Cache Memory I

B&O Readings: 6.4-6.7
CSE 361: Introduction to Systems Software

Instructor:
I-Ting Angelina Lee

Note: these slides were originally created in parts by Markus Puschel at
Carnegie Mellon University and in parts by Anne Bracy at Cornell

35

Today

m Cache organization and operation (cont.)
m Performance impact of caches

® The memory mountain

® Rearranging loops to improve spatial locality
" Using blocking to improve temporal locality

36

Recap: General Cache Organization (S, E, B)

E = 2¢ lines per set

N\

line

Direct Mapped: E=1

Fully Associative: S=1

Cache size:
C =S x E x B data bytes

4
r set
o000
S=ZSSEtS< eocee
0000000000000 OCDOCGCOGOEOGEOGOEONOEOEOSONOEOSEOSOOO
o000
\.
Y, tag oooooo B_1
7
valid bit '

B = 2® bytes per cache block (the data)

37

Recap: Cache Read

E = 2¢ lines per set

* Locate set

* Check if any line in set
has matching tag

* Yes + line valid: hit

* Locate data starting
at offset

Address of word:
t bits s bits | b bits

tag set block
index offset

cooe
coce
S=Zssets< seooe
©0cccccccccccccccsccccccee
cooe
\
v tag | [o]2]2]:---- B-1
valid bit ~— —

data begins at this offset

B = 2° bytes per cache block (the data)

38

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

v| | tag | [of1]2{3]als]6l7|}||v] [tag] [0]2]2]3]4]5]6]7

v| [tag | [ol1]2]3]a]5]e]7]{|[v] [teg] [0]2]2]3]a]5]6]7 find set

v| | tag | [of1]2{3]als]6l7|}||v] [tag] [0]2]2]3]4]5]6]7

v| | tag | [of1]2[3]als]6l7|}||v] [tag] [0]2]2]3]4]5]6]7

39

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes = hit

v| [tag | |of1]2[3]afs]6l7||||v] [tag] [0]2]2]3[4]5]|6]7

block offset

40

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes = hit

v| [tag | [of1]2[3]als]6l7||||v] [tag] [0]2]2]3]4]5]6]7

block offset

short int (2 Bytes) is here

No match:
* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

4

2-Way Set Associative Cache Simulation

t=2 s=1 b=1
XX X X M=16 byte addresses, B=2 bytes/block,

S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss (cold)
1 [0001,], hit
7 [0111,], miss (cold)
8 [1000,], miss (cold)
0 [0000,] hit

v Tag Block

seto |1 [00 [Mm[0-1]
1 |10 |M[8-9]

(BN

Set 1 01 M[6-7]

42

Ignore the variables sum, i, j

A Higher Level Example

assume: cold (empty) cache,

a[0][0] goes here
int sum array rows(double a[8][8]) ({ l
int i, j;
double sum = 0; a[4][0-3]
for (i = 0; i < 8; i++) alali4-7]
for (j = 0; j < 8; j++) a[5][0-3]
sum += a[i] []];
return sum; a[5][4-7]
} a[6][0-3]
a[6][4-7]
Assume M = 232(32-bit addresses)
a[7][0-3]
= Capacity of this cache: 256 bytes a[71[4-7]
= Size of this array:512 bytes
= Number of bits used for block offset: 5 bits S ~ -
= Number of bits used for indexing sets: 3 bits 32 B = 4 doubles

= Number of bits for tags: 24 bits

= Number of reads performed: 64
= Number of misses incurred: 16 blackboard

43

A Higher Level Example

int sum array rows(double a[8][8]) {
int 1, j;
double sum = 0;

for (j = 0; j < 8; j++)
for (1 = 0; i < 8; i++)
sum += a[i] []]’
return sum;

Assume M = 232(32-bit addresses)

= Capacity of this cache:

= Size of this array:

= Number of bits used for block offset:
= Number of bits used for indexing sets:
= Number of bits for tags:

= Number of reads performed:

= Number of misses incurred:

Ignore the variables sum, i, j

assume: cold (empty) cache,
a[0][0] goes here

|

G J
Y

32 B =4 doubles

blackboard

44

A Higher Level Example

int sum array rows (double a[8][12]) ({
int 1, j;
double sum = 0;

for (7 = 0; j < 12; j++)
for (1 = 0; i < 8; i++)
sum += a[i] []]’
return sum;

Assume M = 232(32-bit addresses)

= Capacity of this cache: 256 bytes

= Size of this array: 768 bytes

= Number of bits used for block offset: 5 bits

= Number of bits used for indexing sets: 2 bits
= Number of bits for tags: 25 bits

= Number of reads performed: 96

= Number of misses incurred:

Ignore the variables sum, i, j

assume: cold (empty) cache,
a[0][0] goes here

|

G J
Y

32 B =4 doubles

blackboard

47

o
What about writes?

m Multiple copies of data exist:
= |1, L2, L3, Main Memory, Disk

m What to do on a write-hit?

= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
= Need a dirty bit (line different from memory or not)

m What to do on a write-miss?

= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location follow
= No-write-allocate (writes straight to memory, does not load into cache)

m Typical
= Write-through + No-write-allocate
= Write-back + Write-allocate

49

Intel Core i7 Cache Hierarchy

Access: 40-75 cycles

L3 unified cache

(shared by all cores) Block size: 64 bytes for

all caches.

Processor package

' Core 0 Core 3 L1 i-cache and d-cache:
| : 32 KB, 8-way,
Regs Regs Access: 4 cycles

L1 L1 L1 L1 L2 unified cache:

. | |d-cache| |i-cache d-cache| |i-cache | | 256 KB, 8-way,
" Access: 10 cycles

' | | L2 unified cache L2 unified cache | | | |3 unified cache:

8 MB, 16-way,

Main memory

50

Cache Performance Metrics

m Miss Rate

" Fraction of memory references not found in cache (misses / accesses)
=1 - hit rate

= Typical numbers (in percentages):

= 3-10% for L1

= can be quite small (e.g., < 1%) for L2, depending on size, etc.

m Hit Time

" Time to deliver a line in the cache to the processor

= includes time to determine whether the line is in the cache
= Typical numbers:

= 4 clock cycle for L1

= 10 clock cycles for L2

m Miss Penalty
= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)

51

Let’s think about those numbers

m Huge difference between a hit and a miss
= Could be 100x, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:
97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”

52

Writing Cache Friendly Code

m Make the common case go fast
" Focus on the inner loops of the core functions

m Minimize the misses in the inner loops
= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories.

53

Today

m Performance impact of caches

"= The memory mountain

54

The Memory Mountain

m Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

m Memory mountain: Measured read throughput as a
function of spatial and temporal locality.

= Compact way to characterize memory system performance.

55

1
Memory Mountain Test Function

long data[MAXELEMS]; /* Global array to traverse x/

/* test - Iterate over first "elems" elements of Call test () with many

* array “data” with stride of "stride", using combinations of elems
* using 4x4 loop unrolling. and stride
*/)

int test(int elems, int stride) {
long i, sx2=stridex2, sx3=stridex3, sx4=stridex4; | FOT eac1_1 elems
long accO = 0, accl = 0, acc2 = 0, acc3 = 0; and stride:
long length = elems, limit = length - sx4;

1. Call test()

/* Combine 4 elements at a time x/ once to warm up
for (1 = 0; 1 < limit; 1 += sx4) { the caches.
accO = accO + data[il];
accl = accl + data[i+stride]; 2. Call test()
acc2 = acc2 + data[i+sx2]; again and measure
acc3 = acc3 + data[i+sx3]; the read
} throughput (MB/s)

/* Finish any remaining elements x/
for (; i < length; i++) {
accO = accO + data[il];

}

return ((acc@ + accl) + (acc2 + acc3));

} mountain/mountain.c 56

Core i7 Haswell

: 2.1 GHz
The Memory Mountain 32 KB L1 d-cache
256 KB L2 cache
Aggress{ve 8 MB L3 cache
prefetching 54 B block size
16000
. 14000
2
m
= 12000
2 10000
g
£ 8000 - ‘ Ridges
§ 5000 ? ;)f terpporal
@ ocality
4000
2000
Slopes
of spatial //3;
locality 128k
512k

2m

Stride (x8 bytes) Size (bytes)

57

.
Ridges of Temporal Locality (stride=8)

Main L3 L2 L1
memory cache cache cache
region region region region
14000
12000
0
g 10000 —
)
3 8000 S S
K=
(=]
=)
2 6000 —]
=
®
o 4000 — T
- ________TI—
NI E BB EEEERIEER
S & A € o & & B X D N g
RO VAN ,\&b‘ MNP SO AN

Working set size (bytes)

58

A Slope of Spatial Locality

12000

10000 —

8000 —

6000 —

4000 — One access per cache line

ZOOO:II _
. III.IIIIL

s10 s11

Read throughput (MB/s)

Stride (x8 bytes)

59

= Rearranging loops to improve spatial locality

60

-
Matrix Multiplication Example

Variable sum
held in register

m Description: /* i3k */
= Multiply N x N matrices for (i=0; i<n; i++) {
= Matrix elements are for (j=0; j<n; j++) {

doubles (8 bytes) sum = 0.0; <

= O(N3) total operations for (k=0; k<n; k+t+)
sum += a[i] [k] * b[k] [J],

c[i][J] = sum;

= N reads per source
element

= N values summed per
destination

= but may be able to
hold in register

matmult/mm. c

61

Miss Rate Analysis for Matrix Multiply

m Assume:
= Block size = 32B (big enough for four doubles)
= Matrix dimension (N) is very large
= Approximate 1/N as 0.0
= Cache is not even big enough to hold multiple rows

m Analysis Method:
" Look at access pattern of inner loop

: :\i x\k

62

Layout of C Arrays in Memory (review)

m Carrays allocated in row-major order
= each row in contiguous memory locations
m Stepping through columns in one row:
" for (i = 0; i < N; i++)
sum += a[0][i];
= accesses successive elements
= if block size (B) > sizeof(a;) bytes, exploit spatial locality
= miss rate = sizeof(a;) / B
m Stepping through rows in one column:
" for (1 = 0; 1 < n; i++)
sum += a[i] [0];
= accesses distant elements
" no spatial locality!
= miss rate =1 (i.e. 100%)

63

Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {

for (j=0; j<n; j++) { i
sum = 0.0; g(i’*) i
A B

Inner loop:

for (k=0; k<n; k++)
sum += a[i] [k] * b[k]l[]j];

c[i] [§] = sum; ‘ ‘ ‘
}

matmult/mm.c § Row-wise Column- Fixed
wise

Misses per inner loop iteration:

A B ¢
0.25 1.0 0.0

64

Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; j++) {

for (i=0; i<n; i++) { i
sum = 0.0; g(i’*) i
A B

Inner loop:

for (k=0; k<n; k++)
sum += a[i] [k] * b[k]l[]j];

c[i][j] = sum; ‘ ‘ ‘
}

matmult/mm.c § Row-wise Column- Fixed
wise

Misses per inner loop iteration:

A B ¢
0.25 1.0 0.0

65

Matrix Multiplication (kij)

/* kij */
Inner loop:
for (k=0; k<n; k++) {
for (i=0; i<n; i++) ({ (i,k) :(k'*)g
r = a[i] [k]; 0 (i,%)
for (j=0; j<n; j++) A B C
c[i][jJ] += r * b[k][]]’ ‘ ‘ ‘
matmult/mm.c Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B ¢
0.0 0.25 0.25

66

Matrix Multiplication (ikj)

/* ikj */
. : : Inner loop:
for (i=0; i<n; i++) {
for (k=0; k<n; k++) { (i,k) :(k'*)g
r = a[i] [Kk]; i (i,%)
for (j=0; j<n; j++) A B C
c[i][3J] += r * b[k][]j]~ ‘ ‘ ‘
matmult/mm.c Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B ¢
0.0 0.25 0.25

67

Matrix Multiplication (jki)

/* ki */ Inner loop:
for (3j=0; j<n; j++) { (* K)
for (k=0; k<n; k++) { :[| <)
r = b[k][]J]; .
for (i=0; i<n; i++) A 3
c[i] [j] += a[i]l[k] * r;
| |
matmult/mm.c Column- Fixed
wise

Misses per inner loop iteration:

A B ¢
1.0 0.0 1.0

*,1)

L

C

|

Column-
wise

68

Matrix Multiplication (kji)

/* kji */ Inner loop:
for (k=0; k<n; k++) { (* k)
b :ﬂ (k,J)
r = b[k][j]; .
for (i=0; i<n; i++) A 3
c[i] [j] += a[il[k] * r;
| |
matmult/mm.c Column- Fixed
wise

Misses per inner loop iteration:

A B ¢
1.0 0.0 1.0

*,1)

L

C

|

Column-
wise

69

-
Summary of Matrix Multiplication

for (i=0; i<n; i++) {
for (3=0; j<n; j++) { . .
sum = 0.0; Uk (& J'k):
for (k=0; k<n; k++) ¢ 2 loads, O stores
sum += a[il[k] * b[k][]j]; * misses/iter = 1.25
c[i] [j] = sum;
}
}
for (k=0; k<n; k++) { .. ep.s
for (i=0; i<n; i++) { kij (& ikj):
r = a[i] [k]; e 2 |loads, 1 store
for (3j=0; j<n; j++) * misses/iter = 0.5
c[i][j] += r * b[k][]]’
}
}
for (3=0; j<n; j++) {
for (k=0; k<n; k++) { jki (& kji):
r = b[k][j]; e 2 |loads, 1 store
ECE O L e misses/iter = 2.0
c[i][j] += a[i][k] * r;
}
} 70

Core i7 Matrix Multiply Performance

jki / kji
100 —
2.0 miss/iter

c
9
5 g
3 eoe eoe
a ijk / jik ki
$ 1.25 miss/iter B ki
o 10
2 —¢ijk
E,_ - jik
3 —l—kij
9 -
3 K]
8 — e ——— S S— — —
5 kij / ikj

| 0.5 miss/iter

50 100 150 200 250 300 350 400 450 500 550 600 650 700
Array size (n)

4l

