Exceptional Control Flow, Cont:
Processes and Signals

B&O Readings: Chap 8
CSE 361: Introduction to Systems Software

Instructor:
I-Ting Angelina Lee

Note: these slides were originally created in parts by Markus Plschel at
Carnegie Mellon University

42

Modeling £fork with Process Graphs

m A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:
= Each vertex is the execution of a statement
" a->b means a happens before b
= Edges can be labeled with current value of variables
" printf vertices can be labeled with output
= Each graph begins with a vertex with no inedges

m Any topological sort of the graph corresponds to a feasible
total ordering.
= Total ordering of vertices where all edges point from left to right

43

void fork2()

{

printf("LO\n");

if (Fork() '= 0) {
printf("L1\n");
if (Fork() '= 0) {

printf("L2\n");
}
}
printf("Bye\n");

forks.c

fork Example: Nested forks in parent

Bye Bye
> ®
printf printf
LO Ll L2 Bye
o > >0 > >0— >

printf fork printf fork printf printf

Feasible output?

LO
L1
Bye
Bye
L2
Bye

Yes

Feasible output?
LO

Bye

L1

Bye

Bye

L2

No

44

fork Example: Nested £orks in children

void fork3()

{ . L2 Bye
P;l?:f(;'(.?\n")6) ‘ pJ':iLntf printf
1 or - L1 Bve
printf(“L1\n"); prittf fork p;ixntf
if (Fork() == 0) { L0 B
printf("L2\n"); .- > *ge
} printf fork printf
}
rintf("Bye\n");
g Y ("Bye\n") Feasible output? Feasible output?
LO LO
forks.c Bye Bye
L1 L1
Bye L2
Bye Bye
L2 Bye

No Yes

45

fork Example: Two consecutive forks

void fork4()
{
int x = 0;
printf("LO\n");
if(Fork() == 0) x++;
printf("L1,%d\n", x);
Fork();
printf(“Bye\n");
} forks.c
Feasible output? Feasible output?
LO LO
L1,1 L1,0
Bye Bye
Bye 11,1
L1,0 Bye
Bye Bye

Bye Bye

46

e
Reaping Child Processes

m Ildea
= When process terminates, it still consumes system resources
= Examples: Exit status, various OS tables
= Called a “zombie”
= Living corpse, half alive and half dead

m Reaping

= Performed by parent on terminated child to get child's exit status
(using wait or waitpid)
= Kernel then deletes zombie child process

m What if parent doesn’t reap?

= |f any parent terminates without reaping a child, then the orphaned
child will be reaped by init process (pid == 1)

= So, should reap children explicitly in long-running processes
= e.g., shells and servers

48

. void fork7() {
Zombie if (fork() == 0) {
/* Child *x/
printf("Terminating Child, PID = %d\n", getpid());
Example e
} else {
printf("Running Parent, PID = %d\n", getpid());
while (1)
; /% Infinite loop */
linux> ./forks 7 & }
[1] 6639 } forks.c

Running Parent, PID = 6639

Terminating Child, PID = 6640

linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh H hild
6639 ttyp9 00:00:03 forks o —— " DPSSNOWSCNIAPIOCessas
6640 ttyp9 00:00:00 forks <defunct> “defunct” (i.e., a zombie)
6641 ttyp9 00:00:00 ps

linux> kill -9 6639

[1] Terminated —m Killing parent allows child to be
linux> ps € reaped by init
PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh
6642 ttyp9 00:00:00 ps

49

void fork8()
Non- {
. . if (fork() == 0) {
/* Child x/
termlnatlng printf("Running Child, PID = %d\n",
: getpid());
Child Example e
; /* Infinite loop */
} else {
printf("Terminating Parent, PID = %d\n",
getpid());
exit(0);
}
linux> ./forks 8 } forks.c
Terminating Parent, PID = 6675
Running Child, PID = 6676 m Child process still active even though
linux> ps parent has terminated

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh

6676 ttyp9 00:00:06 forks m Must kill child explicitly, or else will
sor iEgyet) Uslipon keep running indefinitely
linux> kill 6676

linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6678 ttyp9 00:00:00 ps

50

Synchronizing with Children

m Parent reaps a child by calling the wait/waitpid function

m pid t wait(int *child status)
m pid t waitpid(pid t pid, int *child status,
int option) ;
= Suspends current process until one of its children terminates

= Return value is the pid of the child process that terminated

" Ifchild status != NULL, then the integer it points to will be set to
a value that indicates reason the child terminated and the exit status:

= Checked using macros defined inwait.h
= See textbook for details

51

wait: Synchronizing with Children

void fork9() {

int child_status;

}-IS ixit

if (fork() == 0) { prg.ntf
printf("HC: hello from child\n");
exit(0):

} else { cT
printf("HP: hello from parent\n"); .- P e Eﬁe
wait(&child_status); fork printf wait printf
printf("CT: child has terminated\n");

}

printf("Bye\n");

} forks.c
Feasible output: Infeasible output:
HC HP
HP CT
CT Bye

Bye HC

52

Another wait Example

m |f multiple children completed, will take in arbitrary order
m Can use macros WIFEXITED and WEXITSTATUS to get information about
exit status

void forklo() {
pid_t pid[N];
int i, child_status;

for (1 = 0; 1 < N; 1++)
if ((pid[i] = fork()) == 0) {
exit(100+1i); /* Child */
}
for (1 =0; i < N; i++) { /* Parent x/
pid t wpid = wait(&child_status);
if (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminate abnormally\n", wpid);

} forks.c

53

waitpid: Waiting for a Specific Process

m pid t waitpid(pid t pid, int &status, int options)
pid_ P pid t p

= Suspends current process until specific process terminates

= Various options (see textbook or man page)

void forkll() {
pid_t pid[N];
int 1, child_status;

for (1 = 0; 1 < N; 1i++)
if ((pid[i] = fork()) == 0)
exit(100+1i); /* Child s/
for (1 = N=1; i >=0; i--) {
pid_t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminate abnormally\n", wpid);

forks.c

54

I
execve: Loading and Running Programs

m int execve(char *filename, char *argv[], char *envp[])

m Loads and runs in the current process:
= Executable file filename
= Can be object file or script file (e.g., #! /bin/bash)
= with argument list argv
= By convention argv[0]==filename
= and environment variable list envp
= “name=value” strings (e.g., USER=droh)
= getenv, putenv, printenv
m Overwrites code, data, and stack
= Retains PID, open files and signal context

m Called once and never returns

= ..exceptif thereis an error

55

Null-terminated Bottom of stack
Structu re Of environment variable strings |,
Null-terminated |
the stack when | command-line arg strings
d Neéw program i o] — WOk i
Sta rtS ; 2avp B=l] i environ
i . J.(global var)
E envp [0] & <
| argvl[argc] = NULL | envp
| argv[argc-1] (in $rdx)
argv e argv [0]
(in $rsi)
argc Stack frame for
(in $rdi) libc start main Top of stack
Future stack frame for
main

56

execve Example

m Executes “/bin/ls -1t /usr/include” in child process
using current environment:

mvargviargc] = NULL
(argc == 3) myargv[2] > “/usr/include”
myargv[l] > W_]t”
myargv ——> 7R Le [0 > “/bin/1ls”

envp[n] = NULL
envp [n-1] > “PWD=/usr/droh”
envp [0] —> “USER=droh”

environ >

if ((pid = Fork()) == 0) { /% Child runs program x/
if (execve(myargv[0], myargv, environ) < 0) {
printf("%s: Command not found.\n", myargv[0]);
exit(1l):;

57

]
Today

Process

O
m Shells
m Signals
|

Nonlocal jumps

58

Linux Process Hierarchy

Corandetia > CGrandehita

Login shell

Child

Note: you can view the
hierarchy using the Linux
pstree command

59

Shell Programs

m Ashellis an application program that runs programs on behalf
of the user.

sh
csh/tcsh
" bash

{

int main()

while (1) {

/* read x/
printf ("> ");

char cmdline[MAXLINE]: /* command line x/

Fgets(cmdline, MAXLINE, stdin);

if (feof(stdin))
exit(0);

/* evaluate x/
eval(cmdline);

shellex.c

Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)

BSD Unix C shell
“Bourne-Again” Shell (default Linux shell)

Execution is a
sequence of read/
evaluate steps

60

-
Simple Shell eval Function

void eval(char xcmdline)

char xargv[MAXARGS]; /* Argument list execve() */

char buf[MAXLINE]; /*x Holds modified command line */

int bg; /* Should the job run in bg or fg? x/
pid_t pid; /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
1t (argv[0] == NULL)
return; /* Ignore empty lines x/

if (!builtin_command(argv)) { _ _
if ((pid = Fork()) == 0) { /% Child runs user job */
1T (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);

exit(0);
}
/* Parent waits for foreground job to terminate x/
if (lbg) {
int status;
if (waitpid(pid, &status, 0) < 0)
) unix_error("waitfg: waitpid error");
else _ _
printf(“sd %s", pid, cmdline);
}
return;

shellex.c 61

Problem with Simple Shell Example

m Our example shell correctly waits for and reaps foreground
jobs

m But what about background jobs?
= Will become zombies when they terminate
= Will never be reaped because shell (typically) will not terminate
= Will create a memory leak that could run the kernel out of memory

62

I
ECF to the Rescue!

m Solution: Exceptional control flow

" The kernel will interrupt regular processing to alert us when a background
process completes

" |n Unix / Linux, the alert mechanism is called a signal

63

]
Today

Process

H

m Shells
m Signals
|

Nonlocal jumps

64

e
Signals

m Asignal is a small message that notifies a process that an
event of some type has occurred in the system
= Akin to exceptions and interrupts
= Sent from the kernel to a process
= Signal type is identified by small integer ID’s (1-30)
®" Only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event

2 SIGINT Terminate User typed ctrl-c

9 SIGKILL Terminate Kill program (cannot override or ignore)
11 SIGSEGV Terminate Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

65

-
Signal Concepts: Sending a Signal

m Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination process

m Kernel sends a signal for one of the following reasons:
= Kernel has detected a system event such as divide-by-zero (SIGFPE) or the
termination of a child process (SIGCHLD)

= Another process has invoked the kill system call to explicitly request
the kernel to send a signal to the destination process

66

Signal Concepts: Receiving a Signal (Kernel)

m Suppose kernel is returning from an exception handler
and is ready to pass control to process B

Process A Process B

user code

kernel code } context switch
Time user code

kernel code } context switch

user code

67

Signal Concepts: Pending and Blocked Signals

m Asignalis pending if sent but not yet received
" There can be at most one pending signal of any particular type
" |mportant: Signals are not queued

= |f a process has a pending signal of type k, then subsequent signals of
type k that are sent to that process are discarded

m A process can block the receipt of certain signals

= Blocked signals can be delivered, but will not be received until the signal
is unblocked

m A pending signal is received at most once

68

Signal Concepts: Pending/Blocked Bits

m Kernel maintains pending and blocked bit vectors in the
context of each process
= pending: represents the set of pending signals
= Kernel sets bit k in pending when a signal of type k is delivered
= Kernel clears bit k in pending when a signal of type k is received

" blocked: represents the set of blocked signals

= Can be set and cleared by using the sigprocmask function
= Also referred to as the signal mask.

69

Signal Concepts: Receiving a Signal (Kernel)

m Suppose kernel is returning from an exception handler
and is ready to pass control to process B
|

Process A Process B

I
I
I
I
I user code
I

kernel code } context switch

Time user code

I
|
I
I [
1 kernel code } context switch
I
: user code

I

m Kernel computes pnb = pending & ~blocked
= If (pnb == 0), pass control to next instruction in the logical flow for B

= Else, choose least nonzero bit kin pnb and force process p to receive
signal k

70

Receiving Signals

m Suppose kernel is returning from an exception handler
and is ready to pass control to process p

m Kernel computes pnb = pending & ~blocked
" The set of pending nonblocked signals for process p

m If (pnb == 0)
= Pass control to next instruction in the logical flow for p

m Else

= Choose least nonzero bit kin pnb and force process p to receive
signal k

" The receipt of the signal triggers some action by p
= Repeat for all nonzero k in pnb

= Pass control to next instruction in logical flow for p
7

Signal Concepts: Receiving a Signal (Process)

m A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

" The receipt of the signal triggers some action by the destination process

m Some possible ways to react:
= Jgnore the signal (do nothing)
= Terminate the process (with optional core dump)
= Catch the signal by executing a user-level function called signal handler

= Akin to a hardware exception handler being called in response to an
asynchronous interrupt:

(1) Signal received (2) Control passes
by process Ly to signal handler ‘
hext (3) Signal
handler runs
(4) Signal handler
y returnsto

next instruction
72

Sending Signals: Process Groups

m Every process belongs to exactly one process group

pid=20

id=40
pgid=20 o

pgid=40

Background Background
process group 32 process group 40
pid=21 pid=22 getpgrp ()
Pgid=20 Pgid=20 Return process group of current process
Foreground setpgid ()

process group 20 Change process group of a process (see

text for details)

73

Sending Signals with /bin/kill Program

m /bin/kill program
sends arbitrary signaltoa 1inux> ./forks 16

Childl: pid=24818 pgrp=24817
Process or process group Child2: pid=24819 pgrp=24817

linux> ps
m Examples PID TTY TIME CMD

= /bin/kill -9 24818 24788 pts/2 00:00:00 tcsh

24818 pts/2 00:00:02 forks
Send SIGKILL to process 24818 24819 pts/2 50.00.05 Forks

24820 pts/2 00:00:00 ps
linux> /bin/kill -9 -24817
linux> ps
PID TTY TIME CMD
in process group 24817 24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

= /bin/kill -9 -24817
Send SIGKILL to every process

74

Sending Signals from the Keyboard

m Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every
job in the foreground process group.

= S|GINT — default action is to terminate each process
= S|GTSTP — default action is to stop (suspend) each process

pid=20

1d=40
pgid=20 P

pgid=40

Background Background
process group 32 process group 40

pid=21 pid=22
pgid=20 pgid=20
Foreground

process group 20 -

Example of ctrl-cand ctrl-z

bluefish> ./forks 17 STAT (process state) Legend:
Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107 First letter:
<types ctrl-z> S: sleeping
Suspended T: stopped
bluefish> ps w R: running
PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28107 pts/8 T 0:01 ./forks 17 Second letter:
28108 pts/8 T 0:01 ./forks 17 s: session leader
28109 pts/8 R+ 0:00 ps w +: foreground proc group
bluefish> fg
./forks 17 See “man ps” for more
<types ctrl-c> details
bluefish> ps w
PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh

28110 pts/8 R+ 0:00 ps w

76

Sending Signals with kill Function

void forkl2()
{

pid_t pid[N];
int 1i;
int child_status;

for (1 = 0; 1 < N; 1i++)
if ((pid[i] = fork()) == 0) {
/* Child: Infinite Loop */
while(1)

}

for (i =0; i < N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

for (1 =0; 1 < N; 1i++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf("Child %d terminated abnormally\n", wpid);

} forks.c

77

Default Signal Handler

m Each signal type has a predefined default action, which is
one of:
® The process terminates
" The process stops until restarted by a SIGCONT signal
" The process ignores the signal

78

Installing Signal Handlers

m The signal function modifies the default action associated
with the receipt of signal signum:
" handler t *signal(int signum, handler t *handler)

m Different values for handler:
= SIG_IGN: ignore signals of type signum
= SIG_DFL: revert to the default action on receipt of signals of type signum
" Otherwise, handler is the address of a user-level signal handler
= Called when process receives signal of type signum
= Referred to as “installing” the handler
= Executing handler is called “catching” or “handling” the signal

= When the handler executes its return statement, control passes back
to instruction in the control flow of the process that was interrupted by
receipt of the signal

79

-
Signal Handling Example

void sigint_handler(int sig) /% SIGINT handler x/
{

printf();
sleep(2);

printf();

fflush(stdout);

sleep(1l);

printf();

exit(0);

int main()

/* Install the SIGINT handler x/
if (signal(SIGINT, sigint_handler) == SIG_ERR)
unix_error();

/* Wait for the receipt of a signal x/
pause() ;

return 0;
} sigint.c

80

Signals Handlers as Concurrent Flows

m Asignal handler is a separate logical flow (not process) that
runs concurrently with the main program

Process A Process A Process B

while (1) handler () {

Time

81

Another View of Signal Handlers as

Concurrent Flows

Signal delivered —>
to process A

Signal received —>
by process A

Process A

curr

next

Process B

user code (main)

kernel code } context switch
user code (main)

kernel code } context switch
user code (handler)

kernel code

user code (main)

82

-
Nested Signal Handlers

m Handlers can be interrupted by other handlers

Main program Handler S Handler T
(2) Control passes
(1) Program Iy to handler S
catches signal s (4) Control passes
(3) Program to handler T
(7) Main program | oxt catches signalt ° >
resumes \‘\l
v (5) Handler T
fg)tﬂirsriloer S returns to
main handler S

program

83

e
Safe Signal Handling

m Handlers are tricky because they are concurrent with
main program and share the same global data structures.

= Shared data structures can become corrupted.
m We'll explore concurrency issues later in the term.

m For now here are some guidelines to help you avoid
trouble.

84

-
Guidelines for Writing Safe Handlers

m GO: Keep your handlers as simple as possible
= e.g., Set aglobal flag and return

m G1: Call only async-signal-safe functions in your handlers
" printf, sprintf, malloc, and exit are not safe!

m G2: Save and restore errno on entry and exit
= So that other handlers don’t overwrite your value of errno

m G3: Protect accesses to shared data structures by temporarily
blocking all signals.
= To prevent possible corruption
m G4: Declare global variables as volatile
= To prevent compiler from storing them in a register
m Gb5: Declare global flags as volatile sig atomic t

= flag: variable that is only read or written (e.g. flag = 1, not flag++)
= Flag declared this way does not need to be protected like other globals

85

