Machine-Level Programming IV:
Data (Cont.)

B&O Readings: 3.8-3.9
CSE 361: Introduction to Systems Software
Instructor:

I-Ting Angelina Lee

Note: these slides were originally created by Markus Plschel at Carnegie
Mellon University

e
Today: Compound Types (Cont.)

and Memory
m Arrays

® One-dimensional
" Multi-dimensional (nested)
" Multi-level

m Structures
= Allocation
= Access
= Alignment

m Unions
m Memory Layout
m Floating Point

Struct in C (Recap)

struct rec { typedef struct rec {
int a[4]; int a[4];
size t i; size t i;
struct rec *next; or struct rec *next;
} } rec t;
struct rec g; rec_t g;
struct rec *r = &g; rec t *r = &g;

r

v

next

a i
0 16 24 32

m Concept
= Groups data of possibly different types into a single object

= Refer to members within structure by names

= r->a[2]
= g.a[2]

Structure Representation (Recap)

r

struct rec {

int a[4];

size t i; a i next

t t *next;

struct rec *nex 0 16 24 32
} g
struct rec *r = &g;

m Structure represented as block of memory
= Big enough to hold all of the fields
m Fields ordered according to declaration

= Even if another ordering could yield a more compact
representation

m Compiler determines overall size + positions of fields

= Machine-level program has no understanding of the structures
in the source code

Structures & Alignment

m Unaligned Data struct S1 {
: : char c;
c|l i[O0] i[1l] V int i[2];
p pt+l p+5 p+9 p+17 double v;
} *p;

m Aligned Data
" Primitive data type requires K bytes
= Address must be multiple of K

c i[0] i[1] v
p+0 pt4 p+8 p+16 pt24

Multiple of 4 Multiple of 8

Alignment Principles

m Aligned Data
= Primitive data type requires K bytes
= Address must be multiple of K

m Aligned data is required on some machines; it is advised on
x86-64

" Treated differently by IA32 Linux, x86-64 Linux, and Windows!

m Motivation for Aligning Data

= Memory accessed by (aligned) chunks of 4 or 8 bytes (system dependent)
= |nefficient to load or store datum that spans quad word boundaries
= Virtual memory trickier when datum spans 2 pages

m Compiler

" |nserts gaps in structure to ensure correct alignment of fields
" sizeof () should be used to get true size of structs

Specific Cases of Alignment (x86-64)

m 1byte: char, ..
® no restrictions on address

m 2 bytes: short, ..

= |owest 1 bit of address must be 0>

m 4 bytes: int, float, ..

= |owest 2 bits of address must be 00>

m 8 bytes: double, long, char *,..
= |owest 3 bits of address must be 000>

m 16 bytes: long double (GCC on Linux)
= Jowest 4 bits of address must be 00003

Satisfying Alignment with Structures

m Within structure:

struct S1 {
= Must satisfy each element’s alighment requirement char c;
m Overall structure placement ;‘;tbie[zl "
u A\
= Each structure has alignment requirement K } *p;

= K = Largest alignment of any element
" |nitial address & structure length must be multiples of K

m Example:

" K=8, due to double element

o] 1[0] i[1] v
p+0 pt+4 p+8 p+16 pt+24

Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8

Meeting Overall Alignment Requirement

m For largest alighment requirement K struct S2 {
. 1 7
m Overall structure must be multiple of K double v
int i[2];
char c;
} *p

\ i[0] i[1] C
pt0 p+8 p+16 pt24

/

Multiple of K=8

Arrays of Structures

struct S2 {

m Overall structure length multiple of K double v;
. . . int i[2];
m Satisfy alighment requirement char c;
for every element } a[l0];
al[o0] a[l] a[2] o o o
a+0 a+24 a+48 a+72

v i[0] i[1] C
a+24 a+32 a+40 a+48

10

Accessing Array Elements struct S3 {
short 1i;
float v;
m Compute array offset 12*idx short j;
] . .) 107 ;
" sizeof (S3), including alignment spacers b a[l0]
m Element j is at offset 8 within structure
m Assembler gives offset a+8
a[0] o o o a[idx] e o o
a+0 a+l12 a+l2*idx
i v 3
a+l2*idx a+l2*idx+8
short get j(int idx) { # srdi = idx
return a[idx].j; leag (%rdi,%rdi,2),%rax #3*idx
} movzwl a+8(,%rax,4) ,%eax #a+8+12*idx

1

Alignment Calculation Example

For each of the following declaration, determine the offset of each field,
total size of the struct, and its alignhment requirement for x86_64:

a. struct Pl { int i; char c¢; char d; long j; }

8. struct P2 { short w[3]; char c[3]; };

c. struct P3 { struct P2 a[2]; struct Pl t };

12

Saving Space

m Put large data types first

m Effect: saving 4 bytes

S4

S5

struct S4 {
char c;
int i;
char d;

} *p

=)

struct S5 {
int i;
char c;
char d;

} *p;

Cc

i

14

Putting it Together

m Code demonstration: array of struct on stack

4 B

Today

m Arrays
" One-dimensional
® Multi-dimensional (nested)
= Multi-level

m Structures
= Allocation
= Access

® Alignment
m Unions
m Memory Layout
m Floating Point

16

UnioninC

m Circumvent the type system of C

m Allowing a single object to be referenced according to
multiple types

m Fields share the same memory location

m Refer to members within structure by names
= up->i[2]
" (*up).i[2]

union Ul {
char c;
int i[2];
double v;
} *up;

17

Union Allocation

m Allocate according to largest element
m Can only use one field at a time

union Ul {
char c;
int i1[2];
double v; i[0] i[1]

} *up;

struct S1 { up+0 up+4 up+8
char c;
int i[2];
double v;
} *sp;

c i[O0] i[l] v
sp+0 sp+4 sp+8 sp+16 sp+24

18

Using Union to Access Bit Patterns

typedef union {
float £;
unsigned u;

} bit float t; 0 4

float bit2float (unsigned u) unsigned float2bit(float f£f)
{ {

bit float t arg; bit float t arg;
arg.u = u; arg.f = £;
return arg.f; return arg.u;

} }

Sameas (float) u? Same as (unsigned) f£?

19

-
Byte Ordering Revisited

mldea
= Short/long/quad words stored in memory as 2/4/8 consecutive bytes
= Which byte is most (least) significant?
= (Can cause problems when exchanging binary data between machines
m Big Endian
= Most significant byte has lowest address
" Sparc
m Little Endian

= |east significant byte has lowest address
" |ntel x86, ARM Android and IOS

m Bi Endian

= Can be configured either way
" ARM

20

Byte Ordering Example

union {
unsigned char c[8];
unsigned short s[4];
unsigned int i[2];
unsigned long 1[1];
} dw;

32-bit | €[0] | c[1] | c[2] | c[3] | c[4] | c[5] | c[6] | c[7]
s[0] s[1] s[2] s[3]
i[0] i[1]
1[0]

64-bit | c[01] | c[1] | c[2] | c[3] | c[4] | c[5] | c[6] | c[7]
s[0] s[1] s[2] s[3]

lower 1[0] 1[1] higher
address 1[0] address

21

e
Byte Ordering Example (Cont).

int j;
for (j = 0; j < 8; j++)
dw.c[j] = O0x£f0 + j;

printf ("Characters 0-7 == [0x%x,0x%x,0x%x,0x%x,
Ox%x,0x%x,0x%x,0x%x]\n",
dw.c[0], dw.c[1l], dw.c[2], dw.c[3],
dw.c[4], dw.c[5], dw.c[6], dw.c[7]);

printf ("Shorts 0-3 == [0x%x,0x%x,0x%x,0x%x]\n",
dw.s[0], dw.s[1l], dw.s[2], dw.s[3]);

printf ("Ints 0-1 == [0x%x,0x%x]\n",
dw.i[0], dw.i[1]) ;

printf ("Long 0 == [0x%1x]\n",
dw.1[0]) ;

22

Byte Ordering on I1A32

Little Endian

£f0 fl £2 £3 f4 £5 £f6 £7
c[0] | c[1] | c[2] | c[3] | c[4] | c[5] |c[6] |c[7]

s[0] s[1] s[2] s[3]
lower i[0] i[1] higher
address 1[0] address
LSB MSB LSB MSB
) Print
Output:
Characters 0-7 == [0xf0,0xfl,0xf2,0x£f3,0xf4,0x£f5,0x£f6,0x£f7]
Shorts 0-3 == [0xf1lf0,0x£f3f2,0x£f5f4,0x£f7£6]
Ints 0-1 == [O0xf3f2f1£f0,0x£f7£6£5£4]
Long 0 == [0x£3£f2£f1£0]

23

Byte Ordering on Sun

Big Endian
V) fl £2 £3 f4 £5 f6 £7
c[0] | c[1] | c[2] | c[3] | c[4] | c[5] | c[6] |c[7]
s[0] s[1] s[2] s[3]
lower i[0] i[1] higher
address 1[0] address
MSB _ LSB MSB LSB
Print]
Output on Sun:
Characters 0-7 == [0xf0,0xfl,0xf2,0x£f3,0xf4,0x£f5,0x£f6,0x£f7]
Shorts 0-3 == [0xf0f1l,0x£f2£f3,0x£f4£f5,0x£6£7]
Ints 0-1 == [O0xfO0f1£f2f3,0x£f4£f5£6£7]
Long 0 == [0xf0£f1£2£3]

24

Byte Ordering on x86-64

Little Endian
£0 fl £2 £3 f4 £5 f6 £7
c[0] | c[1l] | c[2] | c[3] | c[4] |c[3] |cl6] |c[7]
s[0] s[1] s[2] s[3]
lower 1[0] i[1]
address 1[0]

LSB

Output on x86-64:

Characters
Shorts
Ints

Long

0-7
0-3
0-1
0

Print

MSB

higher
address

[O0x£f0,0xfl,0x£f2,0x£f3,0x£f4,0x£f5,0x£f6,0x£7]
[Ox£f1£f0,0x£3£f2,0x£5f4,0x£f7£6]
[Ox£3£f2f1£f0,0x£f7£6£5£4]
[Ox£7£6£5£4£3£2£f1£0]

25

Summary of Compound Types in C

m Arrays
= Contiguous allocation of memory
= Aligned to satisfy every element’s alignment requirement
= Pointer to first element
" No bounds checking

m Structures
= Allocate bytes in order declared
= Padin middle and at end to satisfy alighnment

m Unions
= Qverlay declarations
= Way to circumvent type system

26

e
Today: Compound Types (Cont.)

and Memory
m Arrays

® One-dimensional
" Multi-dimensional (nested)
" Multi-level

m Structures
= Allocation
= Access

® Alignment
m Unions
m Memory Layout
m Floating Point

27

not drawn to scale

x86-64 Linux Memory Layout

0x00007FFFFFFFFFFF)
Stack
m Stack 1 > 8MB
= Runtime stack (8MB limit))
= E.g., local variables Shared
Libraries
m Heap

= Dynamically allocated as needed
= When call malloc(), calloc(), new()

m Data

= Statically allocated data
= E.g., global vars, static vars, string constants

m Text /Shared Libraries $
= Executable machine instructions Heap
= Read-only Data

Text
0x400000

0x000000

28

not drawn to scale

Memory Allocation Example

Stack
char big array[lL<<24]; /* 16 MB */ 1
char huge array[lL<<31l]; /* 2 GB */
: AL Shared
S G S 0 Libraries
int useless() { return O0; }
int main ()
{
void *pl, *p2, *p3, *p4;
int local = 0;
pl = malloc (1L << 28); /* 256 MB */
p2 = malloc(lL << 8); /* 256 B */ 4
p3 = malloc(lL << 32); /* 4 GB */
p4 = malloc(lL << 8); /* 256 B */ nEE[
/* Some print statements ... */ Data
} Text
Where does everything go?

29

not drawn to scale

x86-64 Example Addresses

Stack
address range ~2 1
Shared
Libraries
local 0x00007ffeed379£54
&pl 0x00007ffeed4379£58 Heap (mmap)
pl 0x00007fffe7a19010
p3 0x00007ffee7al8010 v
p4 0x0000000081602120
p2 0x0000000081602010
big array 0x0000000080601060
huge array 0x0000000000601060 4
main () 0x00000000004005c6
useless () 0x00000000004005c0 Heap (sbrk)
Data
Text

30

e
Today: Compound Types (Cont.)

and Memory
m Arrays

® One-dimensional
" Multi-dimensional (nested)
" Multi-level

m Structures
= Allocation
= Access

® Alignment
m Unions
m Memory Layout
m Floating Point

31

Background

m History
= x87 FP
= Legacy, very ugly
= SSE FP
= Supported by Shark machines

= Special case use of vector instructions
= AVXFP

= Newest version
= Similar to SSE
= Documented in book

32

Programming with SSE3
XMM Registers
B 16 total, each 16 bytes
B 16 single-byte integers

B 8 16-bit integers

B 4 32-bit integers

M 4 single-precision floats

B 2 double-precision floats

B 1 single-precision float

B 1 double-precision float

Scalar & SIMD Operations

. e .
Scalar Operations: Single Precision addss $xmm0, $xmml

&xmmO
e
A

$xmml

- C e .
SIMD Operations: Single Precision addps %xmmO, $xmml

%xmmO
Y Y Y Y
RR BB

B Scalar Operations: Double Precision
addsd %xmmO, $xmml

$xmmO

2

Sxmml

34

FP Basics

m Arguments passed in $xmm0O, $xmm]l, ...
m Result returned in $xmmO

m All XMM registers caller-saved

float fadd(float x, float y) double dadd(double x, double y)
{ {
return x + y; return x + y;
} }
x in $xmm0, y in %$xmml # x in $xmm0, y in %xmml
addss $xmml, %xmmO addsd $xmml, %xmmO
ret ret

35

FP Memory Referencing

m Integer (and pointer) arguments passed in regular registers
m FP values passed in XMM registers

m Different mov instructions to move between XMM registers,
and between memory and XMM registers

double dincr (double *p, double v)

{
double x = *p;
*p = x + v,
return x;

p in %rdi, v in %xmmO

movapd $xmm0O, %xmml # Copy v
movsd grdi), $xmm0 # x = *p
addsd $xmm0O, $%$xmml ¥ t=x+v
movsd gxmml, (%rdi) # *p =t

ret

36

Other Aspects of FP Code

m Lots of instructions
= Different operations, different formats, ...

m Floating-point comparisons

" |nstructions ucomiss and ucomisd
= Set condition codes CF, ZF, and PF

m Using constant values
= Set XMMO register to 0 with instruction xorpd %$xmmO, $%$xmmO
® QOthers loaded from memory

37

