Bits, Bytes, and Integers

B&O Readings: 2.1-2.3
CSE 361: Introduction to Systems Software

Instructor:
I-Ting Angelina Lee

Note: these slides were originally created by Markus Pischel at Carnegie
Mellon University

Today: Bits, Bytes, and Integers

m Representing information as bits

Binary Representations

m Everything is a collection of bits (a bit: 0 or 1)
m By encoding/interpreting sets of bits in various ways

= Computers determine what to do (instructions)

= ... and represent and manipulate numbers, sets, strings, etc...
m Why bits? Electronic Implementation

= Easy to store with bistable elements

= Reliably transmitted on noisy and inaccurate wires

C—— > < >
0 1 — 0 =

3.3V —

/‘/\f\/\
2.8V — / \
0.5V —

0.0V —

For example, can count in binary

m Base 2 Number Representation
" Represent 15213,,as11101101101101,

= 15213,
| - 3100
> 1-10?
> 2102
> 5.10
*1-10°
= 011101101101101, = 1-2040-21+1-22+1.23+

0-24+1-2°*1-2°4+0-27 +
1.28 4 1.29+(0-2104 1.211 4
1-21241.21340-214

Encoding Byte Values

3

m Byte = 8 bits o oac}\‘:;\o‘b"
" Binary 000000002 to 11111111, 0 10 10000
= Decimal: 010 to 25510 1 |1 10001
_ 2 [2]o0010

= Hexadecimal 0016 to FFie 3 | 3 [0011
= Base 16 number representation 4 14 10100

5 5 [0101

= Use characters ‘0’ to ‘9" and ‘A’ to ‘F 6 | 6 10110

: . 7 7 [0111

= Write FA1D37B1sin C as s 18 [1000

— OxFA1D378B O 19 11001

A [1011010

— Oxfald37b B 11111011

C 11211100

D 11311101

E [14 11110

F

1511111

Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit x86-64

char —

short 2 2 ’) Typic.ally treated
as a signed value,

int 4 4 4 but no

guarantee!

long 4 8 8

float 4 4 4

double 8 8 8

long double - - 10/16

pointer 4 8 8

Watch out for portability issues!
(Use ISO C99 data types when necessary.)

Terminology:

= Binary representation for short x = 15213

16 bits
A
[\

= 011101101101101, = 1-29°40-21+1-22+1-23+
0-24+1-2°*1-2°+0-27 +
1-28+1-290-219+ 1.2 +
1-2124 1.21340-214 4+ 0-215

most-significant least-significant

bit (MSB) bit (LSB)

Converting Between Different Bases

m Find the hexadecimal representation for the following
numbers:

" 912559 12648430 2989

OxDECAF O0xCOFFEE O0xBAD

m How do you convert from decimal to hex?
= Take the value, mod it by 16 to find the quotient and remainder
= Take the reminder as the next digit (from least-significant to most)
= Repeat with the quotient as the new value it reaches O

m What about their binary representation?

\\l"

O ;

Today: Bits, Bytes, and Integers

|
m Bit-level manipulations

Boolean Algebra

m Developed by George Boole in 19th Century
= Algebraic representation of logic
= Encode “True” as 1 and “False” as 0

And Or
= A&B =1 when both A=1 and B=1 = A|B =1 when either A=1 or B=1
&0 1 | 10 1
O({0 O O(0 1
110 1 111 1
Not Exclusive-Or (Xor)
= “A =1 when A=0 = AAB =1 when either A=1 or B=1, but not both
~| A0 1
O] O(0 1
110 111 0

10

General Boolean Algebras

m Operate on Bit Vectors
= QOperations applied bitwise

01101001 01101001 01101001
& 01010101 01010101 ~_ 01010101 ~ 01010101
01000001 01111101 00111100 10101010

m All of the Properties of Boolean Algebra Apply

1

Neat Tricks with XOR

m What does foo do?

void foo(int *x, int *y) {
*y: *y A *y; /* Step 1 */
*x = *x A *y; /* step 2 */
*y: *y A *y; /* Step 3 */
} XOR:
Step *x *y 0 1
initial a b 010 1
. . 24b 1(1 O
2 a*(a”b) a*b
3 b (a”b)*b = a

foo swaps the two numbers!

LYY

Example: Representing & Manipulating Sets

m Representation
= Width w bit vector represents subsets of {0, ..., w—1}
" a=1lifj €A

01101001 {0,3,5,6}
76543210

01010101 {0,2,4,6}

= 76543210
m Operations
= & Intersection 01000001 {0,6}
= | Union 01111101 {0,2,3,4,5,6}
= A Symmetric difference 00111100 {2,3,4,5}

= ~ Complement 10101010 {1,3,5,7}

13

Bit-Level Operations in C

m Operations &, |, ~, A Availablein C

= Apply to any “integral” data type
« long, int, short, char, unsigned

= View arguments as bit vectors

= Arguments applied bit-wise

m Examples (Char data type)
= ~Px41 - OxBE
« ~01000001, —» 10111110:
= ~Qx00 —> OxFF
= ~00000000; - 11111111>
= 0x69 & 0Ox55 = 0x41

. & —
= Ox69 | Ox55 = 0x7D
& -

K& 1

Bit-Level Operations in C

m Operations &, |, ~, A Availablein C

= Apply to any “integral” data type
« long, int, short, char, unsigned

= View arguments as bit vectors

= Arguments applied bit-wise

m Examples (Char data type)
= ~Px41 - OxBE
« ~01000001, — 10111110:
= ~Qx00 = OxFF
= ~00000000; — 11111111>
= Px69 & 0Ox55 = 0x41
« 01101001; & 01010101, —» 01000001:
= Ox69 | Ox55 = Ox7D

- 01101001: | 01010101, = 01111101

15

Contrast: Logic Operations in C

m Contrast to Logical Operators
= &&, |1, !
= View 0 as “False”
= Anything nonzero as “True”
= Always returnOor1l

= Early termination

m Examples (char data type)
= 10x41 -

10x00 -

110x41 -

0x09 && Ox55 =
0x69 || @x55 =

" p & *p

16

Bit-Level Operations in C

m Operations &, |, ~, A Availablein C

= Apply to any “integral” data type
« long, int, short, char, unsigned

= View arguments as bit vectors

= Arguments applied bit-wise

m Examples (Char data type)
= ~Px41 - OxBE
« ~01000001, — 10111110:
= ~Qx00 = OxFF
= ~00000000; — 11111111>
= Px69 & 0Ox55 = 0x41
« 01101001; & 01010101, —» 01000001:
= Ox69 | Ox55 = Ox7D

- 01101001: | 01010101, = 01111101

17

Contrast: Logic Operations in C

m Contrast to Logical Operators
= &&, |1, !
= View 0 as “False”
= Anything nonzero as “True”
= Always returnOor 1

= Early termination

(- A
Watch out for && vs. & (and || vs. |)...
one of the more common oopsies in
C programming

m Examples (char data type)
= 10x41 - 0x00

10x00 —-> 0x01

110x41 = 0x01

J

0x09 && Ox55 = 0x01
0x69 || Ox55 = 0x01

p && *p (avoids null pointer access)

18

Shift Operations

m Left Shift: x << y Argument x| 01100010
= Shift bit-vector x left y positions
. << 3 00010000
— Throw away extra bits on left
= Fill with 0’s on right Log. >> 2 00011000
m RightShift: x >> y Arith. >> 2100011000
= Shift bit-vector x right y positions
= Throw away extra bits on right Argument x| 10100010
Logical shift << 3 00010000

= Fill with 0’s on left
= Arithmetic shift
= Replicate most significant bit on left |Arith. >> 2111101000

Log.>> 2 | 00101000

m Undefined Behavior

_ For unsigned data >> performs logical shift.
= Shift amount < 0 or > word size

For signed data, the standard does not
define it, but likely arithmetic.

19

Another Puzzle for Your Amusement ...
m What does bar do?

void bar (int x, int y) {
return (x & ~y) | (~x & y);

}

(x & ~y) :ifabitinyisset, clear that same bitin x

(~x & y):ifabitinxisset, clear that same bitiny

(x&~y) | (~x&y) : v
ret 0 1
0 0 1
X
1| 1 0

bar computes XOR!

\\l"

Today: Bits, Bytes, and Integers

L]
[]
m Integers
= Representation: unsigned and signed
|
|
|
|
[]

21

Encoding Integers

Unsigned Two’s Complement
w-1 _ w=2 _
B2UX) = Sx -2 B2T(X) = -x,,2""+Yx 2
= i=0
short int x = 15213; Sign Bit
short int y = -15213;
m Cshort 2 bytes long
Decimal Hex Binary
X 15213| 3B 6D| 00111011 01101101
y 15213| c4 93| 11000100 10010011

m Sign Bit
" For 2’s complement, most significant bit indicates sign
= 0 for nonnegative
= 1 for negative

22

.
Two-complement Encoding Example (Cont.)

X = 15213: 00111011 01101101

y = -15213: 11000100 10010011
Weight 15213 -15213

1 1 1 1 1

2 0 0 1 2

4 1 4 0 0

8 1 8 0 0

16 0 0 1 16

32 1 32 0 0

64 1 64 0 0

128 0 0 1 128

256 1 256 0 0

512 1 512 0 0

1024 0 0 1 1024

2048 1 2048 0 0

4096 1 4096 0 0

8192 1 8192 0 0

16384 0 0 1 16384

-32768 0 0 1 -32768

Sum 15213 -15213 23

Numeric Ranges

m How many of the following statements are FALSE?

" The maximum value an unsigned short (16 bits) can
represent is OXFFFF.

" The minimum value of a signed short can represent is
—OxFFF— 0x8000

" The maximum value of a signed short can represent is
Ox7FFF.

\\l"

Numeric Ranges

m Unsigned Values

m Two’s Complement Values

= UMin = 0 = TMin =
0x000...0 0x800...0
= UMax = 2wW-1 " TMax = 2w-1-1
OxFFF...1 Ox7FF...F
m Other Values
" Minus 1
OxFF...F
Values for W =16
Decimal Hex Binary
UMax 65535 FF FF| 11111111 11111111
TMax 32767 7F FF| 01111111 11111111
TMin -32768 80 00| 10000000 00O0OOOOOO
-1 -1 FF FF| 11111111 11111111
0 0 00 00| 00000000 00OOOOOOO

25

Values for Different Word Sizes

W
8 16 32 64
UMax | 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax | 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin | -128| -32,768 -2,147,483,648 -9,223,372,036,854,775,808
m Observations m CProgramming
= |TMin| = TMax+1 = #include <limits.h>
= Asymmetric range = Declares constants, e.g.,
= UMax = 2*TMax+1 = ULONG_MAX
= LONG_MAX
= LONG_MIN

= Values platform specific

26

Unsignhed & Signed Numeric Values

X B2U(X) | B2T(X m Equivalence
0000 0 0 = Same encodings for nonnegative
0001 1 1 values
0010 2 2
0011 3 3 ,
0100 4 4 m Uniqueness
0101 5 5 " Every bit pattern represents
0110 6 6 unique integer value
0111 7 7 = Each representable integer has
1000 8 -8 unique bit encoding
1001 9 -7
1010 10 —6
1011 11 =5
1100 12 —4
1101 13 -3
1110 14 —2
1111 15 -1

27

Today: Bits, Bytes, and Integers

m Integers

= Conversion, casting

28

-
Mapping Between Signhed & Unsigned

Two’s Complement

X

Unsigned
Ux

> T2B

T2U

—

B2U

X

Maintain Same Bit Pattern

U2T

*LU2B

X

> B2T

Maintain Same Bit Pattern

Unsigned

> UX

Two’s Complement

> X

m Mappings between unsigned and two’s complement numbers:

Keep bit representations and reinterpret

29

Bits

0000

Signed

0001

0010

0011

0100

0101

0110

Unsigned

o

0111

1000

\ 4

1001

1010

1011

1100

1101

1110

1111

S| B

W (|G| BdITWIN KL

[y
o

=
=

[y
N

[y
w

=
[

[y
0

-
Mapping Signed <= Unsigned

30

-
Mapping Signed <= Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 - 3
0100 4 H 4
0101 5 5
0110 6 6
0111 7 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 +/- 16 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15

31

Relation between Signed & Unsignhed

Two’s Complement - Unsigned

X > T2B > B2U > UX
X

Maintain Same Bit Pattern

w—1 0
ux [+I+1+ eeo T+[+I+

x [+ eee [+[+[+

Large negative weight
becomes
Large positive weight

32

Conversion Visualized

m 2’s Comp. — Unsigned

® QOrdering Inversion

UMax
UMax —1

= Negative — Big Positive

2’s Complement
Range

/_:: TMax +1

TMax

_TI\/Iax ®

Unsigned
Range

Watch out for conversion ---
TMin values may change!

33

-
Signed vs. Unsigned in C

m Constants
= By default are considered to be signed integers
= Unsigned if have “U” as suffix
0U, 4294967259U

m Casting
= Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;

uy = (unsigned) ty;

" |mplicit casting also occurs via assighments and procedure calls
tx = ux;

uy = ty;

34

e
Casting Surprises

m Expression Evaluation

"= |f there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

" Including comparison operations <, >, ==, <=, >=
= Examples for W=32: TMIN =-2,147,483,648, TMAX=2,147,483,647

35

1
Expression Evaluation Puzzles
m Assuming int type (32 bits)

m Constant, Constant, Relation Evaluation
0 ou == unsigned
-1 0) < signed
-1 ou > unsigned
2147483647 -2147483647-1 > signed
2147483647U -2147483647-1 < unsigned
-1 -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed

TMIN =-2147483648 (0x8000000)
TMAX = 2147483647 (Ox7FFFFFFF)

36

Summary
Casting Signed € Unsigned: Basic Rules

m Bit pattern is maintained
m But reinterpreted

m Can have unexpected effects: adding or subtracting 2%

m Expression containing signed and unsigned int
" intiscasttounsignedl!!

37

