TELE302/INFO334 Lecture 16 Requirements Analysis II

Jeremiah Deng

TELE / InfoSci, University of Otago

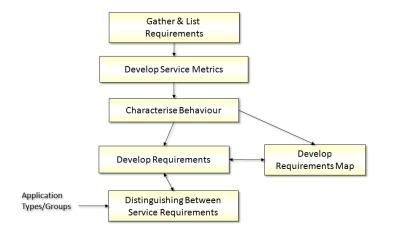
1 September 2015

TELE302 Lecture 16 1 / 3

Review

Review

- 'Services' is the word.
- First thing first: Requirements Analysis
- Applications Categorization
- Location information important for planning.
- Future-proof: sizing, migration, security etc.


Lecture Outline

- Review
- Quidelines
- 3 Working out Specifications
- 4 An Example

CELE302 Lecture 16

2 / 31

R.A. Process Model

ΓΕLΕ302 Lecture 16 4 / 31 TELΕ302 Lecture 16 6 / 31

Guidelines

Determining Initial Conditions

- Type of design project
 - New design
 - Upgrade of an existing network
 - Outsourcing contract
- Scope
 - Network size
 - Geography
 - Financial
- Locate constraints
 - Funding limits
 - Policies and organizational regulations
 - Existing system components

TELE302 Lecture 16

7 / 31

Guidelines

Developing Service Metrics ...

- Metrics for Reliability
 - Availability
 - Ranges in meaning from basic connectivity, ability to run application, to QoS levels.
 - Defined by MTBF and MTTR
 - To measure/verify, it needs a time factor ("measured monthly/weekly" etc.)
 - Transmission characteristics
 - Bit Error Rate
 - Frame/Packet Loss Rates

Guidelines

Gather Requirements

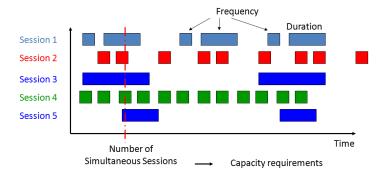
- Work with users
 - Establish on-going relationship
 - Develop surveys and questionnaire
- Compile an easy-to-use list of requirements
- Use tables as worksheet to specify
 - Initial conditions
 - Requirement metrics
 - Application types or groups etc.
 - Location information of hosts, devices, and applications ...
 - Other constraints

TELE302 Lecture 16

3 / 31

Guidelin

Developing Service Metrics.


- Capacity Metrics
 - Data Rates (Peak data rate, Sustained data rate)
 - Data Size
 - Burst size and duration
 - Average and Maximum Frame/Packet Size
 - Packet size distributions
 - Transaction size
- Delay metrics
 - End-to-end / Roundtrip delay
 - Host system response time
 - Delay variation (jitter)
 - Variations with changing network conditions

TELE302 Lecture 16 9 / 31 TELE302 Lecture 16 10 / 31

Guidelines

Characterizing Behaviour

• Usage Patterns

TELE302 Lecture 16

11 / 31

Working out Specifications

Delay Requirements

- Interaction delay (INTD)
- Human response delay (HRD)
 - Approximately 100 200ms
- Network propagation delay
 - Dependent on distance and Technology
- Analysis on delay requirement helps to distinguish interactive burst and bulk applications, and real time applications
- Helps to flow analysis and logical design
- Network measuring tools can be handy in developing requirement specifications.

Guidelines

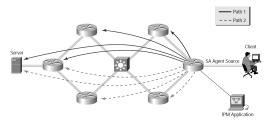
Application Behaviour

- Data flow characteristics
 - Data sizes
 - Frequency and duration of data processing
 - Flow directions
 - Client-server
 - Peer-to-peer
 - Degree of multicasting
 - One-to-one, one-to-many, many-to-many
- Host response time
 - Minimum/Average/Maximum

TELE302 Lecture 1

12 / 31

Working out Specification


Network Measuring Tools

- SNMP counters in hubs/switches
 - Packets forwarded
 - Packets dropped
 - Errors (runt, giant, out of buffers)
- External monitors
 - Remote MONitoring
 - Special CSU/DSUs
- Software
 - Ping, traceroute (subject to manipulation by host OSs & router protocols, used as indicators)
 - pathchar (ee.lbl.gov), netperf (HP)
 - Analysis toolkits (CISCO Netsys, Sniffer, IPTraf)

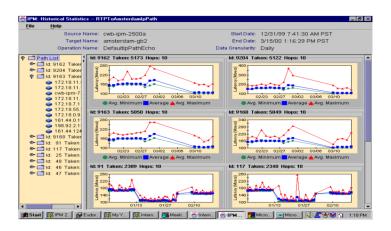
TELE302 Lecture 16 14 / 31 TELE302 Lecture 16 15 / 31

Internetwork Performance Monitor

- Localize performance bottlenecks
 - Hop-by-hop performance analysis
- Proactive performance management
- Performance trend analysis
- Redundancy, security, and verification
 - Identifies redundant paths and estimates their utilization

TELE302 Lecture 16

16 / 31


Working out Specifications

IPM - VoIP jitter analysis

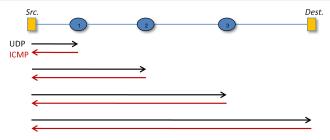
Working out Specification

IPM - Latency analysis

FELE302 Lecture 16

17 / 31

Working out Specification


pathchar

- Similar to 'traceroute', also by Van Jacobson
 - Uses sequence of packets per TTL value
- Infers per-link metrics
 - Queue length and packet loss rate per hop
 - Delay
 - Link capacity
- Operator
 - Detecting bottleneck & diagnosing performance problems
 - Measure delays
 - Check link capacity

ELE302 Lecture 16 18 / 31 TELE302 Lecture 16 19 / 31

Working out Specifications

pathchar - how it works

- Send UDP packets along path, wait for ICMP responses
- Vary IP TTL to control how far into network packets can travel on the path
- Varying packet sizes to infer bandwidth and latency
- Multiple repetitions give queuing and loss information

TELE302 Lecture 16

20 / 31

Working out Specification

Simplified RA: A Good Start

- Best-effort delivery only
 - Bases the design on capacity planning instead of service planning
 - Focuses on general requirements
- Focusing on highest-priority application
 - Builds upon best-effort delivery design
 - Picks one or a few applications of highest priority
 - Categorizes others into best-effort delivery
 - Works out in-depth requirements (metrics, thresholds etc.) for the selected applications

Working out Specification

pathchar output example

```
% pathchar ka9q.ampr.org
  pathchar to ka9g.ampr.org (129,46,90,35)
  mtu limited to 1500 bytes at local host
  doing 32 probes at each of 64 to 1500 by 44
  0 192.172.226.24 (192.172.226.24)
  | 9.3 Mb/s, 269 us (1.83 ms)
  1 pinot (192.172.226.1)
   | 85 Mb/s, 245 us (2.46 ms), 1% dropped
  3 qualcomm-sdsc-ds3.cerf.net (134.24.47.200)
   | 8.8 Mb/s, 1 us (4.07 ms)
    5 ascend-max.qualcomm.com (129.46.54.31)
   | 53.2 Kb/s, 4.20 ms (243 ms)
  6 karnp50.qualcomm.com (129.46.90.33)
   | 12 \text{ Mb/s}, -172 \text{ us } (243 \text{ ms}), +q 8.96 \text{ ms } (13.0 \text{ KB}) *3, 6%
  7 unix.ka9q.ampr.org (129.46.90.35)
  7 hops, rtt 11.1 ms (243 ms), bottleneck 53.2 Kb/s, pipe
  4627 bytes
```

TELE302 Lecture 16

21 / 31

An Exam

A Small Business Example

- DCI Co. has a headquarter in Dunedin, a sales office in Christchurch, and a factory in Invercargill.
- Applications include
 - Sales transaction
 - A bursty database application, and
 - E-mail service.
- Goal: connect offices in a WAN.
- Project cost < \$250K.

TELE302 Lecture 16 22 / 31 TELE302 Lecture 16 24 / 31

An Example

User Requirements

User Service	Descriptions
Requirements	
Locations / User	DUD (30), CHC (15), INV (17)
numbers	
Cost	Less than 250K

TELE302 Lecture 16

25 / 31

n Example

Device Requirements

Hosts/Devices	Type of Hosts/Equipment	Numbers & Locations
Host A	PC	Dunedin (30), Christchurch (15), Invercargill(17)
Host B	Sales server (App C)	Christchurch
Host C	Database server (App A)	Dunedin
Host D	E-mail server (App B)	Dunedin

• Remarks:

- No special services (all best-effort assumed).
- No host-specific requirements.
- Business growth not planned against.

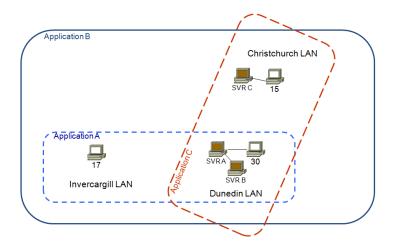
An Examp

Application Requirements

Applications	Application Categories (capacity/availability/delay if applies)	Application Locations
Application A: Database	Best-effort, Interactive burst (100Kbps)	Dunedin and Invercargill
Application B: E-mail	Best-effort, interactive (300 Kbps)	All locations
Application C: Sales	Best-effort Interactive Bulk (30 Kbps)	Dunedin and Christchurch

TELE302 Lecture 16

26 / 31


An Exam

Making A Requirements Map

- Map requirements on applications, devices (servers and PCs etc.) to a geographic description of the environment.
 - Map contains useful location information for devices and applications.
- Graphics utilities that can be used:
 - Dia (Unix, Windows)
 - yEd (Windows, Unix/Linux, and Mac OS)
 - XFig (Unix/Linux, Cygwin)
 - Visio (Windows)

TELE302 Lecture 16 27 / 31 TELE302 Lecture 16 28 / 31

Requirements Maps

ELE302 Lecture 16 29 / 31

An Example

Summary

- Step-by-step:
 - Identify constraints
 - List requirements
 - Locate Applications
 - Identify application types
 - Develop performance metrics
 - Compose worksheets
 - Draw up the Requirements Map
- Refer to McCabe Chapter 3.
- Coming next: Flow Analysis
- Design Project

TELE302 Lecture 16 31 / 31

Application Requirements (Revised)

Applications	Application Categories (capacity/availability/delay if applies)	Application Locations
Application A: Database	Best-effort, Interactive burst (100Kbps)	Dunedin and Invercargill
Application B: E-mail	Best-effort, interactive (300 Kbps)	All locations
Application C: Sales	Specified Service Interactive Bulk (30 Kbps, 100ms)	Dunedin and Christchurch

TELE302 Lecture 16 30