Bits, Bytes, and Integers (Cont.)

B&O Readings: 2.1-2.3

CSE 361: Introduction to Systems Software

Instructor:

I-Ting Angelina Lee

Note: these slides were originally created by Markus Püschel at Carnegie Mellon University

Code Puzzle

What's the bug in this code?

```
float sum_elements(float a[], unsigned length) {
   int i;
   float result = 0;

   for (i=0; I <= length-1; i++)
      result += a[i];
   return result;
}</pre>
```

Fix: use i < length instead

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Extension

- Converting from smaller to larger integer data type
- C automatically performs extension

```
unsigned short sx = 15213;
unsigned int x = (int) sx; /* use zero extension */
short sy = -15213;
int y = (int) sy; /* use sign extension */
```

Task:

- Given w-bit integer X
- Convert it to w+k-bit integer X' with same value

Two different kinds of extension:

- zero extension: used for unsigned data types (similar: >> uses logical right shift for unsigned values)
- sign extension: used for signed data types
 (similar: >> uses arithmetic right shift for signed values)

Zero Extension for Unsigned type

■ Task:

- Given w-bit unsigned integer X
- Convert it to w+k-bit unsigned integer X' with same value

Rule:

• Prepend *k* bits of 0:

$$X' = 0, ..., 0, X_{w-1}, X_{w-2}, ..., X_0$$
 $k \text{ copies}$

 Easy to see that the extension preserves the value: added bits don't contribute any weight to the value.

X'

Sign Extension

■ Task:

- Given w-bit signed integer X
- Convert it to w+k-bit unsigned integer X′ with same value

Rule:

Make k copies of the sign bit:

$$X' = X_{w-1}, ..., X_{w-1}, X_{w-1}, X_{w-2}, ..., X_0$$
k copies of MSB

The extension preserves the value! X

X'

Sign Extension Preserves the Value

- X is positive:
 - easy to see: 0 bits don't add weight
- X is negative:

We can show that sign extension does not change the value by inducting on k.

Truncation

■ Task:

- Given w-bit signed integer X
- Convert it to k-bit integer X' with same value (maybe...)

Rule:

Drop high-order w-k bits

Effect:

- Can change the value of X (overflow)
- Mathematical mod on X (compute a positive r such that $X = q \cdot m + r$)
- Reinterpret the bits (for signed data: add -2^k)

Summary: Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Unsigned: mod operation (keep the last k bits)
 - Signed: mathematical mod, and then reinterpret the bits as signed
 - For small numbers yields expected behavior; for large number, can overflow.

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary

Binary Addition

■ 4-bit unsigned integer addition: 4 + 5

4-bit unsigned integer addition: 12 + 5

Unsigned Addition

$$0 \le u, v \le 2^{w}-1$$

 $0 \le u + v \le 2^{w+1}-2$

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

Standard Addition Function

- Ignores carry output
- Implements Modular Arithmetic
 - UAdd_w $(u, v) = u + v \mod 2^w$
 - overflow: the full result cannot fit within the size limit of the data type

Visualizing (Mathematical) Integer Addition

■ Integer Addition

- 4-bit integers u, v
- Compute true sum $Add_4(u, v)$
- Values increase linearly with u and v
- Forms planar surface

$Add_4(u, v)$

Visualizing Unsigned Addition

When overflow:

- If true sum $\geq 2^w$
- wraps around at most once
- UAdd sum = true sum 2^w

True Sum

Q: How to detect overflow in UAdd?

Two's Complement Addition

$$-2^{w-1} \le u, v \le 2^{w-1}-1$$

 $-2^w \le u + v \le 2^w - 2$

TAdd and UAdd have Identical Bit-Level Behavior

```
int s, t, u, v;
... /* initialize their values */
s = (int) ((unsigned) u + (unsigned) v);
t = u + v;
assert(s == t); /* always true! */
```

Same bit pattern, different interpretation for sign vs. unsigned.

TAdd Overflow

TAdd Overflow

Positive overflow:

- Adding two positive values, where $u + v > 2^{w-1}-1$
- w^{th} bit contributes to true sum weight of 2^{w-1} but to TAdd sum -2^{w-1}
- TAdd sum = true sum -2^{W}

TAdd Overflow

Negative overflow:

- Adding two negative values, where $u + v < -2^{w-1}$
- Missing the carry $(w+1)^{th}$ bit (which would have contributed weight -2^{w})
- TAdd sum = true sum + 2^{W}

Visualizing 2's Complement Addition

Positive overflow:

If sum ≥ 2^{w-1} , value becomes negative

Negative overflow:

- If sum $< -2^{w-1}$, value becomes positive
- In either case, the value wraps around at most once!
 - (computed sum = true sum + / - 2^w)

Q: How to detect overflow in TAdd?

Negation: Complement & Increment

■ Claim: Following Holds for 2's Complement

$$-x = -x + 1$$

Example:

$$x = 15213$$

	Decimal	Hex	Binary		
x	15213	3B 6D	00111011 01101101		
~x	-15214	C4 92	11000100 10010010		
~x+1	-15213	C4 93	11000100 10010011		
У	-15213	C4 93	11000100 10010011		

$$x = 0$$

	Decimal	Hex	Binary		
0	0	00 00	00000000 00000000		
~0	-1	FF FF	11111111 11111111		
~0+1	0	00 00	00000000 00000000		

Negation: Complement & Increment

Claim: Following Holds for 2's Complement

$$-x = -x + 1$$

Why is this the case?

Negation: Complement & Increment

■ Claim: Following Holds for 2's Complement

$$-x = -x + 1$$

- Why is this the case?
- Observation:

Multiplication

- Goal: Computing Product of w-bit numbers x, y
 - Either signed or unsigned
- But, exact results can be bigger than w bits
 - Unsigned: up to 2w bits
 - Result range: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Two's complement min (negative): Up to 2w-1 bits
 - Result range: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Two's complement max (positive): Up to 2w bits, but only for $(TMin_w)^2$
 - Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
- So, maintaining exact results...
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C

Standard Multiplication Function

- Ignores high order w bits
- Implements Modular Arithmetic

$$UMult_w(u, v) = u \cdot v \mod 2^w$$

Signed Multiplication in C

Standard Multiplication Function

- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

Example of UMult₃ and TMult₃

Mode	Х	Y	X·Y	trunca	ted <i>X · Y</i>
UMult	5 [101]	3 [011]	15 [001111]	7	[111]
TMult	-3 [101]	3 [011]	-9 [110111]	-1	[111]
UMult	4 [100]	7 [111]	28 [011100]	4	[100]
TMult	-4 [100]	-1 [111]	4 [000100]	-4	[100]

Although the bit-level representations of the full product may differ, those of the truncated products are identical!

The value difference between sign and unsigned is 0 mod 2^w.

Power-of-2 Multiply with Shift

Operation

- $\mathbf{u} << \mathbf{k}$ gives $\mathbf{u} * \mathbf{2}^k$
- Both signed and unsigned

Examples

- u << 3
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Power-of-2 Multiply with Shift Example

Q: How do you computing $X \cdot 6$ by using left shift?

Power-of-2 Multiply with Shift Example

Q: How do you computing $X \cdot 6$ by using left shift?

$$6 = 0...0110$$
 (in binary)

$$x \cdot 6 = x \cdot (2^2 + 2^1)$$

= $x << 2 + x << 1$

Or, equivalently,

$$x \cdot 6 = x \cdot (2^3 - 2^1)$$

= $x << 3 - X << 1$

Unsigned Power-of-2 Divide with Shift

Quotient of Unsigned by Power of 2

- $\mathbf{u} \gg \mathbf{k}$ gives $[\mathbf{u} / 2^k]$
- Uses logical shift

	Division	Computed	Hex	Binary	
x	15213	15213	3B 6D	00111011 01101101	
x >> 1	7606.5	7606	1D B6	00011101 10110110	
x >> 4	950.8125	950	03 B6	00000011 10110110	
x >> 8	59.4257813	59	00 3B	00000000 00111011	

Signed Power-of-2 Divide with Shift

Quotient of Signed by Power of 2

- $x \gg k$ gives $[x / 2^k]$
- Uses arithmetic shift
- Rounds wrong direction when u < 0

	Division	Computed	Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001
y >> 8	-59.4257813	-60	FF C4	1111111 11000100

Correct Power-of-2 Divide

- Quotient of Negative Number by Power of 2
 - Want $[x / 2^k]$ (Round Toward 0)
 - Compute as $[(x+2^k-1)/2^k]$
 - In C: (x + (1 << k) -1) >> k
 - Biases dividend toward 0
- What does adding the Bias do?

Correct Power-of-2 Divide

- Quotient of Negative Number by Power of 2
 - Want $[x / 2^k]$ (Round Toward 0)
 - Compute as $[(x+2^k-1)/2^k]$
 - In C: (x + (1 << k) -1) >> k
 - Biases dividend toward 0

Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Biasing adds 1 to final result

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: multiplication mod 2^w and reinterpret the bits as signed

Arithmetic: Basic Rules

Left shift

- Unsigned/signed: multiplication by 2^k
- Always logical shift

Right shift

- Unsigned: logical shift, div (division + round to zero) by 2^k
- Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix

Why Should I Use Unsigned?

- Don't Use Just Because Number Nonnegative
 - Easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];
```

Can be very subtle

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
```

- *Do* Use When Performing Modular Arithmetic
 - Multi-precision arithmetic
- Do Use When Using Bits to Represent Sets
 - Logical right shift, no sign extension

Code Security Example

SUN XDR library

Widely used library for transferring data between machines

4

void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);

malloc(ele_cnt * ele_size)

"In this array I've got pointers to 4 chunks of data. I'd like you to allocate a block of memory and store all these chunks in that block."

XDR Code

```
void* copy elements(void *ele src[], int ele cnt, size t ele size) {
     * Allocate buffer for ele cnt objects, each of ele size bytes
     * and copy from locations designated by ele src
     */
    void *result = malloc(ele cnt * ele size);
    if (result == NULL)
       /* malloc failed */
       return NULL;
    void *next = result;
    int i;
    for (i = 0; i < ele cnt; i++) {
        /* Copy object i to destination */
        memcpy(next, ele src[i], ele size);
       /* Move pointer to next memory region */
       next += ele size;
    return result;
```

XDR Vulnerability

```
malloc(ele_cnt * ele_size)
```

■ What if:

- **ele_cnt** = 2²⁰ + 1
- **ele_size** = 4096 = 2¹²
- Allocation = ??

XDR Vulnerability

```
malloc(ele_cnt * ele_size)
```

What if:

```
    ele_cnt = 2<sup>20</sup> + 1
    ele_size = 4096 = 2<sup>12</sup>
    Allocation = 2<sup>12</sup> (2<sup>20</sup> + 1) = 2<sup>32</sup> + 2<sup>12</sup>
        = 4096 bytes (just shy of the 4.3 billion needed)
```

You're going to overwrite a lot of data in your program.

Today: Bits, Bytes, and Integers

- Representing information as bits
- **■** Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Byte-Oriented Memory Organization

Programs refer to data by address

- Conceptually, envision it as a very large array of bytes
 - In reality, it's not, but can think of it that way
- An address is like an index into that array
 - and, a pointer variable stores an address

■ Note: system provides private address spaces to each "process"

- Think of a process as a program being executed
- So, a program can clobber its own data, but not that of others

Machine Words

- Any given computer has a "Word Size"
 - Nominal size of integer-valued data
 - and of addresses
 - Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB (2³² bytes)
 - Increasingly, machines have 64-bit word size
 - Potentially, could have 18 PB (petabytes) of addressable memory
 - That's 18.4 X 10¹⁵
 - Machines still support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

Word-Oriented Memory Organization

- Addresses Specify Byte Locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

Example Data Representations

C Data Type	Typical 32-bit	Typical 64-bit	x86-64	
char	1	1	1	
short	2	2	2	
int	4	4	4	
long	4	8	8	
float	4	4	4	
double	8	8	8	
long double	_	_	10/16	
pointer	4	8	8	

Byte Ordering

So, how are the bytes within a multi-byte word ordered in memory?

Conventions

- Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
- Little Endian: x86, ARM processors running Android, iOS, and Windows
 - Least significant byte has lowest address

Byte Ordering Example

Example

- Variable x has 4-byte value of 0x01234567
- Address given by &x is 0x100

Big Endian_		0x100	0x101	0x102	0x103		
			01	23	45	67	
Little Endia	ın		0x100	0x101	0x102	0x103	
			67	45	23	01	

Representing Integers

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

int A = 15213;

long int C = 15213;

int B = -15213;

Two's complement representation

Examining Data Representations

- Code to Print Byte Representation of Data
 - Casting pointer to unsigned char * allows treatment as a byte array

```
typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len) {
    size_t i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n",start+i, start[i]);
    printf("\n");
}</pre>
```

Printf directives:

%p: Print pointer

%x: Print Hexadecimal

show bytes Execution Example

```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux x86-64):

```
int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00
```

Representing Pointers

int
$$B = -15213$$
;
int *P = &B

Different compilers & machines assign different locations to objects

Even get different results each time run program

Representing Strings

char S[6] = "18213";

Strings in C

- Represented by array of characters
- Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character "0" has code 0x30
 - Digit i has code 0x30+i
- String should be null-terminated
 - Final character = 0

Compatibility

Byte ordering not an issue

