Machine-Level Programming I: Basics

B&O Readings: 3.1-3.5
CSE 361: Introduction to Systems Software

Instructor:
I-Ting Angelina Lee

Note: these slides were originally created in part by Markus Pischel at
Carnegie Mellon University, and in part by Gaetano Borriello and Luis
Ceze at University of Washington

Translation Impacts Performance

m The time required to execute a program depends on:

The program (as written in C, for instance)

The compiler: what set of assembler instructions it translates the C
program into

The instruction set architecture (ISA): what set of instructions it
makes available to the compiler

The hardware implementation: how much time it takes to execute
an instruction

Code Translation

Code Time Compile Time Run Time

01100111 ...

User
program c : Assembler Hardware
inC compiler

.cfile .exe file

What makes programs run fast?

Today: Machine Programming I: Basics

m What is an ISA (Instruction Set Architecture)
m A really brief history of Intel processors and architectures
m C, assembly, machine code
m Assembly Basics: Registers, operands, move
m Intro to x86-64 Application |

0os |

Compiler Firmware
ISA
CPU 110
Memory

Digital Circuits

Gates & Transistors

Instruction Set Architectures General ISA Design Decisions
m The ISA defines: m Instructions
= The system’s state (e.g. registers, memory, program counter) ® What instructions are available? What do they do?
® The instructions the CPU can execute " How are they encoded?
= The effect that each of these instructions will have on the system
state m Registers
CPU " How many registers are there?
" How wide are they?
Memory
Registers - Memory
= How do you specify a memory location? (addressing modes)
5 6
| |
x86 Intel x86 Evolution: Milestones
m Processors that implement the x86 ISA completely dominate Name Date Transistors MHz
the server, desktop and laptop markets m 8086 1978 29K 5-10
® First 16-bit Intel processor. Basis for IBM PC & DOS
m Evolutionary design " 1MB address space
= Backwards compatible up until 8086, introduced in 1978 = 386 1985 275K 16-33
= Added more features as time goes on = First 32 bit Intel processor , referred to as IA32
= Added “flat addressing”, capable of running Unix
m Complex instruction set computer (CISC) m Pentium 4E 2004 125m 2800-3800
= Many different instructions with many different formats " First 64-bit Intel x86 processor, referred to as x86-64
= But, only small subset encountered with Linux programs m Core 2 2006 291M 1060-3500
= (as opposed to Reduced Instruction Set Computers (RISC), which use ® First multi-core Intel processor
simpler instructions) m Core i7 2008 731M 1700-3900

® Four cores

Intel x86 Processors, cont.
m Machine Evolution

= 386 TR tegratedMemory

* Pentium 1993 3.1M | :
IGEALUE IR Corc0 Core1 - Core2 Core3 -
= PentiumPro 1995 6.5M

" Pentium il 1999 8.2M v

= Pentium 4 2001 42M

" Core2Duo 2006 291M e o e

= Corei7 2008 731M

m Added Features
® |nstructions to support multimedia operations
® |nstructions to enable more efficient conditional operations
® Transition from 32 bits to 64 bits
" More cores

x86 Clones: Advanced Micro Devices (AMD)

m Historically
= AMD has followed just behind Intel
= A little bit slower, a lot cheaper

m Then

= Recruited top circuit designers from Digital Equipment Corp. and
other downward trending companies

= Built Opteron: tough competitor to Pentium 4
= Developed x86-64, their own extension to 64 bits
m Recent Years
" |Intel got its act together
= Leads the world in semiconductor technology
= AMD has fallen behind
= Relies on external semiconductor manufacturer

Moore’s Law

"The number of transistors
will double every year’, 1965

("...or every two years’, 1975)

Gordon Moore

David House (Intel) says due to transistors’ performance
improvement, performance will double every 18 months.

Intel’s 64-Bit History

m 2001: Intel Attempts Radical Shift from 1A32 to 1A64
= Totally different architecture (Itanium)
= Executes IA32 code only as legacy
= Performance disappointing
2003: AMD Steps in with Evolutionary Solution
= x86-64 (now called “AMD64”")
Intel Felt Obligated to Focus on 1A64
® Hard to admit mistake or that AMD is better
2004: Intel Announces EM64T extension to IA32
= Extended Memory 64-bit Technology
= Almost identical to x86-64!
m All but low-end x86 processors support x86-64
= But, lots of code still runs in 32-bit mode

Today: Machine Programming I: Basics

What is an ISA (Instruction Set Architecture)
History of Intel processors and architectures

Assembly Basics: Registers, operands, move

|
| |
m C, assembly, machine code
|
m Intro to x86-64

Assembly/Machine Code View

CPU Memor
Addresses y
Register >
egisters . o
> Data
Condition Instructions Stack
Codes <

Programmer-Visible State

= PC: Program counter = Memory
= Address of next instruction * Byte addressable array
= Called “RIP” (x86-64) = Code and user data
= Register file = Stack to support procedures

= Heavily used program data
= Condition codes

= Store status information about most
recent arithmetic or logical operation

= Used for conditional branching

e
Definitions

m Architecture: (also ISA: instruction set architecture) The
parts of a processor design that one needs to understand
or write assembly/machine code.

= Examples: instruction set specification, registers.

m Microarchitecture: Implementation of the architecture.

= Examples: cache sizes and core frequency.

m Code Forms:

® Machine Code: The byte-level programs that a processor executes
= Assembly Code: A text representation of machine code

m Example ISAs:
" |ntel: x86, I1A32, Itanium, x86-64
= ARM: Used in almost all mobile phones

Turning C into Object Code

® Codeinfiles pl.c p2.c

= Compile with command: gecec -Og pl.c p2.c -o p
= Use basic optimizations (-Og) [New to recent versions of GCC]
= Put resulting binary in file p

text | Cprogram (pl.c p2.c) |

Compiler (gcc -Og -S)

text | Asm program (pl.s p2.s) |

Assembler (gcc or as)

binary | Object program (pl.o0 p2.0) | Static libraries
(.a)

Linker (gcc or 1d)

binary | Executable program (p)

Compiling Into Assembly Assembly Characteristics: Data Types

C Code (sum.c) Generated x86-64 Assembly
long plus(long x, long y): P — m “Integer” data of 1, 2, 4, or 8 bytes

pushg $rbx = Data values
void sumstore(long x, long y, movq $rdx, %$rbx - .
long *dest) call plus Addresses (untyped pointers)
{ movqg $rax, (%rbx)
izzztt:tl:lus S 505 };:r;q brbx m Floating point data of 4, 8, or 10 bytes

Obtain (on linuxlab machines) with command m Code: Byte sequences encoding series of instructions

gcec -Og —-S sum.c
Produces file sum. s m No aggregate types such as arrays or structures

= Just contiguously allocated bytes in memory
Warning: your result may vary due to different compiler

versions or platform

| |
e . Object Code
Assembly Characteristics: Operations J
Code for sumstore A bi
. . . . | | ssembpler
m Perform arithmetic function on register or memory data 0x0400595:)
0x53 " Translates . s into .o
0x48 = Binary encoding of each instruction
m Transfer data between memory and register 0x89 = Nearly-complete image of executable code
" |oad data from memory into register g::: = Missing linkages between code in different
= Store register data into memory OxE2 files
Oxff m Linker
Oxff X
m Transfer control OxEE = Resolves references between files

¢ Total of 14 bytes

= Unconditional jumps to/from procedures gxgg « Each instruction = Combines with static run-time libraries
x . .
= Conditional branches 0x03 1,3, or 5 bytes E.g., code formalloc, printf
. S . .
0x5b e« Starts at address Some libraries are dynamically linked
0xc3 0x0400595 = Linking occurs when program begins

execution

Machine Instruction Example

m C Code

= Store value t where designated by
dest

|*dest = t; |

m Assembly
= Move 8-byte value to memory

|movq $rax, (%rbx)

= Quad words in x86-64 parlance
= Operands:
t: Register $rax
dest: Register $rbx
*dest: Memory M[$rbx]
m Object Code
= 3-byte instruction
= Stored at address 0x40059%e

0x40059e: 48 89 03

2

Alternate Disassembly
Disassembled

Object
0x0400595:
0x53 Dump of assembler code for function sumstore:
0x48 0x0000000000400595 <+0>: push $rbx
0x89 0x0000000000400596 <+1>: mov %rdx,%rbx
0xd3 0x0000000000400599 <+4>: callg 0x400590 <plus>
0xe8 0x00000000004005%e <+9>: mov $rax, (%$rbx)
0x£2 0x00000000004005al1 <+12>:pop $rbx
Oxff 0x00000000004005a2 <+13>:retqg
Oxff
Oxff
0x48 m Within gdb Debugger
0x89
0:03 gdb sum
0x5b disassemble sumstore
0xc3 = Disassemble procedure

x/14xb sumstore
= Examine the 14 bytes starting at sumstore

23

]
Disassembling Object Code

Disassembled

0000000000400595 <sumstore>:
400595: 53 push $rbx
400596: 48 89 d3 mov $rdx, $rbx
400599: e8 f2 ff ff ff callg 400590 <plus>
40059e: 48 89 03 mov $rax, (%$rbx)
4005al: 5b pop %$rbx
4005a2: c3 retq

m Disassembler
objdump -d sum
= Useful tool for examining object code
= Analyzes bit pattern of series of instructions
® Produces approximate rendition of assembly code
® Can be run on either a. out (complete executable) or . o file

2

What Can be Disassembled?

% objdump -d WINWORD.EXE
WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:
30001000:

30001001 : . . .
DGR Reverse engineering forbidden by

30001005: Microsoft End User License Agreement
3000100a:

m Anything that can be interpreted as executable code
m Disassembler examines bytes and reconstructs assembly source

24

Today: Machine Programming I: Basics x86-64 Integer Registers
% $r8d
m What is an ISA (Instruction Set Architecture) drax \eax— 5r8 r
m History of Intel processors and architectures $rbx %ebx %$r9 %$r9d
m C, assembly, machine code Srox ecx 2210 2r10a
m Assembly Basics: Registers, operands, move
m Intro to x86-64 $rdx dedx $rll $rlld
Srsi %$esi $rl2 g$ri2d
Srdi %edi %rl3 $rl3d

T

3rsp $esp $rl4 $rldd

%rbp %ebp $rlb5 $rl5d

= Can reference low-order 4 bytes (also low-order 1 & 2 bytes)

25 26

| |
Some History: IA32 Registers Origin x86-64 Integer Registers
(mostly obsolete)
~
%eax %ax| %ah | %al accumulate %r8 ’%rsd %$r8w | %r8b
o | |%ecx scx| sch | scl counter $r9 $r9d $row | %r9%
w
=]
£ | [vedx sax| sdh [sa data $rl0 ’%rlOd $r10w | $rl0b
Q
2 <
©
g %ebx sbx| %bh | %bl base $rll ’%rlld $rllw | srllb
(]
1)
%esi ¥si | index $rl2 sr12d srl2w |%rl2b
$edi %di | oo " $rl3 13 3r13w | 3r13b
S~
stack
sesp %SP| pointer $rld ’%rllld $rldw | %$rldb
base
$ebp %bp| pointer $rl5 $rl5d %rl5w | 3rl5b
N J
Y

16-bit virtual registers = Can reference low-order 4 bytes (also low-order 1 & 2 bytes)

(backwards compatibility) . 2%

Moving Data [$rax | Moving Data: Operand Types [srax |
m Moving Data [srex | |$rex |
movq Source, Dest; | s rdx | m /mmediate: Constant integer data | 9 rdx |
(Also mov1, movw, movb) | Srbx | " Example: $0x400, $-533 | 2 rbx |
- = Like C constant, but prefixed with *$” -
. - . | srsi | . . | $rsi |
m x86-64 can still use 32-bit instructions | : | Encoded with 1, 2, or 4 bytes | : |
that generate 32-bit results $rdi m Register: One of 16 integer registers srdi
= Higher-order bits of destination register | srsp | = Example: $rax, %rl3 | 3rsp |
are justsetto 0 | $rbp | = But $rsp reserved for special use | $rbp |
® Example: addl = QOthers have special uses for particular instructions
[sxN | m Memory: [3xN |
= 8 consecutive bytes of memory at address given by register
= Have to use the 8-byte form!
= Simplest example: ($rax)
® Various other “address modes”
29 30
| |
movq Operand Combinations Simple Memory Addressing Modes
Source Dest Src,Dest C Analog = Normal (R) Mem[Reg[R]]
= Register R specifies memory address
imm Reg movqg $0x4,%rax temp = 0x4; = Aha! Pointer dereferencingin C
Mem movg $-147, (%rax) *p = -147;
movqg (%rcx) ,%$rax
movq < Reg Reg movqg %rax,%rdx temp2 = templ;
Mem movq %rax, (%rdx) *p = temp; m Displacement D(R) Mem[Reg[R]+D]
= Register R specifies start of memory region

\Mem Reg movq (%rax), %rdx temp = *p; " Constant displacement D specifies offset

Cannot do memory-memory transfer with a single instruction movq 8 ($rbp) ,%rdx

Example of Simple Addressing Modes

void swap(long *xp,
long *yp) {
long t0 = *xp;
long tl1 = *yp;
*xp = tl1;
*yp = t0;
}
swap:
movq
movq
movq
movq
ret

(%$rdi), %rax
(%$rsi), %rdx
$rdx, (%rdi)
$rax, (%rsi)

t0 = *xp
tl = *yp
*xp = tl
*yp = t0

Understanding Swap()
. Regist Memory
void swap(long *xp, egisters Address

1 *

Y yp) { | srai] ox120 | 123 0x120
long t0 = *xp; 0x118
long tl = *yp; 0x100 *
*xp = tl; 0x110
o = 10, orax| | 0108

! $rdx 456 |0x100
Register Value swap:] "
srdi Xp movq (%$rdi), %rax t0 = *xp
srsi movq (%rsi), %rdx # tl = *yp
yp movqg $rdx, (%rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO
ret

Understanding Swap()
. Regist Memory
void swap(long *xp, egisters Address
*
long *yp) { |srai] e———|123 |0x120
long t0 = *xp; 0x118
long tl1 = *yp; x
*xp = tl; 0x110
*yp = t0; 0x108
} brdx 456 |0x100
Register Value swap:] "
srdi Xp movqg (%$rdi), %rax t0 = *xp
Yrsi movq (3rsi), %rdx # tl = *yp
yp movq $rdx, (%rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO
ret

Understanding Swap()
. Regist Memory
void swap(long *xp, egisters Address

1 *

_ond yp) | | sxai| ox120| 123 0x120
long t0 = *xp; 0x118
long tl = *yp; 0x100 ox110
o e [srax| | ox108

} brdx 456 |0x100
Register Value swap:
srdi xp movq %rdi), %rax # tO0 = *xp
. movq (3rsi), %rdx # tl = *yp
brsi yp movq $rdx, (%rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO
ret

Understanding Swap()
. Regist Memory
void swap(long *xp, egisters Address
*
long *yp) f | sxai| ox120| 123 0x120
long t0 = *xp; 0x118
long tl = *yp; 0x100
*xp = tl; 0x110
*yp = t0; 0x108
} brdx 456 |0x100
Register Value swap:
srdi xp movqg (%$rdi) , %$rax z t0 = *xp
. movq (%$rsi), %rdx tl = *yp
brsi yp movq $rdx, (%rdi) # *xp = tl
srax to movqg $rax, (%$rsi) # *yp = tO
ret

Understanding Swap()
. Regist Memory
void swap(long *xp, egisters Address
*
long *yp) { | srai] ox120 | 123 0x120
long t0 = *xp; 0x118
long tl = *yp; 0x100 *
*xp = tl; - 0x110
L srax| 123 0x108
} brdx| 456 456 |0x100
Register Value swap:
srdi xp movq (3rdi), %rax # tO0 = *xp
X movq ($rsi), %rdx # tl = *yp
brsi yp movqg $rdx, (%rdi) # *xp = tl
srax to movq g$rax, (%rsi) # *yp = t0
$rdx tl ret

Understanding Swap()
. Regist Memory
void swap(long *xp, egisters Address
*
long *yp) f | sxai| ox120| 123 0x120
long t0 = *xp; 0x118
long tl = *yp; 0x100 *
*xp = tl; - 0x110
L srax| 123 0x108
} brdx 456 |0x100
Register Value swap:
srdi xp movq (3rdi), %rax # tO0 = *xp
X movq ($rsi), %rdx # tl = *yp
brsi yp movq $rdx, (%rdi) # *xp = tl
srax to movq g$rax, (%rsi) # *yp = t0
ret

Understanding Swap()
void swap(long *xp, Registers IVlemoryAddress
*
long *yp) f | sxai| ox120| 456 0x120
long t0 = *xp; 0x118
long t1 = *yp; 0x100 *
*xp = tl; - 0x110
o e srax| 123 0x108
} 456 |0x100
Register Value swap:
prai = mova (rsi), trae ¥ 11 - wep
. , =
brsi yp movqg $rdx, (%rdi) # *xp = tl
srax to movq g$rax, (%rsi) # *yp = t0
$rdx tl ret

40

Understanding Swap()
. Regist Memory
void swap(long *xp, egisters Address
*
long *yp) f | sxai| ox120| 456 0x120
long t0 = *xp; 0x118
long tl = *yp; 0x100 *
*xp = tl; - 0x110
o e srax| 123 0x108
! brdx| 456 123 |0x100
Register Value swap:
srdi xp movq (3rdi), %rax # tO0 = *xp
. movq (3rsi), %rdx # tl = *yp
brsi yp movq $rdx, (%rdi) # *xp = tl
srax to movq S$rax, (%rsi) # *yp = t0
$rdx tl ret

4

Address Computation Examples

Sedx 0xf000

secx 0x0100

Expression Address Computation Address

0x8 (%edx)

(%edx, $ecx)

(%edx, $ecx, 4)

0x80 (, %edx, 2)

Complete Memory Addressing Modes

m Most General Form
D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
= D: Constant “displacement” 1, 2, or 4 bytes
= Rb: Base register: Any of 16 integer registers
= Ri: Indexregister: Any, except for $rsp
=S Scale: 1, 2, 4, or 8 (why these numbers?)

m Special Cases

(Rb,Ri) Mem[Reg[Rb]+Reg|[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem|[Reg[Rb]+S*Reg[Ri]]

42

Address Computation Examples

Sedx 0xf000

secx 0x0100

Expression Address Computation Address

0x8 (%edx) 0xf000 + 0x8 0x£f008
(%edx, $ecx) 0x£000 + 0x100 0x£100
(Sedx, Secx, 4) 0xf000 + 4*0x100 0x£f400
0x80 (, Sedx, 2) 2*0xf000 + 0x80 0x1e080

44

Today: Machine Programming |: Basics Address Computation Instruction
m leaq Src, Dst
m History of Intel processors and architectures = Srcis address mode expression (i.e., in the form of D(Rb,Ri,S))
m C, assembly, machine code = Set Dst to address denoted by expression
m Assembly Basics: Registers, operands, move ® (leastands for load effective address)
m Arithmetic & logical operations m Uses

= Computing addresses without a memory reference
= E.g, translationof p = &x[1i];
= Computing arithmetic expressions of the form x + k*y
= k=1,2,4,0r8
m Example

long ml2 (long x)
{

Converted to ASM by compiler:

return x*12; leaqg (%rdi,%rdi,2), %rax # t <- x+x*2
} salqg $2, %rax # return t<<2
45 46
| |
Some Arithmetic Operations Some Arithmetic Operations

m Two Operand Instructions:
Format Computation m One Operand Instructions

addq Src,Dest Dest = Dest + Src incq Dest Dest = Dest + 1

subqg Src,Dest Dest = Dest - Src decq Dest Dest = Dest -1

imulqg Src,Dest Dest = Dest * Src negq Dest Dest = - Dest

salq Src,Dest Dest = Dest << Src Also called shiq notq Dest Dest = ~Dest

sarq Src,Dest Dest = Dest >> Src Arithmetic

shrq Src,Dest Dest = Dest >> Src Logical m See book for more instructions:

xorq Src,Dest Dest = Dest ” Src movzbw, movzbl, movzwl, movzbqg, movzwg

andq Src,Dest Dest = Dest & Src movsbw, movsbl, movswl, movsbqg, movswg, movslqg

orq Src,Dest Dest = Dest | Src
m Watch out for argument order! m Why is there not amovzlqg?

m No distinction between signed and unsigned int (why?)

47 48

i : : t ing Arithmetic E i
Arithmetic Expression Example Understanding Arithmetic Expression

Example
arith: arith:
leaq (%rdi,%rsi), %rax leaq (%rdi,%rsi), %rax # tl
long arith addg $rdx, %rax long arith addg $rdx, %rax # t2
(long x, long y, long z) leaq (%rsi,%rsi,2), %Srdx (long x, long y, long z) leaq (%rsi,%rsi,2), %$rdx
{ salq $4, %Srdx { salq $4, %rdx # t4
long tl = x+y; leaq 4 (%rdi, %$rdx), %rcx long tl = x+y; leaq 4 (%rdi,%rdx), %rcx # t5
long t2 = z+tl; imulqg $rcx, %rax long t2 = z+tl; imulqg $rcx, %rax # rval
long t3 = x+4; ret long t3 = x+4; ret

long t4 =y * 48; long t4 =y * 48;

long rval = t2 * t5; ® leagq: address computation e el A t
o . 5 rdi rgument x
return rval; * salq:shift return rval;
} i o } $rsi Argument y
" imulq: multiplication
$rdx Argument z
= But, only used once
$rax tl1, t2, rval
$rdx t4
$rcx t5

49 50

Machine Programming I: Summary

m History of Intel processors and architectures
® Evolutionary design leads to many quirks and artifacts
C, assembly, machine code

= New forms of visible state: program counter, registers, ...

= Compiler must transform statements, expressions, procedures into
low-level instruction sequences

m Assembly Basics: Registers, operands, move
" The x86-64 move instructions cover wide range of data movement
forms
m Arithmetic

= C compiler will figure out different instruction combinations to carry
out computation

51

