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Review: Simulation

Pitfalls

Failure to account correctly for sources of randomness in the
actual system.
Using arbitrary distributions as input to the simulation.
... ...

DES software requisite

Identification of random elements.
Generation of random variables from specified probability
distributions from a large library.

Jeremiah Deng (University of Otago) TELE302 Lecture 6 21 July 2015 4 / 32

Classical Probability Model

Finite set of basic events

{w1, w2, ..., wn}
Equal ‘possibility’ of occurrence

P (wi) = 1/n

Given a random event A that consists of k basic events:
A = {wi1, ..., wik}
Define its probability as

P (A) = k/n

Alternative models – e.g. Bayesian probability
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In a continuous space

Distribution function of probability F (x):

F (x) = P (ξ ≤ x)
F (+∞) = 1

Probability density function (PDF) p(x):

F (x) =
∫ x

−∞ p(t)dt

p(x) ≥ 0,
∫ +∞

−∞ p(x)dx = 1

P (a ≤ X ≤ b) =
∫ b

a
p(x)dx
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Probability Distribution Attributes

Mean (aka expectation, average)

E{X} =
∑

i XiP (Xi)

E{X} =
∫ +∞

−∞ xp(x)dx

Variance

V ar{X} = E{(Xi − E{X})2}
Entropy

H(X) = −
N∑

i=1

P (Xi)logP (Xi)
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Probability in Information Sciences

Artificial Intelligence

Probabilistic inference
Decisions under partial information
Processing signals (e.g., speech, images)

Computer Networks

Channel scheduling
Packet collision
Queueing behaviour at routers

Software Engineering

Model failure of safety-critical systems

Data Compression

Use fewer bits for more probable symbols
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Common Probability Distributions

There are continuous and discrete probability distributions.

Uniform distribution
⇒ Normal distribution (aka Gaussian)

Bernoulli distribution
Binomial distribution

⇒ Poisson distribution
⇒ Exponential distribution

Pareto distribution
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Gaussian Distribution
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Most prominent distribution in statistics.

Central limit theorem: under mild conditions the sum of a large
number of random variables is distributed approximately normally.

pdf: p(x) =
1√
2πσ

e− (x−µ)2

2σ2
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Exponential Distribution
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p(x) =

{
λe−λx, x > 0
0, otherwise

and F (x) = 1 − e−λx

E(X) = 1/λ, V ar(X) = 1/λ2

Models e.g.
Life span of equipments, call duration, job processing time ...

⇒ Question: How likely does a switch last longer than its average
life-span?
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Poisson Distribution
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Models random occurrence of discrete events, e.g.

Service requests received per hour.
Number of packets arriving at a node per second.

P (n) =





e−ααb

n!
, n = 0, 1, 2, ...

0, otherwise

E(n) = α = V ar(n)

Jeremiah Deng (University of Otago) TELE302 Lecture 6 21 July 2015 15 / 32

Probability in Networking

Modeling

traffic patterns.
delay and loss.
equipment life span.
inputs for queueing modeling.

Probabilistic analysis yields robust good results.

However, these are simplified steady-state models that can’t deal
with dynamics in networks.
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Stochastic Processes

Over a continuous time parameter, SP is defined as a collection of
random variables.

Denoted as {Xt}, t ∈ R.

Over a discrete time parameter, is defined as a collection of
random variables.

Denoted as {Xn}, b ∈ Z.

These random variables are related and defined in the same
probability space.

Stationary stochastic process: statistics of the process will not
vary over time.
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Point Process

Point process (aka counting process), is a
process with random occurrence of points on
a line.

Denoted as {N(t), t ≥ 0}.

Number of customers arriving in a shop
during time of [0, t).

If s < t, then N(s) ≤ N(t).

Increment N(s) − N(t): Number of event
occurrence within (s, t).
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Poisson Process

N has stationary increments.

N has independent increments.

Probability of 1 arrival in small interval h:

P [N(h) = 1] = λh + o(h).

Probability of 2 or more arrivals in h:

P [N(h) ≥ 2] = o(h).

Such a point process is a Poisson Process
with a rate of µ > 0.
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Properties of Poisson Process

Fresh-start.

The portion of the Poisson process that starts at any particular time
t > 0 is a probabilistic replica of the Poisson process starting at time
0, and is independent of the portion of the process prior to time t.

Memoryless interarrival time distribution

Interarrival time does not depend on last arrival time in the past;
Additional time needed to complete a customer’s service in progress
is independent of when the service started.
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Number of Occurrence

The number of points occurred (k) within any time interval t is

P{N(t) = k} =
(λt)k

k!
e−λt, t > 0

N(t) is of Poisson distribution with α = λt.

E{N(t)} = α = λt = V ar{N(t)}.
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Interarrival Time

Time until the first arrival T1 has an exponential distribution:

p(t) = λe−λt, t ≥ 0
E(T1) = 1/λ.

Memoryless and fresh-starting: the remaining time until the next
arrival has the same exponential distribution.

T1, T2, ..., Tk, ... are independent.
E(Tk) = 1/λ
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Merging

Pooling of two or more independent Poisson
arrival streams results in a Poisson process of an
aggregated rate.

In a small interval h:

The probability of having one arrival in Stream
1:

P1[N(h) = 1] = λ1h

The probability of having one arrival in Stream
2:

P2[N(h) = 1] = λ2h

After merging, chances of having one arrival:

P [N(h) = 1] = (λ1 + λ2)h
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Splitting

Suppose events occurring in a Poisson
process are classified into type I and type II,
with probability of p and (1 − p) respectively.

The split processes are also Poisson.
The arrival rates for the split processes are
pλ and (1 − p)λ respectively.
The two split processes are independent.

Example: Packets arriving at a switch are
routed with different probability onto two
lines.
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Markov Chains

A Markov chain {X(n), n = 0, 1, 2, ...}: a memoryless discrete
stochastic process.

P{X(n + 1) = j|X(0) = i0, X(1) = i1, ..., X(n) = in} =
P{X(n + 1) = j|X(n) = in}.

Memoryless: Future is defined purely by Present, no Past.

Described by transition probabilities between states i and j:

Pij(s, t) = P (Xt = j|Xs = i)

Used to model weather, genetic inheritance, communication errors
etc.
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Graphical Representation

Markov Chains are used to describe system state transition in a
Poisson process.

A point process counting arrivals only: always growing

Birth-death process can be used for queueing modeling.

Right links represent birth or arrival;
Left links are for death or departure.
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An Example: Umbrella Problem

(Bertsekas & Gallager): An absent-minded professor commutes
between home and office. He has two umbrellas. If it rains and an
umbrella is available at his location, he takes it. Otherwise, he always
forgets to take an umbrella. Suppose it rains with probability p each
time he commutes, independently of prior days. What is the chance for
the professor to get wet?
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Transition Probability Matrix

Define a “state space”, with a number indicating the number of
umbrellas the professor has at his location (regardless of being at home
or office).

P =




0 0 1
0 0.6 0.4

0.6 0.4 0


 .

P 30 =




.230 .385 .385

.230 .385 .385

.230 .385 .385


 .

Limiting prob.:

πj = lim
n→∞

Pn
ij

What does this tell us?

0 2 11.0

1−p

p

p

1−p

The relevant Markov chain model.
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Recap

In modeling packet arrivals or service requests:

Number of arrivals/requests: usually Poisson distributed
Interarrival time: usually Exponentially distributed
A Poisson process is a counting process that corresponds to the
arrival of messages (or customers) at a server with a constant rate λ.

A queue can be modelled as a stochastic process.

Queues can be split or merged.

Queues can be analysed using graphical Markov chain models.
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References

Wikipedia pages on probability distributions

Numpy References

http://docs.scipy.org/doc/numpy/reference/routines.

random.html

Reading Be5: Stochastic Processes, available at course schedule
page

Coming Next:

Lab 1
Queueing lectures and Assignment 1
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