Bits, Bytes, and Integers (Cont.)

B&O Readings: 2.1-2.3
CSE 361: Introduction to Systems Software

Instructor:
I-Ting Angelina Lee

Note: these slides were originally created by Markus Pischel at Carnegie
Mellon University

38

Code Puzzle

m What's the bug in this code?

float sum elements(float a[], unsigned length) {
int 1i;
float result = O;

for (i=0; I <= length-1; i++)
result += a[i];
return result;

Fix:use i < length instead

v

Today: Bits, Bytes, and Integers

m Integers

= Expanding, truncating

40

Extension

m Converting from smaller to larger integer data type
m C automatically performs extension

unsigned short sx = 15213;
unsigned int x = (int) sx; /* use zero extension */

short sy = -15213;
int y = (int) sy; /* use sign extension */

m Task:

" Given w-bit integer X

= Convert it to w+k-bit integer X' with same value

m Two different kinds of extension:

= zero extension: used for unsigned data types
(similar: >> uses logical right shift for unsigned values)

" sign extension: used for signed data types

(similar: >> uses arithmetic right shift for signed values)
4

-
Zero Extension for Unsigned type

m Task:

= Given w-bit unsigned integer X

= Convert it to w+k-bit unsigned integer X' with same value
m Rule:

= Prepend k bits of O:

,—
"X =0,..,0,X,.10, Xy, Xg

—
k copies
< W >
= Easy to see that the extension X . oo
preserves the value: added bits don’t
contribute any weight to the value.
X , O O o 00 O O o000

€« >€ >
k

42

e
Sign Extension

m Task:

= Given w-bit signed integer X

= Convert it to w+k-bit unsigned integer X' with same value
m Rule:

= Make k copies of the sign bit:

, —
B X = Xpyq s Xpye1 s Xie1 2 Xy o000 X
| J

k copies of MSB

" The extension preserves the value!

X o000

43

e
Sign Extension Preserves the Value

m Xis positive:
= easy to see: 0 bits don’t add weight

m Xis negative:

W MSB contributed
X [see weight -2w-1
/\ The 2nd MSB and MSB
: contributed weight

111 o0 0

extend by 1 bit Wl Jw = w1
X, 1 1 e 00 1 1 1 o000

< k >< W >

We can show that sign extension does not change the value
by inducting on k.

44

Truncation

m Task:
" Given w-bit signed integer X
= Convert it to k-bit integer X’ with same value (maybe...)

m Rule:
= Drop high-order w-k bits

X o 00 o 00

m Effect:
® Can change the value of X (overflow)
" Mathematical mod on X (compute a positive r such that X=q - m +r)
= Reinterpret the bits (for sighed data: add -2¥)

45

Summary:
Expanding, Truncating: Basic Rules

m Expanding (e.g., short int to int)
= Unsigned: zeros added
= Signed: sign extension
= Both yield expected result

m Truncating (e.g., unsigned to unsigned short)
= Unsigned/signed: bits are truncated
= Unsigned: mod operation (keep the last k bits)
= Signed: mathematical mod, and then reinterpret the bits as signed

= For small numbers yields expected behavior; for large number, can
overflow.

46

Today: Bits, Bytes, and Integers

O
[
m Integers
o
o
o
= Addition, negation, multiplication, shifting
O

47

Binary Addition
m 4-bit unsigned integer addition: 4 + 5
carry bit: 1
0100
+ 0101
1001

m 4-bit unsigned integer addition: 12 + 5

carry bit: 11
1100
+ 0101 Overflow!
10001 s Not enough bits to

store the actual result.

48

-
Unsigned Addition

O <uv<2v-1

O<u+v 2wl)

Operands: w bits u ce e

+ Vv o0 0
True Sum: w+1 bits true u + v —
Discard Carry: w bits UAdd, (u ,v) coo

m Standard Addition Function
" |gnores carry output

m Implements Modular Arithmetic
= UAdd,(u,v)=u+v mod 2%
= overflow: the full result cannot fit within the size limit of the data type

49

-
Visualizing (Mathematical) Integer Addition

m Integer Addition Add,(u, v)

= 4-bitintegers u, v Integer Addition

" Compute true sum
Add,(u, v)

= Values increase linearly
with uand v

® Forms planar surface

50

-
Visualizing Unsigned Addition

m When overflow: Overflow
UAdd,(u, v) \

" |f true sum = 2%

" wraps around
at most once

= UAdd sum =
true sum —2W

True Sum

w+lT
2 Overflow
-\

0

UAdd Sum

Q: How to detect overflow in UAdd?

51

Two’s Complement Addition

2wl <y, v < 2wl

2 < u+v £ 2%-2

IN

Operands: w bits u ce e

+ Vv o0 0
True Sum: w+1 bits true u + v —
Discard Carry: w bits TAdd, (u ,v) coo

m TAdd and UAdd have Identical Bit-Level Behavior

int s, t, u, v;
. /* initialize their wvalues */

s = (int) ((unsigned) u + (unsigned) vVv);
t=u + v;
assert(s == t); /* always true! */

Same bit pattern, different interpretation for sign vs. unsigned.
52

I
TAdd Overflow

(w+1)™" bit True Sum
w1 -
TAdd Sum
o[011..1 2¥ -1 -+ 011..1
—
0/000...0 0OT + 000...0
—
0{100..0 -2""1 T 1 100..0
w1 w bits only

53

TAdd Overflow

(w+1)™ bit True Sum
o/111..1 21 T
Positive Overflow TAdd Sum
0{100...0
0/011..1 2v 11T +— 011..1
0(000...0 0O T 4+ 000...0
—
0/100..0 -2w1 T 1 100..0
w1 w bits only

m Positive overflow:

= Adding two positive values, where u + v>2%¥-1-1

= wt bit contributes to true sum weight of 2% but to TAdd sum -2%-1

= TAdd sum = true sum —2W

54

TAdd Overflow

(w+1)™ bit True Sum

o/111..1 2¥-1 T

Positive Overflow T Ad d Sum
0/100...0
0/011..1 2v 11T +— 011..1
0(000...0 0O T 4+ 000...0
0/100..0 -2%1 T 1 100...0
1(011..1 \—v—’
HOOO...O ow L Negative Overflow w bits only

m Negative overflow:
= Adding two negative values, where u + v < —2%-1
" Missing the carry (w+1)!" bit (which would have contributed weight -2)
= TAdd sum = true sum + 2%

Visualizing 2’s Complement Addition

Negative Overflow Positive Overflow

\ TAdd,(u, v) /

m Positive overflow:
= |f sum = 2%1 value

"7

becomes negative :

[~=

m Negative overflow: ———

—

= |f sum <—-2""1 value EE
—/ 2

B/

becomes positive

m In either case, the
value wraps around at

most once!

" (computed sum = true
sum + / - 2V) .
u

Q: How to detect overflow in TAdd?

e
Negation: Complement & Increment

m Claim: Following Holds for 2’s Complement

-x = ~x + 1
m Example:
x=15213
Decimal | Hex Binary
X 15213| 3B 6D| 00111011 01101101
~X -15214| C4 92| 11000100 10010010
~x+1 | -15213| C4 93(11000100 10010011
y -15213| C4 93| 11000100 10010011
x=0
Decimal Hex Binary
0 0| 00 00| 00000000 0OOOOOOOQO
~0 -1| FF FF| 11111111 11111111
~0+1 0f 00 00| 00000000 00000000

57

]
Negation: Complement & Increment

m Claim: Following Holds for 2’s Complement

-x = ~x + 1

m Why is this the case?

\\l"

]
Negation: Complement & Increment

m Claim: Following Holds for 2’s Complement

-X = ~x + 1
m Why is this the case?
m Observation:

" ~x + x = OxFF..F = -1; (OxFF..F)
x [1]0[0]1]1{1]0]1
+ ~x |0{1/1]0]0]0f1]0
-1 [203)20312031141
= ~x = -1 - x
" -x =0 - x

(-1 + 1) - x
(-1 - x) + 1

e
"
+
=

\\l"

-
Multiplication

m Goal: Computing Product of w-bit numbers x, y
= Either signed or unsigned

m But, exact results can be bigger than w bits
= Unsigned: up to 2w bits
= Resultrange:0<x*y<(2¥w—-1)2 = 22w—-2wtl 4]
= Two’s complement min (negative): Up to 2w-1 bits
= Resultrange: x *y > (2w 1)*(2w-1-1) = —22w-2 4 2w-1
" Two’s complement max (positive): Up to 2w bits, but only for (TMin ,)?
= Result range: x ¥ y < (—2w1) 2 = 22w
m So, maintaining exact results...
= would need to keep expanding word size with each product computed
® jsdone in software, if needed
= e.g., by “arbitrary precision” arithmetic packages

60

Unsigned Multiplication in C

u o 00
Operands: w bits
% o000
\%
True Product: 2*w bitsit * Vv °®o 0 e
UMult, (u , v) Y

Discard w bits: w bits

m Standard Multiplication Function
= |gnores high order w bits

m Implements Modular Arithmetic
UMult (u,v)= u -v mod 2%

61

-
Signed Multiplication in C

l/t o 00
Operands: w bits
* o0 0
\%
True Product: 2*w bitsU = V ° 00 o0 0
TMUltW(l/l . V) o0 0

Discard w bits: w bits

m Standard Multiplication Function
" |gnores high order w bits

= Some of which are different for signed
vs. unsigned multiplication

= Lower bits are the same

62

e
Example of UMult; and TMult,

Mode X Y XY truncated X - Y

UMult 5[101] | 3[011]| 15[001111] 7 [111]
TMult -3 [101] | 3[011] -9 [110111] 1 [111]
UMult 4[100]| 7[111]| 28[011100] 4 [100]
TMult -4 [100] | -1 [111] 4 [000100] 4 [100]

Although the bit-level representations of the full product may
differ, those of the truncated products are identical!

The value difference between sign and unsigned is 0 mod 2V.

63

Power-of-2 Multiply with Shift

m Operation
" u << kgivesu * 2k

= Both signed and unsigned k
Operands: w bits " —
* 2k [0] eee |0]1]0] eee 0]O
True Product: w+k bits u * 2K coe 0l eee |0]0|
Discard k bits: w bits UMult, (u , 2%) 0o 0l eee |0]0]

TMult, (u , 2%)
m Examples

" u<< 3 == u * 8
" Most machines shift and add faster than multiply
= Compiler generates this code automatically

64

-
Power-of-2 Multiply with Shift Example

m Q: How do you computing X - 6 by using left shift?

\\l"

-
Power-of-2 Multiply with Shift Example

m Q: How do you computing X - 6 by using left shift?

6 =0...0110 (in binary)
X6 = x- (22 + 2%
= X << 2 + X <1

Or, equivalently,

X6 = x+ (23 - 21)
= X << 3 - X1

\\l"

Unsigned Power-of-2 Divide with Shift

m Quotient of Unsigned by Power of 2
" u >> kgives |[u / 2]
= Uses logical shift

k
o 4 7} AL AL Binary Point
eranas.

p l 2k 0] eee OI]_IO (XX OJQ /
Division: w/2k 1ol eee Jolo e T T
Result: | /2| Lol e lolo AL

Division | Computed Hex Binary

X 15213 15213 3B 6D| 00111011 01101101

x >> 1 7606.5 7606 1D B6| 00011101 10110110

x >> 4 950.8125 950 03 B6| 00000011 10110110

x >> 8 | 59.4257813 59 00 3B| 00000000 00111011

67

-
Signed Power-of-2 Divide with Shift

m Quotient of Signed by Power of 2
" x >> kgives | x / 2]
= Uses arithmetic shift

= Rounds wrong direction whenu < 0

k
X 2ee gee Binary Point
Operands:
l 2k 0| eeo OI]_IO XX m
Division: x / 2k L L (L
Result: RoundDown(x / 2¥) ooe voo
Division [Computed Hex Binary
y -15213 -15213 C4 93| 11000100 10010011
y > 1 -7606.5 -7607 E2 49| 11100010 01001001
y >> 4 -950.8125 -951 FC 49| 11111100 01001001
y >> 8 |-59.4257813 -60 FF C4| 11111111 11000100

68

I
Correct Power-of-2 Divide

m Quotient of Negative Number by Power of 2
" Want [x / 2¥] (Round Toward 0)
= Computeas | (x+2k-1)/ 2k]
- InC: (x + (1<<k)-1) >> k
= Biases dividend toward O

m What does adding the Bias do?

\\l"

o
Correct Power-of-2 Divide

m Quotient of Negative Number by Power of 2
" Want [x / 2¥] (Round Toward 0)
= Computeas | (x+2k-1)/ 2k]
- InC: (x + (1<<k)-1) >> k
= Biases dividend toward O

Case 1: No rounding k
Dividend: y L1 eee []0] «ee Jol0
+2k_l 0] eee |0]0]1] eee [1]1]
1 ceo 1] _eee J1]1] Binary Point
Divisor: | 2k 1ol e» l0f1l0[«-- l0l0 //
|'u/2k'| 1] eee [1]1]1 coe o] eee J1]1]

Biasing has no effect

70

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

k
Dividend: 1] | eee oo
+2k_l (0] IKXX OIOI]_ XY m
] XX XX
\ J
Y
Incremented by 1 Binary Point
Divisor: | 2k |0l eee JO[1]0] eee]OlO]
/
|-X/2k -| _]_ eeoe |11]111]1 eoeo _' 'YX
\ J
Y

Incremented by 1

Biasing adds 1 to final result

4l

Today: Bits, Bytes, and Integers

m Integers

" Summary

72

o
Arithmetic: Basic Rules

m Addition:

= Unsigned/signed: Normal addition followed by truncate,
same operation on bit level

= Unsigned: addition mod 2%
= Mathematical addition + possible subtraction of 2w
= Signed: modified addition mod 2% (result in proper range)
= Mathematical addition + possible addition or subtraction of 2w

m Multiplication:

= Unsigned/signed: Normal multiplication followed by truncate,
same operation on bit level

" Unsigned: multiplication mod 2%
= Signed: multiplication mod 2% and reinterpret the bits as signed

73

o
Arithmetic: Basic Rules

m Left shift
= Unsigned/signed: multiplication by 2k
= Always logical shift

m Right shift
= Unsigned: logical shift, div (division + round to zero) by 2k
= Signed: arithmetic shift
= Positive numbers: div (division + round to zero) by 2k

= Negative numbers: div (division + round away from zero) by 2k
Use biasing to fix

74

Why Should | Use Unsigned?

m Don’t Use Just Because Number Nonnegative
= Easy to make mistakes

unsigned 1i;
for (i = cnt-2; i >= 0; i--)
af[i] += a[i+l];
= Can be very subtle
#define DELTA sizeof (int)
int i,
for (i = CNT; i-DELTA >= 0; i-= DELTA)

m Do Use When Performing Modular Arithmetic

" Multi-precision arithmetic

m Do Use When Using Bits to Represent Sets
= |ogical right shift, no sign extension

75

Code Security Example

= Widely used library for transferring data between machines

4

void* copy elements(void *ele src[], int ele cnt, size t ele size);

m SUN XDR library I

ele src

S |

e ———

dhabdbal

malloc(ele_cnt * ele_size)

“In this array I've got pointers to 4
chunks of data. I'd like you to allocate
a block of memory and store all these
chunks in that block.”

76

XDR Code

void* copy elements(void *ele src[], int ele _cnt, size t ele size) ({
/*
* Allocate buffer for ele cnt objects, each of ele size bytes
* and copy from locations designated by ele src
*/
void *result = malloc(ele cnt * ele size);
if (result == NULL)
/* malloc failed */
return NULL;
void *next = result;
int i;
for (i = 0; 1 < ele_cnt; i++) {
/* Copy object i to destination */
memcpy (next, ele src[i], ele size);
/* Move pointer to next memory region */
next += ele size;
}

return result;

77

]
XDR Vulnerability

malloc(ele cnt * ele size)

m What if:
" ele cnt =2204+1
= ele size = 4096 = 212

" Allocation =7??

\\l"

]
XDR Vulnerability

malloc(ele cnt * ele size)

m What if:
" ele cnt =2204+1
= ele size = 4096 = 212

" Allocation = 212 (220 +1)= 232 4 912
= 4096 bytes (justshy of the 4.3 billion needed)
You're going to overwrite a lot of data in your program.

79

Today: Bits, Bytes, and Integers

m Integers

m Representations in memory, pointers, strings

80

Byte-Oriented Memory Organization

m Programs refer to data by address
= Conceptually, envision it as a very large array of bytes
= In reality, it’s not, but can think of it that way
" An address is like an index into that array
= and, a pointer variable stores an address

m Note: system provides private address spaces to each “process”
" Think of a process as a program being executed
= So, a program can clobber its own data, but not that of others

81

o
Machine Words

m Any given computer has a “Word Size”
= Nominal size of integer-valued data
= and of addresses

= Until recently, most machines used 32 bits (4 bytes) as word size
= Limits addresses to 4GB (232 bytes)

" Increasingly, machines have 64-bit word size
= Potentially, could have 18 PB (petabytes) of addressable memory
= That’s 18.4 X 10%°

"= Machines still support multiple data formats
= Fractions or multiples of word size
= Always integral number of bytes

82

Word-Oriented Memory Organization

32-bit 64-bit

. Bytes Addr.
m Addresses Specify Byte Words Words —Y
Locations 0000
) . Addr

= Address of first byte in word = 0001
. . 0000 0002

= Addresses of successive words differ Addr
by 4 (32-bit) or 8 (64-bit) = 0003
0000 0004
Addr 0005
0004 0006
0007
0008
Addr 0009
0008 Addr 0010
= 0011
0008 0012
Addr 0013
0012 0014
0015

83

Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit x86-64

char

short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
long double = = 10/16

pointer 4 8 8

Byte Ordering

m So, how are the bytes within a multi-byte word ordered in
memory?

m Conventions
= Big Endian: Sun, PPC Mac, Internet
= Least significant byte has highest address

= Little Endian: x86, ARM processors running Android, iOS, and
Windows

= Least significant byte has lowest address

85

Byte Ordering Example

m Example
= Variable x has 4-byte value of 0x01234567
= Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
01 23 45 67

Little Endian 0x100 0x101 0x102 0x103
o7 45 23 01

86

Decimal: 15213

Representing Integers Binary: 0011 1011 0110 1101

Hex: 3 B 6 D
int A = 15213; long int C = 15213;
1A32, x86-64 Sun
1A32 x86-64 Sun
6D |
3B
00 ¢
00 ¢

int B = -15213;
IA32, x86-64 Sun

T~

Two’s complement representation

87

Examining Data Representations

m Code to Print Byte Representation of Data
= Casting pointer to unsigned char * allows treatment as a byte array

typedef unsigned char *pointer;

void show bytes (pointer start, size t len) {
size t i;
for (1 = 0; 1 < len; i++)
printf (“%$p\t0x%.2x\n",start+i, start[i]);
printf ("\n") ;

}

Printf directives:
%p: Print pointer
%X : Print Hexadecimal

88

show bytes Execution Example

int a = 15213;
printf ("int a = 15213;\n");
show bytes ((pointer) &a, sizeof (int));

Result (Linux x86-64):

int a = 15213;

Ox7fffb7f71dbc od
Ox7fffb7f71dbd 3b
Ox7fffb7f71dbe 00
Ox7fffb7f71dbf 00

89

Representing Pointers

int B = -15213;
int *P = &B;
Sun 1A32 x86-64
EF AC 3C
FF 28 1B
FB F'5 FE
2C FF 82
FD
TF
00
00

Different compilers & machines assign different locations to objects

Even get different results each time run program

90

Representing Strings

char S[6] = "18213";
m StringsinC
= Represented by array of characters
= Each character encoded in ASCII format 1A32 Sun
= Standard 7-bit encoding of character set 31 | | 31
= Character “0” has code 0x30 38 | | 38
— Digit i has code 0x30+i 32 | SIEY
= String should be null-terminated 31 | J 31
= Final character =0 33 |1 J 33
m Compatibility 00 I J 00

= Byte ordering not an issue

9N

