional to the ratio of the momentum of the process

to the scale of new physics. Unless they break symmetries which are preserved by the

renormalizable terms (such as parity in the case of the weak interactions, or baryon number

in GUTs) they can usually be safely ignored.

Finally, it can also be shown that theories with fields of spin > 1 are also non-

renormalizable. This is at the root of the difficulty of quantizing gravity: the graviton

is a spin-2 field (corresponding to quanitizing the metric tensor gµν), and so the corre-

sponding quantum theory is nonrenormalizable.

It is because of renormalizability that gauge symmetries are so crucial in field theory:

the only way to couple a vector field to other fields in a renormalizable way is through a

gauge covariant derivative. Furthermore, since a vector meson mass term breaks the gauge

symmetry, only theories with massless vector bosons are renormalizable. The theory of

a massive vector boson which we studied in this section, while useful for obtaining the

Feynman rules for QED, is not a renormalizable theory.
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Now, as you may be aware, there certainly are massive vector bosons coupled to non-

conserved currents in the world. The gauge bosons associated with the weak interactions,

the W± and Z0, have masses of 80.2 GeV and 91.2 GeV, respectively. Experimentally,

they couple to electrons and electron-neutrinos via the following interaction:

LI = −g1

(
νγµ(1− γ5)eW+

µ + eγµ(1− γ5)νW−µ
)

−g2Z
µ (eγµ(gV − gAγ5)e+ νγµ(1− γ5)ν) (11.89)

where g1, g2, gV and gA are coupling constants which are related to the electric charge

and the ratio of the W± and Z0 boson masses. Since the electron is massive, the current

eγµγ5ν is not conserved, so we have a theory of gauge bosons coupled to nonconserved

currents. So the W and Z clearly can’t be fundamental. Furthermore, the theory predicts

that unitarity violation due to excessive production of longitudinal W ’s and Z’s will occur

at a scale of about 3 TeV=3× 103 GeV.

The question of what the W ’s and Z’s are made of has been the foremost question in

particle physics for many years. The simplest possibility which leads to a renormalizable

theory was written down by Peter Higgs in the early 1960’s and incorporated into the

minimal Weinberg-Salam model, in which the transverse components of the W and Z are

fundamental (corresponding to massless vector bosons), while the longitudinal components

are made of a scalar particle, known as the “Higgs Boson.” In the minimal theory, there

are four Higgs bosons, three of which are incorporated into the two W ’s and the Z, and

the fourth of which was discovered at the LHC in 2012. The question as to whether this

observed particle is indeed the minimal version of the Higgs boson, or some piece of a more

complicated (and interesting!) sector of the theory is currently under active investigation.
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