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Overview

Last lectures:

Queueing is everywhere
Markovian modeling of arrivals and departures
M/M/1

Today: Let’s play some Queueing Variations

What about limited buffer for queues?
What about multiple servers?
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Quick review

Kendall Notation (A/B/c/K/m/Z)

A: interarrival time distribution

B: service time distribution

M for exponential
G for general

c: number of servers

Optional:

K: maximum number of allowed customers
m: size of the customer population
Z: queueing discipline, typically FIFO
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Quick review

Little’s Theorem

Number of customers in the system at time t is N = λW

λ: avg. arrival rate, 1/λ: average interarrival time
W : Avg. time in system

Little’s Theorem actually holds for every queueing system.
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Quick review

M/M/1 Queuing

Interarrival time: exponentially distributed, mean=1/λ

Job processing time: exponentially distributed, mean=1/µ

Steady state requires λ < µ

FIFO

One server

Chances the server is busy: P [N ≥ 1] = 1− p0 = ρ.

Expected number in system: L = E{N} =
∑

n npn = ρ
1−ρ
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Variation I: M/M/1/K

A Little Variation to M/M/1

In M/M/1, there is no limit on the queue length.

In reality, services usually don’t support unlimited queueing
(memory, ports etc.)

If a customer finds no available position in a limited queue, it is
supposed to disappear!
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Variation I: M/M/1/K

M/M/1/K Analysis

Transition diagram

Steady state solutions:
K∑

n=0

pn = 1

pn = (
λ

µ
)np0, 0 ≤ n ≤ K (K was ∞ in M/M/1).
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Variation I: M/M/1/K

Expected Customer Numbers

Solution to the probabilities:

pn = ρn(1− ρ)/(1− ρK+1).

Expected customer number in system:

L = E{N} =
K∑

n=0

npn =
ρ

1− ρ −
(K + 1)ρK+1

1− ρK+1

Smaller than that of M/M/1 (why?).
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Variation I: M/M/1/K

M/M/1/K Rejections

Probability that an arriving customer is rejected is (simply) pK .

Rejection rate is therefore pKλ.

Actual arrival rate into the system is

λ′ = (1− pK)λ.

Server utilization is λ′/µ = (1− pK)λ/µ.

Server less occupied because of rejections.
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Variation II: M/M/c/c

M/M/c/c

There are c servers.

If an arrival finds all servers
busy, it is dropped.

Models

Telephone exchange
Virtual circuits
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Variation II: M/M/c/c

M/M/c/c Results

pn = p0

(
λ
µ

)n 1

n!
.

Probability of a lost arrival (or, loss ratio):

pc =
(λ/µ)c/c!∑c
n=0(λ/µ)n/n!

.

aka the Erlang B formula.

Holds also for an M/G/c/c (i.e., with arbitrary service time).
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Variation II: M/M/c/c

The Reverse Erlang Problem

Given ρ = λ/µ, and desired loss probability p, what is c?

Recursive implementation of Erlang B (Copper, 1982):

B(ρ, 0) = 1

B(ρ, j) =
ρB(ρ, j − 1)

ρB(ρ, j − 1) + j
,

with j = 1, 2, ..., c, and p = B(ρ, c).

Note B(ρ, j) is monotonously decreasing versus c (Zeng, 2003).

This recursive algorithm allows us to get to the right c value that
gives the p.

Jeremiah Deng (University of Otago) TELE302 Lecture 8 28 July 2015 17 / 22

Variation III: to infinity

Another Variation: M/M/∞

∞: infinite number of servers!

Transition diagram

Number of customers in system (Poisson distribution):

pn =

(
λ

µ

)n e−λ/µ
n!

.
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Variation III: to infinity

M/M/∞ Results

Trivial -

Zero queueing length: Lq = 0
Zero queueing time: Wq = 0

Expected number of customers in system

L = λ/µ

Expected time in system: W = 1/µ.
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Variation III: to infinity

An Example (bonus Q.)

A scientific satellite communicates with an earth station through
an antenna.

Antenna connected to a multiplexor with attached queue that
feeds information to 2000 attached disk drives.

Each disk drive writes at an average rate of 106 bits per second.
Message are 104 bits in length on average, and arrive at an
average rate of 105 messages per second.

Each message is written as a unit to a single, arbitrary disk drive,
or it goes in the queue if no disk drive is available.

Q: How long does it take for a message to be processed?

⇒ M/M/∞ or M/M/2000
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Variation III: to infinity

References

Harchol-Balter, Chapter 14

Next:

More variations: M/M/c, M/G/1, priority queueing, ...
Networked Queueing

Lab this week: Queueing Tutorial and Simulations
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