System Identification

Lecture 2: Frequency domain methods:
spectra, system responses, and estimated transfer functions

Tony Wood

2014-9-20 2.1

A simple ID method: sinusoidal correlation

le(k)

H(ew)

y(k) %“(k) u(k)
G le——2

Fundamental property of linear systems

Y (jw) = G(jw)U(jw) or, in discrete time, Y (e’Y) = G(e’*)U ().

Identification approach:

Apply a series of sinusoidal inputs (“sweptsine” input)

and for each find the gain and phase change of the output.
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Sinusoidal correlation methods

Method:

Select the input frequency, w, (rad./sec.), such that,

Yu — T for some integer 7.
2r NT
Input:
u(k) = acos(wuk), k=0,1,...,N—1
Output:

y(k) = a |G(e™")

cos(wyk 4+ 0(wy)) + v(k) + transient

where  6(w,) = arg(G(e’“*))
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Sinusoidal correlation methods

Correlation functions:

I.(N) :% g y(k) cos(wyk)
(N :% = (k) sin(wok)
k=0

These can be calculated from the data.

Expanding:
o’ i
I.(N) = 5 |G(e)] cos(0(wn))
' 1 N—1
ta ‘G(ej“’“) % D cos@wak + ()
k=0
1 N-—1
+ N 2 v(k) cos(wy k)
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Sinusoidal correlation methods

If the noise, v(k), is sufficiently uncorrelated
(for example, is filtered gaussian noise),

then the variance satisfies,

N-1
: 1
Nh_r)noovar {N kZ_O v(k) cos(wuk:)} =0

with a convergence rate of 1/N.

2014-9-20 25

Sinusoidal correlation methods

So, as in the limit as N — oo,

E{I.(N)} — 5 |G(&7") | cos(0(w.)

E{I,(N)} — _70‘ ’G(ej““) sin(6(wa))

and lim var{l.(N)} =0, lim var{l,(N)} =0

N—00 N —o00

Estimate the transfer function via:

_ VI(N)? + I(N)?
N a/2
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Sweptsine ID methods

Advantages:

» Energy is concentrated at the frequencies of interest.

» Size of u(k) can easily be tuned as a function of frequency.

» Easy to avoid saturation and tune S/N ratio.

Disadvantages:

» A large amount of data is required.
» Significant amount of time required for experiments.

» Some processes won't allow sinusoidal inputs.
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Background on discrete signals and signal analysis

Signals considered in detail:

» Finite energy;
» Periodic;
» Random;

» Finite length.

Signal properties that we can estimate from data:

» Autocorrelation
» Crosscorrelation

» Frequency domain representation (via Fourier transform)

» Spectral densities (energy or power)
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Fourier transform

Discrete-time domain signal:
x(k), k= —o0,...,00.

The Fourier Transform of x(k) defined as,

X&) = Z z(k)e " (or sometimes X (w))

k=—o0

X (e’*) is periodic, with period 2.

If (k) is finitely summable,

o0

S fa(k)] < oo

k=—o0

then X (e’*) converges.
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Inverse Fourier transform

The inverse Fourier Transform is,

1 ™ . .
(k) = o X (e7*)e’“ dw,

where k= —o0,...,00.
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Energy spectral density

If (k) is a finite energy signal,

o0

||x(k)||§ = Z |91:(k)|2 < 0.

k=—o0

The sequence, z(k), has a Fourier transform,

X(&Y) = Z z(k)e 7" where w € [—m,7),

k=—o0
The energy spectral density can be defined as,

Sa(e/) = [X ().
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Autocorrelation (finite energy signals)

The autocorrelation of x(k) is,

Ry(t) = Y a(k)a(k—7),7=-00,...,0,...,00.

The energy spectral density is the Fourier Transform of the autocorrelation:

oo

D Ru(r)e 77 = 8. ().

T=—00
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Discrete periodic signals

If (k) is periodic with period equal to N (assume N even);
x(k) = z(k+ N), forall k€ {—o0,o0}.
The fundamental frequency is,

2m

N

wo =

There are only N unique harmonics of the sinusoid, ¢’“°.

The non-negative harmonic frequencies are,

™0 n=0,1,...,N/2.
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Discrete Fourier series (periodic signals)

Periodic signal: x(k) (period = N).
The Fourier series is:
— 27mn

X(e9m) = Z z(k)e 7 where wy = N = o,
k=0

The inverse transform is:

1 N1 . .
z(k) = ~ Z X(ejwn)ejwnk.
n=0
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Autocorrelation (periodic signals)

The autocorrelation of x(k) (of period N) is:

N —

Rao(r) = % S a(k)w(k — 7).

k=0

_

The Fourier transform of R, (7) is defined as the power spectral density,

i 1 ;
Gz (e”™) Ro(r)e 7" = < |X (/)"
7=0
Energy in a single period:
N—1 N-1 _
Do lzk)P =) dale’m)
k=0 n=0
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Cross-correlation (periodic signals)

The cross-correlation of y(k) and u(k) (both of period = N) is:

Cross-spectral density (FT of the cross-correlation):

N-1
Gyu(€") = )  Ryu(r)e7*"7,  wn = P,
0 n = 0,... N—1
1 | W * | W
= NY(eJ YU (e79™)
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Noise models: random signals

Normally distributed noise:

E{e(k)} =0 (zero mean)

e N(0, ), 2 :
(k) e N(O,\), = {E{e(k” } =X (variance)

The e(k) are independent and identically distributed (i.i.d.).

le(k)

H(e¥)

lv(k)

He(k) with e(k) € N(0,)).

c
—~
Ny
~
I
(]
>
—~~
=~
~—
aQ
—~~
o
|
o~
~
I

2014-9-20 2.17

Autocovariance (random signals)

For random z(k), with E{z(k)} = 0,

Define the autocovariance sequence,
or covariance function, as;

Ry (1) = E{z(k)z(k — 1)}
= FE{x(k)z"(k—7)} (in the complex case)
= FE{z(k)x"(k—7)} (in the multivariable case)

General (non-stationary, non-zero mean) case:

Ru(s,t) = E{(x(s) — E{z})(x(t) — E{z})}
= E{x(s)x(t)} (if zero mean)
= R.(s —t) (if stationary)
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Power spectral density (random signals)

The power spectral density is defined as the Fourier transform of R, (7),

bz (7)) = i Ro(7)e 7“7  where w € [—m, 7).

T=—00

The inverse transform is given by,
R (7-) = L/W ¢ (ejw)ejwq—dw
X 27_‘_ . X .

For a zero-mean random signal,

L

> el = vl = g [ o)
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Basic properties

Autocovariance:

Rm(_T) = R;(T)
R.(0) > |Rz(7)| forall >0

Spectral density:
bz (e’ €R
>0

¢w(ejw) =z
bz(e7) = ¢o(e77¥)  for all real-valued z(k)

for all w
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Cross-covariance (random signals)

For random y(k) and u(k), the cross-covariance is:

Ryu(1) = E{(y(k) — E{y(k)})(u(k —7) — E{u(k)})}
For zero mean signals, E{y(k)} = 0 and E{u(k)} =0,

Ryu(1) = E{y(k)u(k —7)}

Joint stationarity is required to make the definition dependent on 7 alone.

If Ryw(7) =0 for all 7 then y(k) and u(k) are uncorrelated.
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Cross power spectral density (random signals)

The Fourier transform of R, (7) is defined as the cross spectral density, or
cross-spectrum,

beu(ejw) = Z Ryu(T)e_jWT, w € [—m,m).

T=—00

The inverse is,

1 T ) W jWT
Ryu(T) = %/ Dyu (€79)e?“  dw.
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Discrete-Fourier Transform (finite-length signals)

Finite length signal,
z(k), k=0,...,N—1.

The Discrete Fourier Transform (DFT) of z(k) is:

N —
X (&9 = Zx(k)e_j””k, where w, =
k=0

=

The inverse DFT is,

N—-1
w(k) = - 30 X(E)e k=0, N1
n=0
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Periodogram

The periodogram (for a random signal v(k)) is defined as:

2

3 [V

See [Schuster, 1900] for an interesting application.

Asymptotically unbiased estimator of the spectrum:

lim E{%\VN(ejw)|2} = ¢u(w)

N —o00

This assumes that the autocorrelation decays quickly enough:

N
) 1
Jm 3 R0
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