Dynamic Memory Allocation:
Basic Concepts

B&O Readings: 9.9
CSE 361: Introduction to Systems Software

Instructor:
I-Ting Angelina Lee

Note: these slides were originally created by Markus Puschel at Carnegie
Mellon University

Today

m Basic concepts
m Implicit free lists

Dynamic Memory Allocation

m Programmers use dynamic Application
memory allocators (like Dynamic Memory Allocator
malloc) to acquire Heap
memory at run time.
® For data structures whose
size is only known at runtime High Addr
User stack

m Dynamic memory
allocators manage an area
of process virtual memory
known as the heap.

__ Top of heap
(brk ptr)

Heap (viamalloc)

Uninitialized data (.bss)

Initialized data (. data)

Program text (. text)

T townaor

Dynamic Memory Allocation

m Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free
m Types of allocators

= Explicit allocator: application allocates and frees
= E.g.,, mallocand freeinC

= Implicit allocator: application allocates, but does not free
= E.g. garbage collection in Java, ML, and Lisp

m Will discuss simple explicit memory allocation today

]
The malloc Package

#include <stdlib.h>

void *malloc(size t size)
= Successful:

= Returns a pointer to a memory block of at least size bytes
(typically) aligned to 8-byte boundary

» [f size == 0, returns NULL
= Unsuccessful: returns NULL (0) and sets errno

void free (void *p)
= Returns the block pointed at by p to pool of available memory
= p must come from a previous call tomalloc or realloc

Other functions
" calloc:initializes allocated block to zero
" realloc: changes size of a previously allocated block
= sbrk: used internally by allocators to grow or shrink heap

]
malloc Example

void foo(int n, int m) {
int i1, *p;

/* Allocate a block of n ints */
p = (int *) malloc(n * sizeof(int));
if (p == NULL) {
perror ("malloc") ;
exit (0) ;
}

/* Initialize allocated block */
for (i=0; i<n; i++)
pli] = i;

/* Return p to the heap */
free(p) ;

Assumptions Made in This Lecture

m Memory is word addressed (each word can hold a

pointer)
\ Y J % ,_I
Allocated block Free block
(4 words) (3 words) Free word

Allocated word

Allocation Example

pl = malloc(16)

o
Constraints

m Applications
= Canissue arbitrary sequence of malloc and free requests
= freerequest must betoamalloc’d block

m Allocators
= Can’t control number or size of allocated blocks
" Must respond immediately tomalloc requests
= j.e., can’t reorder or buffer requests
= Must allocate blocks from free memory
= j.e., can only place allocated blocks in free memory
= Must align blocks so they satisfy all alignment requirements
= 8 byte alignment for GNUmalloc (1ibcmalloc) on Linux boxes
= Can manipulate and modify only free memory
® Can’t move the allocated blocks once they aremalloc’d
= j.e., compaction is not allowed

Performance Goal #1: Throughput

m Given some sequence of malloc and free requests:
R, R, .. R,...,R

m Maximize Throughput:
"= Number of completed requests per unit time
= Example:
= 5,000 malloc calls and 5,000 £ree calls in 10 seconds
= Throughput is 1,000 operations/second

10

Performance Goal #2: Memory Utilization

m Given some sequence of malloc and free requests:
Ry, Ry, ... R, ..., R,

m Terminology:

" malloc (p) resultsin a block with a payload of p bytes
= after R,, aggregate payload P, = sum of all current (hon-freed) payloads
" H,: current heap size (can only increase)

= Peak memory utilization: highest ratio between the aggregate payload
and the size of the heap (best possible ratio = 1)

= Use what you have. Don’t be wasteful.

m Maximize Peak Memory Utilization:

" When was aggregate payload closest to size of the heap?
= Poor memory utilization caused by fragmentation

Maximizing throughput and peak memory utilization = HARD
" These goals are often conflicting

1

Internal Fragmentation

m For a given block, internal fragmentation occurs if payload is
smaller than block size

Block
/\
o Y
Internal Internal
fragmentation fragmentation

m Caused by
" QOverhead of maintaining heap data structures
= Padding for alignment purposes

= Explicit policy decisions
(e.g., to return a big block to satisfy a small request)

m Depends only on the pattern of previous requests
" Thus, easy to measure

External Fragmentation

m Occurs when there is enough aggregate heap memory,
but no single free block is large enough

pl = malloc(16)

P2 = malloc(20) [TTTT]

P3 = malloc(24) T T T T TTT]
free(p2) [TTTTT]
P4 ='malicc(24)] Oops! (what would happen now?)

m Depends on the pattern of future requests
= Thus, difficult to measure

13

Implementation Issues: the 5 Questions

1. Given just a pointer, how much memory do we free?
2. How do we keep track of the free blocks?

3. When allocating a structure that is smaller than the free
block it is placed in, what do we do with the extra space?

4. How do we pick a block to use for allocation? (if a few work)

5. How do we reinsert freed block?

14

Q1: Knowing How Much to Free

m Standard method
= Keep the length of a block in the word preceding the block.
= This word is often called the header field or header
= Requires an extra word for every allocated block

pO = malloc(16)

block size data

free (p0)

15

Q2: Keeping Track of Free Blocks

m Method 1: Implicit list using length—links all blocks

20

24

m Method 2: Explicit list among the free blocks using pointers

29

L~
-

m Method 3: Segregated free list

= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

16

Today

m Basic concepts
m Implicit free lists

17

Method 1: Implicit List

m For each block we need both size and allocation status
® Could store this information in two words: wasteful!

m Standard trick

= |f blocks are aligned, some low-order address bits are always O
" |nstead of storing an always-0 bit, use it as a allocated/free flag

" When reading size word, must mask out this bit
1 word
N
—
31 3210

a = 1: Allocated block
a = 0: Free block
Format of

allocated and
free blocks

Size: block size

Payload: application data
(allocated blocks only)

18

Detailed Implicit Free List Example

el T 1]

32/0 %

of
heap

8/0

. Double-word Allocated blocks: shaded grey
' aligned Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit

Q4: Implicit List: Finding a Free Block

m First fit:
= Search list from beginning, choose first free block that fits:
" Linear time in total number of blocks (allocated and free)
® Can cause “splinters” (of small free blocks) at beginning of list

m Next fit:
= Like first fit, but search list starting where previous search finished
= Often faster than first fit: avoids re-scanning unhelpful blocks
= Some research suggests that fragmentation is worse

m Best fit:

= Search list, choose the best free block: fits, with fewest bytes left over
= Keeps fragments small—usually helps fragmentation
= Typically runs slower than first fit

20

Q3: Implicit List: Allocating in Free Block

Suppose we need to allocate 3 words

This is our free block of choice /

Two options:
1. Allocate the whole block (internal fragmentation!)

SR T

2. Split the free block P

- A

1
p

21

Q5: Implicit List: Freeing a Block

m Simplest implementation: clear the “allocated” flag
" But can lead to “false fragmentation”

free (p) p
8

16

malloc(20) Oops!

There is enough free space, but the allocator won’t be able to find it

22

Implicit List: Coalescing

m Join (coalesce) with next/previous blocks, if they are free
= Coalescing with next block

16 8

free (p) P gone

16

How do we coalesce with previous block?

23

Implicit List: Bidirectional Coalescing

m Boundary tags [Knuth73]
= Replicate size/allocated word at “bottom” (end) of free blocks
= Allows us to traverse the “list” backwards, but requires extra space
= |mportant and general technique!

16 16 24 24 i 8

\/_/\/

Header a = 1: Allocated block
a = 0: Free block
Format of . .
allocated and Size: Total block size
free blocks Payload: Application data
(allocated blocks only)
Boundary tag

(footer)

24

Constant Time Coalescing

Case 1

Case 2

Free

Case 3 Case 4
Free Free
| Allocated | Free

25

Constant Time Coalescing (Case 1)

—

n 1 n 0
n 1 n 0

\\l,'

)©< 27

Constant Time Coalescing (Case 2)

n+m2

m2

m2

\\l,'

n+m2

29

Constant Time Coalescing (Case 3)

\\l,'

ml

n+ml

ml

n+ml

31

Constant Time Coalescing (Case 4)

ml 0 n+ml+m?2 0
ml 0
n 1
—p
n 1
m2 0
m2 0 n+ml+m?2 0

\\l"

Disadvantages of Boundary Tags

m Internal fragmentation

m Can it be optimized?
= Which blocks need the footer tag?
" What does that mean?

34

Constant Time Coalescing When
Allocated Block Has No Footer (Case 1)

Use an additional free
bit to indicate if the
previous block is free

Only include a footer
if the block is free.

\\l,'

35

Constant Time Coalescing When
Allocated Block Has No Footer (Case 1)

—

n 1/1 n 1/0
n 0

Need to modify
next block's bit
when allocate /

\\l,'

free a new block.

36

Constant Time Coalescing When Allocated

Block Has No Footer (Case 2)

\\l,'

1/1

n+m2

1/0

m2

1/0

m2

n+m2

37

Constant Time Coalescing When Allocated

Block Has No Footer (Case 3)

\\l,'

ml

*/0

ml

0

0/1

n+ml

*/0

n+ml

38

]
Constant Time Coalescing When Allocated
Block Has No Footer (Case 4)

m1l */0 n+ml+m2 |*/0
ml 0
n 0/1
—
m2 0/0
m2 0 n+ml+m2 0

\\l"

e
Implementing an Allocator with

Implicit Free List

#define WSIZE 4 /* Word and header / footer size */
#define DSIZE 8 /* Double word size (8 bytes) */

/* Pack a size and allocated bit into a word */
#define PACK(size, alloc) ((size) | (alloc))

/* Read and write a word (4 byted) at address p */
#define GET (p) (*(size t *) (p))
#define PUT (p, val) (*(size_t *) (p) = (val))

/* Read the size and allocated fields from address p */
#define GET SIZE(p) (GET(p) & ~0x7)
#define GET ALLOC(p) (GET(p) & Ox1)

/* Given block ptr bp, compute address of its header and footer */
#define HDRP (bp) ((char *) (bp) - WSIZE)
#define FTRP (bp) ((char *) (bp) + GET SIZE (HDRP(bp)) - DSIZE)

/* Given block ptr bp, compute address of next and prev blocks */
#define NEXT BLKP (bp) \

((char *) (bp) + GET SIZE(((char *) (bp) - WSIZE)))

#define PREV_ BLKP (bp) \

((char *) (bp) - GET_SIZE(((char *) (bp) - DSIZE)))

40

e
Implementing an Allocator with

Implicit Free List

int mm init(void)
{
/* create the initial empty heap */
if ((heap_ listp = mem sbrk (4*WSIZE)) == (void *)-1)
return -1;
PUT (heap listp, 0); /* alignment padding */
PUT (heap listp+WSIZE, PACK(DSIZE, 1)); /* prologue header */
PUT (heap listp+DSIZE, PACK(DSIZE, 1)); /* prologue footer */
PUT (heap listp+WSIZE+DSIZE, PACK(0, 1)); /* epilogue header */
heap listp += DSIZE;

/* Extend the heap with a free block of CHUNKSIZE bytes */

if (extend heap (CHUNKSIZE/WSIZE) == NULL)
return -1;
return O;

&

Start Unused////,\\\\‘///////—s\\\\\\x/////////////,”————55\\\\\\\\\\\\‘,///////—N\\\\\\x
7, 7/
heap /
4

Summary of Key Allocator Policies

m Placement policy:
= First-fit, next-fit, best-fit, etc.
" Tradeoffs: throughput vs. fragmentation

= |nteresting observation: segregated free lists (more next lecture)
approximate best fit placement policy without searching entire free list

m Splitting policy:
= When do we go ahead and split free blocks?
"= How much internal fragmentation are we willing to tolerate?

m Coalescing policy:
" Immediate coalescing: coalesce each time £ree is called
= Deferred coalescing: improve performance by deferring until needed
= Coalesce as you scan the free list formalloc
= Coalesce when external fragmentation reaches some threshold

43

Implicit Lists: Summary

m Implementation: very simple

m Allocate cost:
= |inear time worst case

m Free cost:
® constant time worst case

= even with coalescing

m Memory usage:
= will depend on placement policy (First-fit, next-fit or best-fit)

m Not used in practice formalloc/free (too slow)
= used in many special purpose applications

m Concepts of splitting & coalescing are general to all allocators

44

