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Resistivity in Metals

Almost constant at “low” temperatures...all way to
linear at high temperatures
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Resistivity in Metals...There’s More!

Increases with impurity content

Has some “universal” features...
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Our Immediate Questions...and Answers

What is resistivity anyway? – Linear response..

“Simplest” ideas about resistivity

Drudé theory

Bloch-Boltzmann theory

Crux: ”Semi”classical ideas, mean free path,
relaxation time...
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What are we measuring in experiments?

The conductivity tensor response function in nice
systems can be written in Fourier space σ(q, ω)

The complex amplitude j(q, ω) of the current response

for an electric field E(r, t) = E(q, ω)ei(q·r−ωt) is given
as j(q, ω) = σ(q, ω) · E(q, ω)

Imagine q −→ 0, ω −→ 0, i.e., a “constant” electric
field; the response is described be the complex tensor
σ(q → 0, ω → 0) (note: order of limit is crucial, more
later)

Assume isotropic system, then σ (conductivity) is
simply ℜσ(q → 0, ω → 0)

Resistivity ρ = 1/σ!
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Drudé Theory – Review

Electrons: a classical gas

Collision time τ , gives the equation of motion

dp

dt
= −p

τ
+ F

p – momentum, F – “external” force

Gives the “standard result” for conductivity

σ =
ne2τ

m

(all symbols have usual meanings)

All is, however, not well with Drudé theory!



HCM Discussion Group ’07

VBS Fermions in Disorder – 9

Bloch Theory

We do need quantum mechanics to understand metals
(all materials, in fact)

In the periodic potential of the ions, wave functions

are ψk(r) = eik·ruk(r) (uk is a lattice periodic
function), k is a vector in the 1st Brillouin zone

The Hamiltonian expressed in Bloch language
H =

∑
kσ ε(k)|k〉〈k| (one band), ε(k) is the band

dispersion (set aside spin throughout these lectures!)

“Average velocity” in a Bloch state v(k) =
1

~

∂ε

∂k

Occupancy of a Bloch state f0(k) =
1

eβ(ε(k)−µ) + 1
,

β = 1/(kBT ), µ – chemical potential
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So, what is a metal?

Chemical potential µ determined from electron
concentration

Try to construct a surface in the reciprocal space such
that ε(k) = µ

If such a surface exists (at T = 0) we say that the
material is a metal

A metal has a Fermi surface

Ok, so how do we calculate conductivity?

Need to understand “how electron moves” under the
action of “external forces”



HCM Discussion Group ’07

VBS Fermions in Disorder – 11

Semi-classical Electron Dynamics

Key idea: External forces (F ; electric/magnetic fields)
cause transition of electronic states

Rate of transitions ~
dk

dt
= F – Quantum version of

“Newton’s law”

By simple algebra, we see the “acceleration”
dv

dt
= M−1 F , M−1 =

1

~2

∂2ε

∂k∂k

Electron becomes a “new particle” in a periodic
potential! Properties determined by value of M at the
chemical potential

But, what about conductivity? If you think about this,
you will find a very surprising result! (Essentially
infinite!)
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Conductivity in Metals

What makes for finite conductivity in metals?

Answer: “Collisions”

Electrons may scatter from impurities/defects,
electron-electron interactions, electron-phonon
interaction etc...

How do we model this? Brute force approach of
solving the full Schrödinger equation is highly
impractical!

Key idea: The electron gets a “life-time” – i.e., an
electron placed in a Bloch state k evolves according to

ψ(t) ∼ ψke
−iε(k)t− t

2τk ; “lifetime” is τk!

Conductivity could plausibly be related to τk; how?
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Boltzmann Theory

Nonequilibrium distribution function f(r,k, t):

“Occupancy” of state k at position r and time t

r in f(r,k, t) represents a suitable “coarse grained”
length scale (much greater than the atomic scale)
such that “each” r represents a thermodynamic
system

Idea 1: The (possibly nonequilibrium) state of a
system is described by a distribution function f(r,k, t)

Idea 2: In equilibrium, f(r,k, t) = f0(k)! External
forces act to drive the distribution function away from
equilibrium!

Idea 3: Collisions act to “restore” equilibrium – try to
bring f back to f0
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Time Evolution of f (r,k, t)

Suppose we know f at time t = 0, what will it be at a
later time t if we know all the “forces” acting on the
system?

Use semi-classical dynamics: An electron at r in state

k at time t was at r − v∆t in the state k − F
~
∆t at

time t− ∆t

Thus, we get the Boltzmann transport equation

f(r,k, t) = f(r − v∆t,k − F

~
∆t, t− ∆t) +

∂f

∂t

∣∣∣∣
coll.

∆t

=⇒ ∂f

∂t
+ v · ∂f

∂r
+

F

~
· ∂f
∂k

=
∂f

∂t

∣∣∣∣
coll.

If we specify the forces and the collision term, we have
an initial value problem to determine f(r,k, t)
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Electrical Conductivity

BTE becomes

∂f

∂t
+ v · ∂f

∂r
+

F

~
· ∂f
∂k

= −f − f0

τk

Homogeneous DC electric field F = −eE
We look for the steady homogeneous response

F

~
· ∂f
∂k

= −f − f0

τk
=⇒ f = f0 − τkF

~
· ∂f
∂k

Approximate solution (Exercise: Work this out)

f(k) ≈ f0 +
eτkE

~
· ∂f

0

∂k
≈ f0

(
k +

eτkE

~

)
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Solution of BTE

f0(k)

ky

kx

−eτE

~

f(k)

Fermi surface “shifts” (Exercise: estimate order of magnitude of shift)
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Conductivity from BTE

Current

j =
1

(2π)3

∫
d3k (−ev)

eτkE

~
· ∂f

0

∂k

Conductivity tensor

σ = − 1

(2π)3
e2

~

∫
d3k τk v

∂f0

∂k

Further, with spherical Fermi-surface (free electron
like), τk roughly independent of k (Exercise: Show this)

σ =
ne2τ

m
1

This looks strikingly close to the Drudé result, but the
physics could not be more different!
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What about experiments?

Well, we now have an expression for conductivity; we
should compare with experiments?

What determines the T dependence of conductivity?
Yes, it is essentially the T dependence of τ (only in
metals)

But we do not yet have τ !!

Need a way to calculate τ ...

...

Revisit the idea of electron-lifetime...how do we
calculate life time of an electron?
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Lifetime due to Impurity Scattering

Impurity potential VI , causes transitions from one
Bloch state to another

Rate of transition from k → k′

Wk→k′ =
2π

~
|〈k′|VI |k〉|2δ(ε(k′) − ε(k))

Total rate of transition, or inverse lifetime

1

τ I
k

=
1

(2π)3

∫
d3k′Wk→k′

Can we use τ I
k as the τ in the Boltzmann equation?

Ok in order of magnitude, but not alright! Why?
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How to calculate τ?

Look back at the collision term, can write it more
elaborately as

∂f

∂t

∣∣∣∣
coll.

=
1

(2π)3

∫
d3k′Wk→k′

(
f(k)(1 − f(k′)) − f(k′)(1 − f(k))

)

=
1

(2π)3

∫
d3k′Wk→k′

(
f(k) − f(k′)

)

Note that k and k′ are of the same energy

Take τk to depend only on ε(k)

Now, (f(k) − f(k′)) ≈ −τe
~

∂f0

∂ε

(
v(k) − v(k′)

)
· E
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Calculation of τ cont’d

Putting it all together

− e

~

∂f0

∂ε
v(k) · E = − 1

(2π)3
τe

~

∂f0

∂ε

∫
d3k′Wk→k′

(
v(k) − v(k′)

)
· E

=⇒ 1

τ
=

1

(2π)3

∫
d3k′Wk→k′

(
1 − v(k′) · Ê

v(k) · Ê

)

=⇒ 1

τ
=

1

(2π)3

∫
d3k′Wk→k′

(
1 − cos (k̂,k′)

)

Note τ is different from the “quasiparticle” life time!

Key physical idea: Forward scattering does not affect
electrical conductivity!
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T dependence of τ

T dependence strongly depends on the mechanism of
scattering

Common scattering mechanisms

Impurity scattering

e–e scattering ∼ T 2

e–phonon scatting ( ∼ T 5 low T , ∼ T high T )

More than one scattering mechanism may be
operative; one has an effective τ (given by the
Matthiesen’s rule)

1

τ
=
∑

i

1

τi

Explains universal behaviour of good metals! So what
remains?
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Experiments and Puzzles

Numbers: Typical metals - ρ ∼ 10−6(−8) Ohm-cm(m)

Data by Mooij (1973), Ti1−xAlx alloys

x = 0 (Pure Ti) is doing what it should at low

T , but at high T seems to be “saturating”

For large x,
dρ

dT
is negative!!!

All the resistivities are tending to a roughly

equal saturation value!

The saturation resisitivity 2 orders of magnitude

higher than usual metallic values...

Note that these are binary alloys...crystals with a
random placing of Ti and Al ions! Electrons see a
“highly disorderd” potential!
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There’s more!
Mooij found that the low temperature

1

ρ

dρ

dT
≡ α is

related to the “residual resistivity”

This is magic! The key resistivity is about 100 µΩ-cm!
If low T resistivity exceeds this value, then strange
things happen...

Most interestingly, similar stuff is seen in other
disordered alloys!
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How can we forget the Cuprates?

Resistivity in high Tc normal state

What is (are?) the puzzle(s) here?
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Story so far...

The Bloch-Boltzmann theory is highly successful in
explaining resistivities of elemental metals containing a
small concentration of impurities

Experiments on disordered alloys suggest

Possibility of negative
1

ρ

dρ

dT

Correlated with low temperature resistivity; if low

T resistivity & 100 µΩ-cm, we have negative
1

ρ

dρ

dT

How do we understand this?

Before we get to the answer, we need to understand
resistivity and its relation to other response functions
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Meaning of Standard Formula for Conductivity

The “standard result” for conductivity

σ =
ne2τ

m

(all symbols have usual meanings)

Meaning of τ – sharper meaning for 1
τ – 1

τ is the
number of collisions undergone by the electron per
unit time...

Idea: Think of an electron to be in a k state at time
t = 0, then τ is the life-time of such a state

Also, the electron does not remember past collisions!
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Meaning of τ

To see that τ is the life-time, ask what is the
probability P (t) that the electron is still in the state k

for t . τ ...

The probability that the electron did not undergo a

collision in an infinitesimal time ǫ is
(
1 − ǫ

τ

)
...Thus,

P (t) = lim
N→∞

(
1 − 1

τ

t

N

)N

= e−t/τ

This precisely connects up with our earlier statement:
An electron placed in a Bloch state k evolves

according to ψ(t) ∼ ψke
−iε(k)t− t

2τk ; “lifetime” is τk ∼ τ !
Caveat: Note however that τ is Drude formula is the transportation

lifetime
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So what is the electron doing?

A collision puts the electron in a different Bloch state
(of same energy, discussion restricted to impurity
scattering )...classically, simply changed direction...

A moment’s reflection tells us that the electron is
RANDOM WALKING

k k1

kn

Since the average velocity of electrons is vF , the mean
free path of electrons is ℓ = vF τ Caveat: Note that this, in

general, is not the “average spacing between impurities”
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So what is the electron doing in an E-field?

The electron is random walking and drifting!

E

k k1

kn

Develops a drift velocity |vd| ∼ τ |E|
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Consequences of Random Walk

So what? How is this different from a free gas (no
scattering) where electrons propagate with only Pauli
to respect?

Key question: Suppose we create a very long
wavelength (compared to inverse Fermi vector) density
disturbance (without changing the total number of
electrons) in the electron gas...what difference does
the scattering (dirt) make to this

In the free gas, there is no mechanism to “relax” this
density wave...and the system will simply “do some
dynamics”...can never attain a uniform density back
again! We will call this the Free Fermi Fixed Point
(more later...)!
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Consequences of Random Walk

What happens in a dirty gas?

Particles, doing random walk, will DIFFUSE! Well
known elementary result!

Punch line: Presence of weak disorder will give us a
qualitatively new state... a state with a diffusive density
mode (not present in the free)...this state is the
Diffusive Fixed Point

Note that there will be no qualitative differences in
the thermodynamic properties of DFP and FFFP!

Why the word weak?

What is “not weak” is the question that we will address
in great detail...
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Consequences of Random Walk: Diffusion

At the diffusive fixed point (DFP), we are guaranteed
that density fluctuations n(r, t) will be governed by

Continuity equation (conservation law) – always
holds (J particle current)

∂tn+ ∇ · J = 0

Diffusive constitutive (Fick’s) law (property of
DFP)

J = −D∇n

D is the diffusion coefficient...property of the DFP
Caveat: A more “correct” form is J(q, ω) = −D(q, ω)iqn(q, ω)

What determines D?
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The Diffusion Coefficient

Consider dicing up space into cubes of size ℓd (in d
dimensions)

Take three adjacent “cubes” (in 1-d) called −1, 0, 1
with N−1, N0 and N1 particles at time t = 0

ℓ ℓ ℓ

N0N−1 N1

At time t = τ , the number of particles in the 0 cube is
1
2(N−1 +N+1)
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The Diffusion Coefficient

Change in particle number ∆N0 = 1
2(N−1 +N+1 − 2N0)

∆N0

τ︸ ︷︷ ︸
∂tn

=
ℓ2

2τ︸︷︷︸
D

(N−1 +N+1 − 2N0)

ℓ2︸ ︷︷ ︸
∇2n

If we do this correctly in 3D, we will get

D =
1

3
v2
F τ

We see that D is linearly related to τ ...this is not the
first time this has happened! Note that the
conductivity is also linear in τ !!!

Are σ and D related?
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Diffusion Coefficient and Conductivity

Here is an experiment

Open Circuit

x

φ(x)

Metal

V

V

The “undisturbed” metal has electron density n and
chemical potential µ

The battery generates an electric potential φ(x)

Open circuit...there is not current flowing through the
circuit!
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Diffusion Coefficient and Conductivity

Since there is a potential gardient, there is obviously
an electric current j = −σ∂xφ...it is not zero!
Something fishy?

No...there is another contribution to the current
coming from diffusion...

The chemical potential varies in space µ(x) = µ+ eφ(x)
resulting is a density variation given by

n(x) ≈ n+
∂n

∂µ
eφ

Diffusive particle current J = −D ∂n
∂µe∂xφ...which

contributes to a diffusive electric current

jD = −eJ = D ∂n
∂µe

2∂xφ
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Diffusion Coefficient and Conductivity

Now the total current must vanish j + jD = 0

We get (g(µ) – density of states at the chemical
potential)

σ = e2
∂n

∂µ
D = e2g(µ)D

This is the famed Einstein relation...diffusion and
electrical conduction are closely related!

This is a result of particle number conservation...and
hence applicable in any system!!

At the DFP, finite diffusion coefficient implies a finite
conductivity!

Our next step is to derive this relation from a formal
point of view...
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And Einstein Appears!

We immediately see that the DC conductivity σ is realted to the diffusion

constant D via

σ = e2g(µ)D

This is a rather general feature of the DFP...transport properties can all be finally

related to D Exercise: How about thermal conductivity?..can you see

Widemann-Franz?

This is really a consequence of the underlying conservation laws...

When will σ go to zero? The case interesting for us is when D vanishes....i. e.,

“absence of diffusion” which takes us back to 1958!

Punch line: When disorder is “not weak”, i. e., “strong enough”...D will vanish

and we get an Anderson insulator...i. e., g(µ) 6= 0, but is not an electrical

conductor!
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...followed by Anderson!

This is the beginning of the field...
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Anderson Model (AM)

This is the model introduced by Anderson in 1958

Electrons move on a lattice

At each site there is a random on-site potential wi

which is usually taken to be uniformly distributed
between −W and W

− t
∑

ij

(
c†icj + h. c.

)
+
∑

i

(wi − µ)ni

Parameters : µ/t and W/t

We shall use Edwards and Anderson models to gain an
understanding of the disorder problem
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Closer Look at the Drudé Formula

The Drude formula in d spatial dimensions

σ =
ne2τ

m
=

n
z }| {

(Cdk
d
F ) e2

vF τ
z}|{

ℓ

m

„
~kF

m

«

| {z }

vF

=
e2

~
Cdk

d−2
F (kF ℓ)

Question: What is e2

~
? (Ans: 0.25 milli-Ω−1)

Suddenly we realize what is “weak”...the disorder is “weak” when the mean free

path is much larger than the inverse Fermi vector..., i. e., when kF ℓ≫ 1...in this

case then we have nothing to do...

But what if kF ℓ ∼ 1 ??...can kF ℓ≪ 1???? If kF ℓ ∼ 1 the electron is moving only

a distance of order of the inter-electron spacing (∼ lattice spacing) between

collisions...thus is essentially not moving!! There is trouble if the mean free path

is less than the de Broglie wavelength of the electron!! Thus if the disorder is

“not weak” the electron is unable to random walk...absence of diffusion!!

kF ℓ ∼ 1 corresponds to the Ioffe-Regel limit!

We will discuss d = 3 and d = 2 separately...but not d = 1!
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Ioffe-Regel Conductivity in d = 3

In d = 3 (a ∼ lattice parameter, kF = 2π
a )

σIR =
e2

~

1

3π2
kF (kF ℓ)︸ ︷︷ ︸

∼1

=
e2

~

2

3π

1

a

The resistivity at such strong disorder is

ρIR =
~

e2︸︷︷︸
4000Ω

3π

2︸︷︷︸
4

a︸︷︷︸
2.5Å

∼ 400µΩ-cm

this is definitely an over-estimate, but we are quite
close to the low temperature resistivity of 100 µΩ-cm
where trouble beings in the Mooij experiments...
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Ioffe-Regel Conductivity in d = 3

In the Edwards model, if τ becomes small (either by a large ni or by a large v

(strength of the potential)), then we will get into the regime where kF ℓ ∼ 1

We thus see why strong disorder causes trouble...the key point is that electron

mean free path becomes too small for it to be able to diffuse!!

Thus as the disorder is made stronger, the system goes to a “new phase” where

there is no diffusion...we will call this the Anderson Fixed Point (AFP)...

Question: What is the nature of the “phase transition” between these two

“phases”...i.e., the “diffusive phase” and “Anderson phase”?

Mott took Drudé seriously and concluded that metal must have a minimum

conductivity...the famous Mott minimum!! Accoding to Mott the transition from

the “diffusive phase” to the “Anderson phase” is “first order”, i.e., accompanied

by a discontinuous jump in the conductivity (This has turned out to be wrong, but

it is a beautiful idea nevertheless...)

In the remainder of these discussions we will understand the nature of this

quantum phase transition...but before that lets see what 2d has in store for us..
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Ioffe-Regel Conductivity in d = 2

In d = 2 (a ∼ lattice parameter, kF = 2π
a )

σIR =
e2

~

1

π
k0

F (kF ℓ)
| {z }

∼1

=
e2

~

2

π

The resistivity at such strong disorder is

ρIR =
~

e2
|{z}

4000Ω

1

2
∼ 20kΩ

...this is amazing! The Ioffe-Regel resistivity turns out
to be a universal number (independent of kF ) in 2d...

Thus, if we see data that shows values of resistivity (or
sheet resistance, as it is called in 2d), then we know
we are in the strong disorder regime...
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Summary of Discussions

Expect Drudé formula to hold for weak disorder

“Weak” means kF ℓ≫ 1

When kF ℓ→ 1, resistivity will increase...the typical
order of magnitude when kF ℓ→ 1 is called the
Ioffe-Regel limit (∼100 µΩ-cm (3d), ∼10 KΩ (2d))...

In any experimental system if we see low temperature
resistivity greater than the IR limit it is suggestive

As the strength of disorder increases, we will have a
“new phase” where the mean free path is so small that
it has no meaning, i. e., the electron will stop diffusing

Key question: Is there a “phase transition” as a
function of disorder strength? What is the nature of
the transition if it exists?
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Some Preliminaries

We recall some elementary things about states for
further discussion

The state |j〉 represents the one particle state at site j

The one particle states of the disordered Hamiltonian
are denoted by |a〉 (yes, |a〉 depends on the realization
of the disorder)

Clearly

|a〉 =
∑

j

〈a|j〉 |j〉, with
∑

j|〈a|j〉|2 = 1

By unitarity

|j〉 =
∑

a

〈j|a〉 |a〉
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Extended States

Extended states are “close to bloch states” and are
“non zero” throughout the lattice
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Extended States

A electron in such an extended state can carry current

In such an extended state |a〉, very roughly

|〈a|j〉| ∼ 1√
N

where N is the number of sites in the system... This is
the statement of the idea the wavefunction is nonzero
throughout the lattice Caveat: There are wave functions that

satisfy this criterion, but do not carry currents...do you know any?
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Localized States

Analogous to bound states
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Localized States

Associated length scale ξ – called the localization
length

Does not carry a current

If we calculate the projection of such a state on to
particular sites, we will find that there are some j for
which

|〈a|j〉| ∼ 1

...indeed these are those sites around which the state
is localized!
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“Local” Questions

How can we tell if a given state is extended or
localized?

What determines which states are extended and which
states are localized?

Do we need a critical disorder to have localized states?

...

What has this got to do with diffusion?

Our discussion (unless otherwise stated) will be valid
only for 3d...2d will be discussed later in greater detail
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Deciding Between Extended vs Localized

A popular method is to calculate the Inverse
Participation Ratio (IPR) for the given state defined as

IPR(a) =
∑

j

|〈a|j〉|4

For a Bloch state, IPR will turn out to be 1
N , i. e.,

small for large N

For a state fully localized at one site say |i〉, IPR will
be of the order unity

Why the fourth power? There is a deeper
reason...related to diffusion!!
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Diffusion Again!

Ask the following question: Put an electron at site j
at time t = 0, what is the probability Pj(T ) of finding
the electron at this same site at time T in the limit
T −→ ∞?

Ask a second question: Why ask the first question?

Answer to the second question: If we find that Pj(T )
goes to zero, then we know that the electron is
random walking...more interestingly, if we find that
Pj(T ) is finite, then we know that the electron is not
random walking!! If the second possibility is what we
find, then we know that we will do not have diffusion!

How do we find Pj(T )?
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Diffusion Again!

Finding Pj(T ) is quiet straightforward...let |ψ(t)〉 be
the state of the electron at time t

Clearly, ψ(0) = |j〉 =
∑

a〈j|a〉 |a〉
Now, since we “know” the one particle energy levels
ǫa, we have

|ψ(t)〉 =
∑

a

〈j|a〉 e−iǫat |a〉

The probability that the electron is in |j〉 at time t is

Pj(t) = |〈j|ψ(t)〉|2 =

 
X

a

(〈j|a〉)2 e−iǫat

! 
X

b

(〈b|j〉)2 eiǫbt

!

=
X

a

|〈j|a〉|4 +
X

a 6=b

(〈j|a〉)2(〈b|j〉)2e−i(ǫa−ǫb)t)
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Diffusion Again!

To obtain Pj(T ), (T −→ ∞), one can argue that the second term does not

contribute at large times, (Question: Argue this out! Suggestion: life can be

made simple if you assume that ǫa are non degenerate) and we obtain

Pj(T ) =
X

a

|〈j|a〉|4

Now assume that all states are extended...then we see immediately that

Pj(T ) ∼ 1
N

and in the thermodynamic limit the particle diffuse away from |j〉!

In the second scenario, assume that there is a localized state |ℓj〉 “centered”

around j...then we know that |〈ℓj |j〉| ∼ 1...we thus see immediately that Pj(T ) is

finite and independent of N! This means that the particle is not diffusing!

We also see the connection between the “fourth power” and diffusion!

We have now answered our first question, of how to tell between localized and

extended states...we now move on the next question...
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Which States are Localized?

Consider an Anderson model with N lattice points in
3d

First question: For a given W , are there any localized
states?

Second question: If there are localized states, “which”
states are localized?

The answer the first question for the Anderson model
is: There are localized states for any finite W !

A moment’s reflection will tell us that states very
close to ε−, i.e., states deep in the Lifshitz tail are
localized...in fact we used this fact to show that there
are Lifshitz tails!

Conjecture: states at the band centre are extended?
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Which States are Localized?

Will there be extended states in the Lifshitz tails? Are
there localized states in the centre of the band? Is
there “coexistance”?

More generally, we can ask given an energy ε, what
fraction of the total states g(ε)dε are localized?

Mott provided the answer : At a given energy ε, all
states (in 3d) are either localized or extended! There
is no “coexistance”!

Mott’s Argument: Suppose for a given realization of
disorder, there is a localized state coexisting with
extended states (all of which are infinitesimally close
to energy ε)...now for another realization of disorder
which is “infinitesimally” different from the one above,
the localized states will hybridize with the extended
states and become extended!!
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The Mobility Edge

The arguments there exists an energy µ−c which
depends on the disorder W for which all states are
localized... similarly, there is a µ+

c !
g(ε)

ε− ε+µ−c µ+
c

localized localizedextended

The energy µ−c (µ+
c ) is called mobility edge Caveat:

Mobility edges exist only in 3d

Natural question: How do µ±c evolve with W?
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How Mobility Edge Evolves with Disorder

At large enough disorder we can ”intuite” that the
mobility edges will move towards the band centre

W

ε− ε+

Localized
Wc

Extended

ε

µ−
c µ+

c

Mobility Edge

In fact, at a critical Wc, all states become localized...it
is this that was shown by Anderson in 1958
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The 3d Disorder Solution!

At a given level of disorder W ≤ Wc, if the chemical
potential µ lies in the extended states, i.e.,
µ−c < µ < µ−c we have a diffusive metal, else an
Anderson insulator!

W

ε− ε+

Wc

µ

Anderson Insulator (D = 0)

Diffusive Metal (D 6= 0)

µ−
c µ+

c

Mobility Edge

This is the story in 3d...It is quite different in 1d and
2d!
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The 1d Disorder Solution!

In 1d it turns out that Wc is zero (Mott and Twose)!
Any amount of disorder will localize all states! There
is “not enough room” in 1d!

W

ε− ε+

µ

Anderson Insulator (D = 0)

Wc = 0+!

2d is a bigger story! We will see that 2d is the
“marginal” dimension!


