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A simple ID method: sinusoidal correlation

G(ejω)+

H(ejω)

v(k)
y(k) u(k)

e(k)

Fundamental property of linear systems

Y (jω) = G(jω)U(jω) or, in discrete time, Y (ejω) = G(ejω)U(ejω).

Identification approach:

Apply a series of sinusoidal inputs (“sweptsine” input)

and for each find the gain and phase change of the output.
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Sinusoidal correlation methods

Method:

Select the input frequency, ωu (rad./sec.), such that,

ωu
2π

=
r

NT
for some integer r.

Input:

u(k) = α cos(ωuk), k = 0, 1, . . . , N − 1

Output:

y(k) = α
∣∣∣G(ejωu)

∣∣∣ cos(ωuk + θ(ωu)) + v(k) + transient

where θ(ωu) = arg(G(ejωu))
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Sinusoidal correlation methods

Correlation functions:

Ic(N) =
1

N

N−1∑

k=0

y(k) cos(ωuk)

Is(N) =
1

N

N−1∑

k=0

y(k) sin(ωuk)

These can be calculated from the data.

Expanding:

Ic(N) =
α

2

∣∣∣G(ejωu)
∣∣∣ cos(θ(ωu))

+ α
∣∣∣G(ejωu)

∣∣∣ 1

N

N−1∑

k=0

cos(2ωuk + θ(ωu))

+
1

N

N−1∑

k=0

v(k) cos(ωuk)
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Sinusoidal correlation methods

If the noise, v(k), is sufficiently uncorrelated

(for example, is filtered gaussian noise),

then the variance satisfies,

lim
N−→∞

var

{
1

N

N−1∑

k=0

v(k) cos(ωuk)

}
= 0

with a convergence rate of 1/N .

2014-9-20 2.5

Sinusoidal correlation methods

So, as in the limit as N −→∞,

E{Ic(N)} −→ α

2

∣∣∣G(ejωu)
∣∣∣ cos(θ(ωu))

E{Is(N)} −→ −α
2

∣∣∣G(ejωu)
∣∣∣ sin(θ(ωu))

and lim
N−→∞

var{Ic(N)} = 0, lim
N−→∞

var{Is(N)} = 0

Estimate the transfer function via:

∣∣∣ĜN (ejωu)
∣∣∣ =

√
Ic(N)2 + Is(N)2

α/2

arg ĜN (ejωu) = − arctan
Is(N)

Ic(N)
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Sweptsine ID methods

Advantages:

I Energy is concentrated at the frequencies of interest.

I Size of u(k) can easily be tuned as a function of frequency.

I Easy to avoid saturation and tune S/N ratio.

Disadvantages:

I A large amount of data is required.

I Significant amount of time required for experiments.

I Some processes won’t allow sinusoidal inputs.
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Background on discrete signals and signal analysis

Signals considered in detail:

I Finite energy;

I Periodic;

I Random;

I Finite length.

Signal properties that we can estimate from data:

I Autocorrelation

I Crosscorrelation

I Frequency domain representation (via Fourier transform)

I Spectral densities (energy or power)
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Fourier transform

Discrete-time domain signal:

x(k), k = −∞, . . . ,∞.

The Fourier Transform of x(k) defined as,

X(ejω) =
∞∑

k=−∞
x(k)e−jωk (or sometimes X(ω))

X(ejω) is periodic, with period 2π.

If x(k) is finitely summable,

∞∑

k=−∞
|x(k)| < ∞,

then X(ejω) converges.
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Inverse Fourier transform

The inverse Fourier Transform is,

x(k) =
1

2π

∫ π

−π
X(ejω)ejωkdω,

where k = −∞, . . . ,∞.
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Energy spectral density

If x(k) is a finite energy signal,

‖x(k)‖22 =
∞∑

k=−∞
|x(k)|2 < ∞.

The sequence, x(k), has a Fourier transform,

X(ejω) =
∞∑

k=−∞
x(k)e−jωk, where ω ∈ [−π, π),

The energy spectral density can be defined as,

Sx(e
jω) = |X(ejω)|2.
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Autocorrelation (finite energy signals)

The autocorrelation of x(k) is,

Rx(τ) =
∞∑

k=−∞
x(k)x(k − τ), τ = −∞, . . . , 0, . . . ,∞.

The energy spectral density is the Fourier Transform of the autocorrelation:

∞∑

τ=−∞
Rx(τ)e

−jωτ = Sx(e
jω).
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Discrete periodic signals

If x(k) is periodic with period equal to N (assume N even);

x(k) = x(k +N), for all k ∈ {−∞,∞}.

The fundamental frequency is,

ω0 =
2π

N
.

There are only N unique harmonics of the sinusoid, ejω0 .

The non-negative harmonic frequencies are,

ejnω0 , n = 0, 1, . . . , N/2.
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Discrete Fourier series (periodic signals)

Periodic signal: x(k) (period = N).

The Fourier series is:

X(ejωn) =

N−1∑

k=0

x(k)e−jωnk, where ωn =
2πn

N
= nω0,

n = 0, . . . , N − 1.

The inverse transform is:

x(k) =
1

N

N−1∑

n=0

X(ejωn)ejωnk.
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Autocorrelation (periodic signals)

The autocorrelation of x(k) (of period N) is:

Rx(τ) =
1

N

N−1∑

k=0

x(k)x(k − τ).

The Fourier transform of Rx(τ) is defined as the power spectral density,

φx(e
jωn) =

N−1∑

τ=0

Rx(τ)e
−jωnτ =

1

N
|X(ejωn)|2

Energy in a single period:

N−1∑

k=0

|x(k)|2 =

N−1∑

n=0

φx(e
jωn)
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Cross-correlation (periodic signals)

The cross-correlation of y(k) and u(k) (both of period = N) is:

Ryu(τ) =
1

N

N−1∑

k=0

y(k)u(k − τ).

Cross-spectral density (FT of the cross-correlation):

φyu(e
jωn) =

N−1∑

τ=0

Ryu(τ)e
−jωnτ , ωn = 2πn

N
,

n = 0, . . . , N − 1

=
1

N
Y (ejωn)U∗(ejωn)
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Noise models: random signals

Normally distributed noise:

e(k) ∈ N (0, λ), =⇒
{
E{e(k)} = 0 (zero mean)

E{|e(k)|2} = λ (variance)

The e(k) are independent and identically distributed (i.i.d.).

G(ejω)+

H(ejω)

v(k)
y(k) u(k)

e(k)

v(k) =
∞∑

l=0

h(l)e(k − l) = H e(k) with e(k) ∈ N (0, λ).
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Autocovariance (random signals)

For random x(k), with E{x(k)} = 0,

Define the autocovariance sequence,
or covariance function, as;

Rx(τ) = E{x(k)x(k − τ)}
= E{x(k)x∗(k − τ)} (in the complex case)

= E{x(k)x∗(k − τ)} (in the multivariable case)

General (non-stationary, non-zero mean) case:

Rx(s, t) = E{(x(s)− E{x})(x(t)− E{x})}
= E{x(s)x(t)} (if zero mean)

= Rx(s− t) (if stationary)
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Power spectral density (random signals)

The power spectral density is defined as the Fourier transform of Rx(τ),

φx(e
jω) :=

∞∑

τ=−∞
Rx(τ)e

−jωτ where ω ∈ [−π, π).

The inverse transform is given by,

Rx(τ) =
1

2π

∫ π

−π
φx(e

jω)ejωτdω.

For a zero-mean random signal,

lim
N−→∞

1

N

N−1∑

k=0

|x(k)|2 = var{x(k)} = 1

2π

∫ π

−π
φx(e

jω) dω
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Basic properties

Autocovariance:

Rx(−τ) = R∗x(τ)

Rx(0) ≥ |Rx(τ)| for all τ > 0

Spectral density:

φx(e
jω) ∈ R

φx(e
jω) ≥ 0 for all ω

φx(e
jω) = φx(e

−jω) for all real-valued x(k)
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Cross-covariance (random signals)

For random y(k) and u(k), the cross-covariance is:

Ryu(τ) = E {(y(k)− E{y(k)})(u(k − τ)− E{u(k)})}

For zero mean signals, E{y(k)} = 0 and E{u(k)} = 0,

Ryu(τ) = E{y(k)u(k − τ)}

Joint stationarity is required to make the definition dependent on τ alone.

If Ryu(τ) = 0 for all τ then y(k) and u(k) are uncorrelated.
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Cross power spectral density (random signals)

The Fourier transform of Ryu(τ) is defined as the cross spectral density, or
cross-spectrum,

φyu(e
jω) =

∞∑

τ=−∞
Ryu(τ)e

−jωτ , ω ∈ [−π, π).

The inverse is,

Ryu(τ) =
1

2π

∫ π

−π
φyu(e

jω)ejωτdω.
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Discrete-Fourier Transform (finite-length signals)

Finite length signal,

x(k), k = 0, . . . , N − 1.

The Discrete Fourier Transform (DFT) of x(k) is:

X(ejωn) =

N−1∑

k=0

x(k)e−jωnk, where ωn =
2πn

N
,

n = 0, . . . , N − 1.

The inverse DFT is,

x(k) =
1

N

N−1∑

n=0

X(ejωn)ejωnk, k = 0, . . . , N − 1.
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Periodogram

The periodogram (for a random signal v(k)) is defined as:

1

N

∣∣∣VN (ejω)
∣∣∣
2

See [Schuster, 1900] for an interesting application.

Asymptotically unbiased estimator of the spectrum:

lim
N−→∞

E

{
1

N
|VN (ejω)|2

}
= φv(ω)

This assumes that the autocorrelation decays quickly enough:

lim
N−→∞

1

N

N∑

τ=−N
|τRv(τ)| = 0
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