TELE 302 – Network Design Lecture 21

Addressing Strategies

Source: McCabe 12.1 ~ 12.4

Jeremiah Deng TELE Programme / Info Sci University of Otago, 21/9/2015

We Are HERE!

- Requirements analysis
- Flow Analysis
- Logical Design
 - Technology choices
 - Interconnection mechanisms
 - Network Management and security
- Physical Design
- Addressing and Routing

Dividing Up the Space

- Allocation of resources is a fundamental problem in design; it includes issues like
 - Partitioning the design space
 - Preserving high cohesion and weak coupling
 - Ensuring flexibility
- · Identify boundaries for routing and addressing
 - Work groups
 - Functional areas (based on work groups)
 - Physical interfaces
 - Administrative domains

Addressing Background

2

4

IPv4 Addressing based on multiple classes
 ~ Classful Addressing

<u>Class</u>	Set Bits (First Octet)	Natural Mask	Number of Addresses
А	0xxxxxxx	255.0.0.0	2^24-2
В	10xxxxxx	255.255.0.0	2^16-2
С	110xxxxx	255.255.255.0	2^8-2

- Two subtracted from host addresses - All 1's is the broadcast address
 - All zeros is the network self-address

Not An Easy Fit

- An average customer
 - May use a small fraction of Class B address.
 - Or uses multiple Class C address.
- E.g., a network with 10,000 computers
 - Can be supported with a Class B address with 2^16-2=65,534 host addresses
 - Or by a minimum of 40 Class C addresses 40*(2^8-2)=10,160

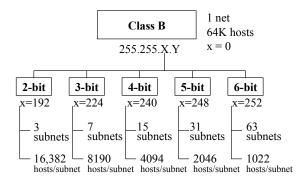
Subnetting

- Q: How to make better use of address space?
- A: Subnetting involves making the address mask larger, extending by trading host bits for network addresses.
- Hierarchy established, but not advertised outside.

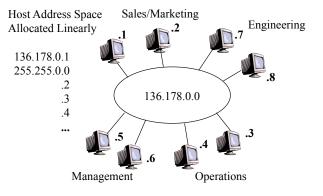
Two Types of Subnetting

- Static Length Subnetting: all the subnetworks in a single network use the same subnet mask

 Easy to configure but all subnets are the same size
 - Easy to configure but all subnets are the same size
- Variable Length Subnetting: different subnetworks in a single network use different subnet masks
 - Available host addresses are used more efficiently but all the routers must understand this kind of subnetting


Variation of the Mask Length

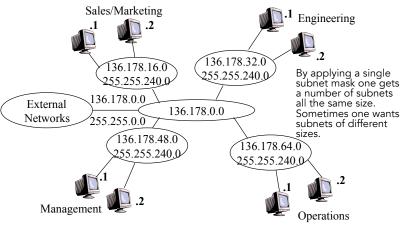
 Subnetting by trading host bits for network bits → more smaller networks


Address (Ex	xample)	Natı	iral Mask	
Class B (136	5.178.0.0)	255.	255.0.0	Classful Addresses
Class C (198	8.9.9.0)	255.	255.255.0	J
Address	Subnet Mask	Size	Subnets	Hosts/Subnet
136.178.0.0	255.255.255.0	8-bit	254	254
	255.255.240.0	4-bit	15	4094
136.178.0.0/24> s 136.178.0.0/20> s			\sim \geq C_{i}	assless InterDomain uting (CIDR /xx notation)

5

Subnet Mask Length and Subnet Size

Class B Host Address Allocations Linear


- Difficult to introduce hierarchy into the network design.
- If a random scheme was used for allocating addresses originally then readdressing is required to implement subnetting.

Class B Host Address Allocations Hierarchical

A hierarchical address allocation scheme makes it much easier to introduce subnet addressing when it is needed because no host address changes are needed.

Address Hierarchies Implemented with Address Mask Change

9

Fixed (Static) Length Subnetting

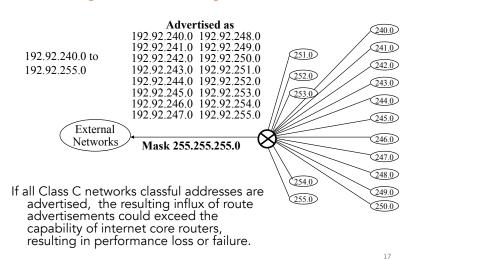
- Breaks a classful network address space down into a number of fixed length subnets by trading host bits for networks.
- Usually requires a network to have a single subnet mask

Variable Length Subnetting

- Applying multiple subnet masks to a network allows more effective use of the available address space by creating subnets of different sizes called variable length subnetting.
- It involves recognizing multiple subnet masks for the same network address, example ...

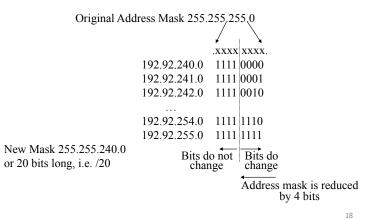
Work Group	Groups	Size/Group (Hosts)
Engineering	3	400 = /23(510)
Marketing	1	$1950 \Rightarrow 21(2046)$
Administration	1	200 = /24 (254)
Sales	15	35-90 = 25(126)
R&D	1	150 = 24(254)
Support	22	10-40 =>/26 (62)

Example: Addressing Scheme (Improved)

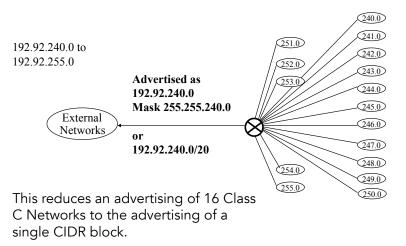

13

15

	6	
Work Group	Groups	
Engineering	3	400
Marketing	1	1950
Administration	1	200
Sales	15	35 ~ 90
R&D	1	150
Support	22	10~40
Address Allocations	4-Bit Mas	k 8-Bit Mask
Subnets E1-3 (Engineering)	136.178.1	
Subilets E1-3 (Eligilieerilig)	136.178.3	
	136.178.4	
Subnet M1 (Marketing)	136.178.6	
Subnet A1 (Administration)	136.178.8	
Subnets SA1-SA15 (Sales)		136.178.97.0
Subnet R1 (R&D)		136.178.110.0
Subnets SU1-SU22 (Support)	136.178.1	13.0
	136.178.1	27.0
	136.178.1	29.0
	136.178.1	43.0


Supernetting

- Class A: Too big and too few
- Class B: Too big and too few
- Class C: Numerous but often too small
- The sheer number of Class C networks makes advertising potentially a threat to overload the internet core routers.
- Subnetting helps to manage networks by breaking things up hierarchically



Allocating and Advertising 16 Class C Addresses

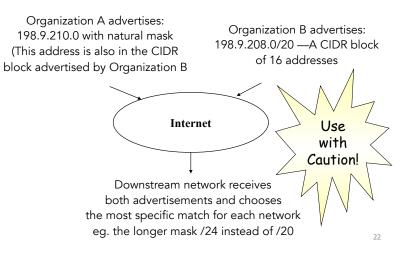
Modifying Address Masks to Represent Address Groups

Classless InterDomain Routing (CIDR)

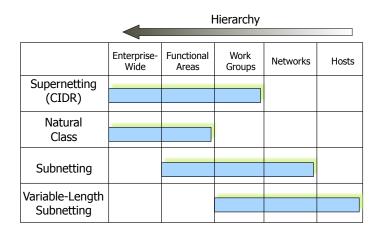
Rules To Observe

- For CIDR to work certain rules must be observed:
 - 1. Number of addresses in a CIDR block is based on a power of 2 (i.e. 2, 4, 8, ... addresses)
 - 2. The ends of the address block must fall on bit boundaries
 - 3. Avoid having holes in the address space, the CIDR block should be contiguous.
 - Don't advertise addresses not of your own!
 - There is a workaround for this.

An Example Violating Rule 2


Original Address Mask 255.255.255.0			
192.92.239.0 to 192.92.255.0 192.92.239.0/20?	192.92.239.0 192.92.240.0 192.92.241.0	.xxxx xxxx. 1110 1111 1111 0000 1111 0001	Third octet in binary
Invalid CIDR block!	 192.92.253.0 192.92.254.0	1111 1101 1111 1110 1	

Bits now change in the fourth bit position.

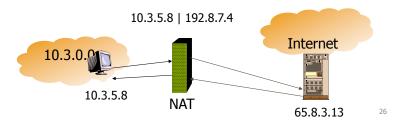

Applying Address Strategies

- Scalability: Need to know the NUMBERS of
 - Functional Areas within the system
 - Work Groups within each Functional Area
 - Networks within each Work Group
 - Hosts within each Network
- Establish degree of hierarchies in the network.
- Applying addressing not only system-wide, but also function areas, network groups, and networks.

Holes in CIDR block

Best Fit Strategies

Private Addresses

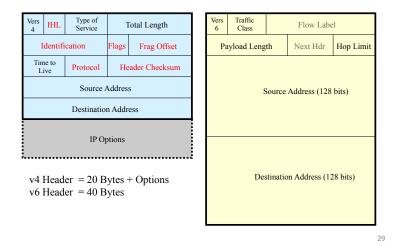

• Defined in RFC 1918.

Class A: 10.0.0.0 - 10.255.255.255 (10/8 prefix) Class B: 172.16.0.0 - 172.31.255.255 (172.16/12 prefix) Class C: 192.168.0.0 - 192.168.255.255 (192.168/16 prefix)

- Use NAT (Network Address Translation) to get greater IP savings.
 - LAN uses private IP addresses.
 - Masquerade IP towards WAN (Internet).
 - Difficult for protocols such as FTP, UDP.
 - Efficiency problem.

A NAT Example

- Local host request a connection to 65.8.3.13.
- NAT allocates an external address 192.8.7.4.
- NAT changes source address on outgoing packets to 192.8.7.4.
- Reply packets arriving NAT, with destination address changed to 10.3.5.8, are then forwarded back.


Buggy Patches?

- Workarounds such as NAT, CIDR have their own problems!
 - NATs promote reuse of private address space, but do not provide support to end-to-end packet-level security.
 - CIDR addresses owned by ISPs.
 - Internet still faces the risk of running out of capacity in the global routing tables.
- IPv6 is the solution!

IPv6

- IPv4 uses 32-bit addresses.
 - Theoretically allows 4 billion addresses.
 - Not possible to reach 50% utilisation.
- IPv6 goes to 128-bit addresses.
 - 5f1b:df00:ce3e:e200:0020:0800:2078:e3e3
- Enables other additions to IP such as:
 - Support for better security (e.g. IPSEC)
 - Support for mobile hosts.
 - Support for real-time services.

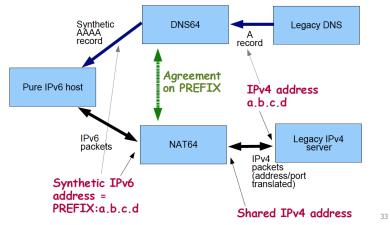
IPv4 and IPv6

IPv6 Transition

- The Internet clearly must support IPv4 hosts for a *long* time into the future.
- Dual-stack operation:
 - Some nodes and routers will have both IPv4 and IPv6 protocol stacks.
 - The version field will be used to direct a packet to the correct stack.
- Tunneling IPv6 through IPv4.
 - Each IPv6 packet is encapsulated into an IPv4 packet whose address is the address of the other end of the tunnel.

IPv6 Address Planning

- Multiple address types for each host: unicast, anycast, multicast
- Format: 16-byte hexadecimal number fields, e.g., 2001:db8:130F:0:0:9c0:876A:130B.
- Normally /64 prefix used for unicast IPv6 addresses and even for point-to-point links (where /126 or / 127 can be used)
- Within the system, existing IPv4 addressing schemes can be used, e.g.,
 - Translating subnet numbers into IPv6 subnet IDs
 - Translating VLAN IDs into IPv6 subnet IDs
 - Private addresses in IPv6 are unique!


30

The Long Wait, but Why?

- "By 2004 all implementations will adopt IPv6 as the standard" (NZ e-Government Interoperability Framework e-GIF, 2002).
- IPv4 exhaustion:
 - IANA and ARIN registration exhaustion: 2011 / 2012
 - ISP level: 2015
- NAT
- Too many changes:
 - Apps and API's have to change
 - Domain Name System (DNS) changes
 - Border Gateway Protocol (BGP) changes
 - Routing protocol changes
 - IPv4 over xxx now needs IPv6 over xxx
 - Everything has to change (end-to-end)

NAT64 Technology

http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6553/ white_paper_c11-676278.html

Summary

- Divide up design space - How?
- Subnetting
- Supernetting
- Choose an addressing strategy
- NAT and IPv6
- Refs:
 - CISCO IPv6 Addressing Guide
- Coming next: Routing