Machine-Level Programming IV: Data (Cont.)

B&O Readings: 3.8-3.9

CSE 361: Introduction to Systems Software

Instructor:

I-Ting Angelina Lee

Note: these slides were originally created by Markus Püschel at Carnegie Mellon University

Today: Compound Types (Cont.) and Memory

Arrays

- One-dimensional
- Multi-dimensional (nested)
- Multi-level

Structures

- Allocation
- Access
- Alignment
- Unions
- Memory Layout
- Floating Point

Struct in C (Recap)

```
struct rec {
    int a[4];
    size_t i;
    struct rec *next;
};
struct rec g;
struct rec *r = &g;
```

```
typedef struct rec {
    int a[4];
    size_t i;
    struct rec *next;
} rec_t;
rec_t g;
rec_t *r = &g;
```


Concept

Groups data of possibly different types into a single object

or

- Refer to members within structure by names
 - r->a[2]
 - g.a[2]

Structure Representation (Recap)

```
struct rec {
   int a[4];
   size_t i;
   struct rec *next;
} g;
struct rec *r = &g;
```


- Structure represented as block of memory
 - Big enough to hold all of the fields
- Fields ordered according to declaration
 - Even if another ordering could yield a more compact representation
- Compiler determines overall size + positions of fields
 - Machine-level program has no understanding of the structures in the source code

Structures & Alignment

Unaligned Data


```
struct S1 {
  char c;
  int i[2];
  double v;
} *p;
```

- Aligned Data
 - Primitive data type requires K bytes
 - Address must be multiple of K

Alignment Principles

Aligned Data

- Primitive data type requires K bytes
- Address must be multiple of K

Aligned data is required on some machines; it is advised on x86-64

Treated differently by IA32 Linux, x86-64 Linux, and Windows!

Motivation for Aligning Data

- Memory accessed by (aligned) chunks of 4 or 8 bytes (system dependent)
 - Inefficient to load or store datum that spans quad word boundaries
 - Virtual memory trickier when datum spans 2 pages

Compiler

- Inserts gaps in structure to ensure correct alignment of fields
- sizeof() should be used to get true size of structs

Specific Cases of Alignment (x86-64)

- 1 byte: char, ...
 - no restrictions on address
- 2 bytes: short, ...
 - lowest 1 bit of address must be 02
- 4 bytes: int, float, ...
 - lowest 2 bits of address must be 002
- 8 bytes: double, long, char *, ...
 - lowest 3 bits of address must be 0002
- 16 bytes: long double (GCC on Linux)
 - lowest 4 bits of address must be 0000?

Satisfying Alignment with Structures

Within structure:

• Must satisfy each element's alignment requirement

Overall structure placement

- Each structure has alignment requirement K
 - K = Largest alignment of any element
- Initial address & structure length must be multiples of K

Example:

K = 8, due to double element

```
        c
        3 bytes
        i [0]
        i [1]
        4 bytes
        v

        p+0
        p+4
        p+8
        p+16
        p+24

        Multiple of 4
        Multiple of 8
        Multiple of 8

Multiple of 8
```

```
struct S1 {
  char c;
  int i[2];
  double v;
} *p;
```

Meeting Overall Alignment Requirement

- For largest alignment requirement K
- Overall structure must be multiple of K

```
struct S2 {
  double v;
  int i[2];
  char c;
} *p;
```


Arrays of Structures

- Overall structure length multiple of K
- Satisfy alignment requirement for every element

```
struct S2 {
  double v;
  int i[2];
  char c;
} a[10];
```


Accessing Array Elements

- Compute array offset 12*idx
 - sizeof (S3), including alignment spacers
- **■** Element j is at offset 8 within structure
- Assembler gives offset a+8

```
a[0] • • • a[idx] • • • • a+12*idx
```

```
i 2 bytes v j 2 bytes a+12*idx a+12*idx+8
```

```
short get_j(int idx) {
  return a[idx].j;
}
```

```
# %rdi = idx
leaq (%rdi,%rdi,2),%rax #3*idx
movzwl a+8(,%rax,4),%eax #a+8+12*idx
```

struct S3 {

short i;

float v:

short j;

} a[10];

Alignment Calculation Example

For each of the following declaration, determine the offset of each field, total size of the struct, and its alignment requirement for x86_64:

```
A. struct P1 { int i; char c; char d; long j; }
B. struct P2 { short w[3]; char c[3]; };
c. struct P3 { struct P2 a[2]; struct P1 t };
```


Saving Space

Put large data types first

```
struct S4 {
  char c;
  int i;
  char d;
} *p;
struct S5 {
  int i;
  char c;
  char d;
} *p;
```

■ Effect: saving 4 bytes

Putting it Together

■ Code demonstration: array of struct on stack

Today

Arrays

- One-dimensional
- Multi-dimensional (nested)
- Multi-level

Structures

- Allocation
- Access
- Alignment

Unions

- Memory Layout
- **■** Floating Point

Union in C

- Circumvent the type system of C
- Allowing a single object to be referenced according to multiple types
- Fields share the same memory location
- Refer to members within structure by names
 - up->i[2]
 - (*up).i[2]

```
union U1 {
  char c;
  int i[2];
  double v;
} *up;
```

Union Allocation

- Allocate according to largest element
- Can only use one field at a time

```
union U1 {
  char c;
  int i[2];
  double v;
} *up;
```

```
struct S1 {
  char c;
  int i[2];
  double v;
} *sp;
```


Using Union to Access Bit Patterns

```
typedef union {
  float f;
  unsigned u;
} bit_float_t;
```

```
f 4
```

```
float bit2float(unsigned u)
{
  bit_float_t arg;
  arg.u = u;
  return arg.f;
}
```

```
unsigned float2bit(float f)
{
  bit_float_t arg;
  arg.f = f;
  return arg.u;
}
```

Same as (float) u?

Same as (unsigned) f?

Byte Ordering Revisited

■ Idea

- Short/long/quad words stored in memory as 2/4/8 consecutive bytes
- Which byte is most (least) significant?
- Can cause problems when exchanging binary data between machines

■ Big Endian

- Most significant byte has lowest address
- Sparc

■ Little Endian

- Least significant byte has lowest address
- Intel x86, ARM Android and IOS

Bi Endian

- Can be configured either way
- ARM

Byte Ordering Example

```
union {
   unsigned char c[8];
   unsigned short s[4];
   unsigned int i[2];
   unsigned long l[1];
} dw;
```

32-bit

c[0]	c[1]	c[2]	c[3]	c[4]	c[5]	c[6]	c[7]
s[0]		s[1]		s[2]		s[3]	
i[0]				i[1]			
1[0]							

64-bit

lower

address

 c[0]
 c[1]
 c[2]
 c[3]
 c[4]
 c[5]
 c[6]
 c[7]

 s[0]
 s[1]
 s[2]
 s[3]

 i[0]
 i[1]

higher address

Byte Ordering Example (Cont).

```
int j;
for (j = 0; j < 8; j++)
                         dw.c[j] = 0xf0 + j;
printf("Characters 0-7 == [0x8x, 0x8x, 0
0x8x, 0x8x, 0x8x, 0x8x] \n'',
                         dw.c[0], dw.c[1], dw.c[2], dw.c[3],
                         dw.c[4], dw.c[5], dw.c[6], dw.c[7]);
printf("Shorts 0-3 == [0x8x, 0x8x, 0x8x, 0x8x] \n",
                         dw.s[0], dw.s[1], dw.s[2], dw.s[3]);
printf("Ints 0-1 == [0x%x,0x%x]\n",
                         dw.i[0], dw.i[1]);
printf("Long 0 == [0x%lx]\n",
                         dw.1[0]);
```

Byte Ordering on IA32

Little Endian

Output:

```
Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]

Shorts 0-3 == [0xf1f0,0xf3f2,0xf5f4,0xf7f6]

Ints 0-1 == [0xf3f2f1f0,0xf7f6f5f4]

Long 0 == [0xf3f2f1f0]
```

Byte Ordering on Sun

Big Endian

Output on Sun:

```
Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]
Shorts 0-3 == [0xf0f1,0xf2f3,0xf4f5,0xf6f7]
Ints 0-1 == [0xf0f1f2f3,0xf4f5f6f7]
Long 0 == [0xf0f1f2f3]
```

Byte Ordering on x86-64

Little Endian

Output on x86-64:

```
Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]
Shorts 0-3 == [0xf1f0,0xf3f2,0xf5f4,0xf7f6]
Ints 0-1 == [0xf3f2f1f0,0xf7f6f5f4]
Long 0 == [0xf7f6f5f4f3f2f1f0]
```

Summary of Compound Types in C

Arrays

- Contiguous allocation of memory
- Aligned to satisfy every element's alignment requirement
- Pointer to first element
- No bounds checking

Structures

- Allocate bytes in order declared
- Pad in middle and at end to satisfy alignment

Unions

- Overlay declarations
- Way to circumvent type system

Today: Compound Types (Cont.) and Memory

Arrays

- One-dimensional
- Multi-dimensional (nested)
- Multi-level

Structures

- Allocation
- Access
- Alignment
- Unions
- Memory Layout
- Floating Point

not drawn to scale

x86-64 Linux Memory Layout

Stack

- Runtime stack (8MB limit)
- E. g., local variables

Heap

- Dynamically allocated as needed
- When call malloc(), calloc(), new()

Data

- Statically allocated data
- E.g., global vars, static vars, string constants

■ Text / Shared Libraries

- Executable machine instructions
- Read-only

0x400000 0x000000

not drawn to scale

Memory Allocation Example

```
char big array[1L<<24]; /* 16 MB */
char huge array[1L<<31]; /* 2 GB */</pre>
int global = 0;
int useless() { return 0; }
int main ()
   void *p1, *p2, *p3, *p4;
   int local = 0;
   p1 = malloc(1L << 28); /* 256 MB */
   p2 = malloc(1L << 8); /* 256 B */
   p3 = malloc(1L << 32); /* 4 GB */
   p4 = malloc(1L << 8); /* 256 B */
 /* Some print statements ... */
```


Where does everything go?

not drawn to scale

x86-64 Example Addresses

address range ~247

local
&p1
p1
p3
p4
p2
big_array
huge_array
main()
useless()

Today: Compound Types (Cont.) and Memory

Arrays

- One-dimensional
- Multi-dimensional (nested)
- Multi-level

Structures

- Allocation
- Access
- Alignment
- Unions
- Memory Layout
- Floating Point

Background

History

- x87 FP
 - Legacy, very ugly
- SSE FP
 - Supported by Shark machines
 - Special case use of vector instructions
- AVX FP
 - Newest version
 - Similar to SSE
 - Documented in book

Programming with SSE3

XMM Registers

- 16 total, each 16 bytes
- 16 single-byte integers

Scalar & SIMD Operations

FP Basics

- Arguments passed in %xmm0, %xmm1, ...
- Result returned in %xmm0
- All XMM registers caller-saved

```
float fadd(float x, float y)
{
    return x + y;
}
```

```
double dadd(double x, double y)
{
    return x + y;
}
```

```
# x in %xmm0, y in %xmm1
addss %xmm1, %xmm0
ret
```

```
# x in %xmm0, y in %xmm1
addsd %xmm1, %xmm0
ret
```

FP Memory Referencing

- Integer (and pointer) arguments passed in regular registers
- **■** FP values passed in XMM registers
- Different mov instructions to move between XMM registers, and between memory and XMM registers

```
double dincr(double *p, double v)
{
    double x = *p;
    *p = x + v;
    return x;
}
```

```
# p in %rdi, v in %xmm0
movapd %xmm0, %xmm1 # Copy v
movsd (%rdi), %xmm0 # x = *p
addsd %xmm0, %xmm1 # t = x + v
movsd %xmm1, (%rdi) # *p = t
ret
```

Other Aspects of FP Code

Lots of instructions

Different operations, different formats, ...

Floating-point comparisons

- Instructions ucomiss and ucomisd
- Set condition codes CF, ZF, and PF

Using constant values

- Set XMM0 register to 0 with instruction xorpd %xmm0, %xmm0
- Others loaded from memory