System Identification

Lecture 2: Frequency domain methods: spectra, system responses, and estimated transfer functions

Tony Wood

2014-9-20 2.1

A simple ID method: sinusoidal correlation

Fundamental property of linear systems

$$Y(j\omega) = G(j\omega)U(j\omega) \quad \text{or, in discrete time,} \quad Y(\mathrm{e}^{j\omega}) = G(\mathrm{e}^{j\omega})U(\mathrm{e}^{j\omega}).$$

Identification approach:

Apply a series of sinusoidal inputs ("sweptsine" input) and for each find the gain and phase change of the output.

Sinusoidal correlation methods

Method:

Select the input frequency, ω_u (rad./sec.), such that,

$$\frac{\omega_u}{2\pi} = \frac{r}{NT} \quad \text{for some integer } r.$$

Input:

$$u(k) = \alpha \cos(\omega_u k), \quad k = 0, 1, \dots, N-1$$

Output:

$$y(k) = \alpha \left| G(e^{j\omega_u}) \right| \cos(\omega_u k + \theta(\omega_u)) + v(k) + \text{transient}$$

where $\theta(\omega_u) = \arg(G(e^{j\omega_u}))$

2014-9-20 2.3

Sinusoidal correlation methods

Correlation functions:

$$I_c(N) = \frac{1}{N} \sum_{k=0}^{N-1} y(k) \cos(\omega_u k)$$

$$I_s(N) = \frac{1}{N} \sum_{k=0}^{N-1} y(k) \sin(\omega_u k)$$

These can be calculated from the data.

Expanding:

$$I_c(N) = \frac{\alpha}{2} \left| G(e^{j\omega_u}) \right| \cos(\theta(\omega_u))$$

$$+ \alpha \left| G(e^{j\omega_u}) \right| \frac{1}{N} \sum_{k=0}^{N-1} \cos(2\omega_u k + \theta(\omega_u))$$

$$+ \frac{1}{N} \sum_{k=0}^{N-1} v(k) \cos(\omega_u k)$$

2014-9-20

Sinusoidal correlation methods

If the noise, v(k), is sufficiently uncorrelated (for example, is filtered gaussian noise), then the variance satisfies,

$$\lim_{N \to \infty} \operatorname{var} \left\{ \frac{1}{N} \sum_{k=0}^{N-1} v(k) \cos(\omega_u k) \right\} = 0$$

with a convergence rate of 1/N.

2014-9-20 2.5

Sinusoidal correlation methods

So, as in the limit as $N \longrightarrow \infty$,

$$E\{I_c(N)\} \longrightarrow \frac{\alpha}{2} \left| G(e^{j\omega_u}) \right| \cos(\theta(\omega_u))$$

$$E\{I_s(N)\} \longrightarrow \frac{-\alpha}{2} \left| G(e^{j\omega_u}) \right| \sin(\theta(\omega_u))$$
and $\lim_{N \longrightarrow \infty} \text{var}\{I_c(N)\} = 0$, $\lim_{N \longrightarrow \infty} \text{var}\{I_s(N)\} = 0$

Estimate the transfer function via:

$$\left| \hat{G}_N(e^{j\omega_u}) \right| = \frac{\sqrt{I_c(N)^2 + I_s(N)^2}}{\alpha/2}$$

$$\arg \hat{G}_N(e^{j\omega_u}) = -\arctan \frac{I_s(N)}{I_c(N)}$$

Sweptsine ID methods

Advantages:

- Energy is concentrated at the frequencies of interest.
- ightharpoonup Size of u(k) can easily be tuned as a function of frequency.
- ► Easy to avoid saturation and tune S/N ratio.

Disadvantages:

- ▶ A large amount of data is required.
- Significant amount of time required for experiments.
- ▶ Some processes won't allow sinusoidal inputs.

2014-9-20 2.7

Background on discrete signals and signal analysis

Signals considered in detail:

- Finite energy;
- Periodic;
- Random:
- Finite length.

Signal properties that we can estimate from data:

- Autocorrelation
- Crosscorrelation
- Frequency domain representation (via Fourier transform)
- Spectral densities (energy or power)

Fourier transform

Discrete-time domain signal:

$$x(k), \quad k = -\infty, \dots, \infty.$$

The Fourier Transform of x(k) defined as,

$$X(\mathrm{e}^{j\omega}) = \sum_{k=-\infty}^{\infty} x(k) \mathrm{e}^{-j\omega k}$$
 (or sometimes $X(\omega)$)

 $X(e^{j\omega})$ is periodic, with period 2π .

If x(k) is finitely summable,

$$\sum_{k=-\infty}^{\infty} |x(k)| < \infty,$$

then $X(e^{j\omega})$ converges.

2014-9-20 2.9

Inverse Fourier transform

The inverse Fourier Transform is,

$$x(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega k} d\omega,$$

where $k = -\infty, \dots, \infty$.

2.10

Energy spectral density

If x(k) is a finite energy signal,

$$||x(k)||_2^2 = \sum_{k=-\infty}^{\infty} |x(k)|^2 < \infty.$$

The sequence, x(k), has a Fourier transform,

$$X(\mathrm{e}^{j\omega}) \ = \ \sum_{k=-\infty}^{\infty} x(k) \mathrm{e}^{-j\omega_k}, \quad \text{where} \quad \omega \in [-\pi,\pi),$$

The energy spectral density can be defined as,

$$S_x(e^{j\omega}) = |X(e^{j\omega})|^2.$$

2014-9-20 2.11

Autocorrelation (finite energy signals)

The autocorrelation of x(k) is,

$$R_x(\tau) = \sum_{k=-\infty}^{\infty} x(k)x(k-\tau), \tau = -\infty, \dots, 0, \dots, \infty.$$

The energy spectral density is the Fourier Transform of the autocorrelation:

$$\sum_{\tau=-\infty}^{\infty} R_x(\tau) e^{-j\omega\tau} = S_x(e^{j\omega}).$$

Discrete periodic signals

If x(k) is periodic with period equal to N (assume N even);

$$x(k) \ = \ x(k+N), \quad \text{for all } k \in \{-\infty, \infty\}.$$

The fundamental frequency is,

$$\omega_0 = \frac{2\pi}{N}.$$

There are only N unique harmonics of the sinusoid, $e^{j\omega_0}$.

The non-negative harmonic frequencies are,

$$e^{jn\omega_0}, \quad n = 0, 1, \dots, N/2.$$

2014-9-20 2.13

Discrete Fourier series (periodic signals)

Periodic signal: x(k) (period = N).

The Fourier series is:

$$X(\mathrm{e}^{j\omega_n}) \ = \ \sum_{k=0}^{N-1} x(k) \mathrm{e}^{-j\omega_n k}, \quad ext{where} \quad \omega_n = rac{2\pi n}{N} = n\omega_0,$$
 $n=0,\dots,N-1.$

The inverse transform is:

$$x(k) = \frac{1}{N} \sum_{n=0}^{N-1} X(e^{j\omega_n}) e^{j\omega_n k}.$$

Autocorrelation (periodic signals)

The autocorrelation of x(k) (of period N) is:

$$R_x(\tau) = \frac{1}{N} \sum_{k=0}^{N-1} x(k)x(k-\tau).$$

The Fourier transform of $R_x(\tau)$ is defined as the power spectral density,

$$\phi_x(e^{j\omega_n}) = \sum_{\tau=0}^{N-1} R_x(\tau) e^{-j\omega_n \tau} = \frac{1}{N} |X(e^{j\omega_n})|^2$$

Energy in a single period:

$$\sum_{k=0}^{N-1} |x(k)|^2 = \sum_{n=0}^{N-1} \phi_x(e^{j\omega_n})$$

2014-9-20 2.15

Cross-correlation (periodic signals)

The cross-correlation of y(k) and u(k) (both of period = N) is:

$$R_{yu}(\tau) = \frac{1}{N} \sum_{k=0}^{N-1} y(k)u(k-\tau).$$

Cross-spectral density (FT of the cross-correlation):

$$\phi_{yu}(e^{j\omega_n}) = \sum_{\tau=0}^{N-1} R_{yu}(\tau) e^{-j\omega_n \tau}, \quad \omega_n = \frac{2\pi n}{N},$$

$$n = 0, \dots, N-1$$

$$= \frac{1}{N} Y(e^{j\omega_n}) U^*(e^{j\omega_n})$$

Noise models: random signals

Normally distributed noise:

$$e(k) \in \mathcal{N}(0,\lambda), \implies \begin{cases} E\{e(k)\} = 0 & \text{(zero mean)} \\ E\{|e(k)|^2\} = \lambda & \text{(variance)} \end{cases}$$

The e(k) are independent and identically distributed (i.i.d.).

$$v(k) \; = \; \sum_{l=0}^{\infty} h(l) e(k-l) \; = \; H \, e(k) \quad \text{with } e(k) \in \mathcal{N}(0,\lambda).$$

2014-9-20 2.17

Autocovariance (random signals)

For random x(k), with $E\{x(k)\}=0$,

Define the autocovariance sequence, or covariance function, as;

$$R_x(\tau) = E\{x(k)x(k-\tau)\}$$

$$= E\{x(k)x^*(k-\tau)\} \quad \text{(in the complex case)}$$

$$= E\{x(k)x^*(k-\tau)\} \quad \text{(in the multivariable case)}$$

General (non-stationary, non-zero mean) case:

$$R_x(s,t) = E\{(x(s) - E\{x\})(x(t) - E\{x\})\}$$

$$= E\{x(s)x(t)\} \quad \text{(if zero mean)}$$

$$= R_x(s-t) \quad \text{(if stationary)}$$

Power spectral density (random signals)

The *power* spectral density is defined as the Fourier transform of $R_x(\tau)$,

$$\phi_x(\mathsf{e}^{j\omega}) \,:=\, \sum_{ au=-\infty}^\infty R_x(au)\mathsf{e}^{-j\omega au} \quad \mathsf{where} \quad \omega \in [-\pi,\pi).$$

The inverse transform is given by,

$$R_x(\tau) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi_x(e^{j\omega}) e^{j\omega\tau} d\omega.$$

For a zero-mean random signal,

$$\lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} |x(k)|^2 = \operatorname{var}\{x(k)\} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi_x(e^{j\omega}) d\omega$$

2014-9-20 2.19

Basic properties

Autocovariance:

$$R_x(-\tau) = R_x^*(\tau)$$

$$R_x(0) \ge |R_x(\tau)| \quad \text{for all } \tau > 0$$

Spectral density:

$$\begin{split} \phi_x(\mathrm{e}^{j\omega}) &\in \mathcal{R} \\ \phi_x(\mathrm{e}^{j\omega}) &\geq 0 \quad \text{for all } \omega \\ \phi_x(\mathrm{e}^{j\omega}) &= \phi_x(\mathrm{e}^{-j\omega}) \quad \text{for all real-valued } x(k) \end{split}$$

Cross-covariance (random signals)

For random y(k) and u(k), the cross-covariance is:

$$R_{yu}(\tau) = E\{(y(k) - E\{y(k)\})(u(k - \tau) - E\{u(k)\})\}$$

For zero mean signals, $E\{y(k)\}=0$ and $E\{u(k)\}=0$,

$$R_{uu}(\tau) = E\{y(k)u(k-\tau)\}\$$

Joint stationarity is required to make the definition dependent on τ alone.

If $R_{yu}(\tau) = 0$ for all τ then y(k) and u(k) are uncorrelated.

2014-9-20 2.21

Cross power spectral density (random signals)

The Fourier transform of $R_{yu}(\tau)$ is defined as the cross spectral density, or cross-spectrum,

$$\phi_{yu}(e^{j\omega}) = \sum_{\tau=-\infty}^{\infty} R_{yu}(\tau)e^{-j\omega\tau}, \quad \omega \in [-\pi,\pi).$$

The inverse is,

$$R_{yu}(\tau) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi_{yu}(e^{j\omega}) e^{j\omega\tau} d\omega.$$

Discrete-Fourier Transform (finite-length signals)

Finite length signal,

$$x(k), \quad k = 0, \dots, N - 1.$$

The Discrete Fourier Transform (DFT) of x(k) is:

$$X(\mathrm{e}^{j\omega_n}) \ = \ \sum_{k=0}^{N-1} x(k) \mathrm{e}^{-j\omega_n k}, \quad \text{where} \quad \omega_n = \frac{2\pi n}{N},$$
 $n=0,\dots,N-1.$

The inverse DFT is,

$$x(k) = \frac{1}{N} \sum_{n=0}^{N-1} X(e^{j\omega_n}) e^{j\omega_n k}, \quad k = 0, \dots, N-1.$$

2014-9-20 2.23

Periodogram

The periodogram (for a random signal v(k)) is defined as:

$$\frac{1}{N} \left| V_N(\mathsf{e}^{j\omega}) \right|^2$$

See [Schuster, 1900] for an interesting application.

Asymptotically unbiased estimator of the spectrum:

$$\lim_{N \to \infty} E\left\{ \frac{1}{N} |V_N(e^{j\omega})|^2 \right\} = \phi_v(\omega)$$

This assumes that the autocorrelation decays quickly enough:

$$\lim_{N \to \infty} \frac{1}{N} \sum_{\tau = -N}^{N} |\tau R_v(\tau)| = 0$$

Bibliography

Fourier transforms:

A.V. Oppenheim, A.S. Wilsky & S.H. Nawab, *Signals & Systems*, Prentice-Hall, 2nd Ed., 1996.

Spectral estimation:

Lennart Ljung, *System Identification; Theory for the User,* (see Section 6.4) Prentice-Hall, 2nd Ed., 1999.

P. Stoica & R. Moses, *Introduction to Spectral Analysis* (see Chapters 1 and 2), Prentice-Hall, 1997.

Periodograms:

Arthur Schuster, "The Periodogram of Magnetic Declination as obtained from the records of the Greenwich Observatory during the years 1871–1895," *Trans. Cambridge Phil. Soc.*, vol. 18, pp. 107–135, 1900.

Lennart Ljung, *System Identification; Theory for the User,* (see Section 2.2) Prentice-Hall, 2nd Ed., 1999.