
LECTURE 10

Algebraic formulas

I know it’s easy to get lost in everything, so let me summarize our algebraic
tools.

1. Summary

1.1. The main players. There are two main algebraic players: First, we
have the set of all deRham differential forms:

Ω•
deR(M)

which is a ring. Its unit is the constant function 1 ∈ Ω0
deR(M). Its product is

given by wedging together, pointwise.
The other player is

Γ(TM)

also known as vector fields. It is a Lie algebra.

1.2. Main properties. Skipping definitions, here are all the properties
of the algebraic operations you need to know:

• ddeR is a degree 1 derivation Ω•
deR(M) → Ω•

deR(M). It squares to zero.
• For any X ∈ Γ(TM), iX : Ω•

deR(M) → Ω•
deR(M) is a degree minus 1

derivation. It squares to zero.
• For any X, LX : Ω•

deR(M) → Ω•
deR(M) is a degree zero derivation. It

commues with ddeR.

1.3. Useful formulas. Finally, here are the algebraic formulas you need
to know.

• Cartan’s magic formula,

LX := ddeR ◦ ιX + ιX ◦ ddeR
• How to compute the directional derivative of the values of a differential
form:

LX(α(Y1, . . . , Yk)) = (LXα)(Y1, . . . , Yk)+
k�

i=1

ω(Y1, . . . , Yi−1,LXYi, Yi+1, . . . , Yk).
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• How the deRham derivative changes the values of a form:

dα(Y0, . . . , Yk) =
k�

i=0

(−1)iYi(α(Y0, . . . , Ŷi, . . . , Yk))

+
�

i<j

(−1)i+jω([Yi, Yj], Y0, . . . , Ŷi, . . . , Ŷj, . . . , Yk).

That’s it. Now I’ll review the definitions of everything for your convenience.

2. The Lie derivative

Given any X ∈ Γ(TM), one has maps

LX : Γ(TM) → Γ(TM), LX : Ωk
deR(M) → Ωk

deR(M).

which go by the same notation. To define this, we needed the theorem about
ODEs: X defines a vector field, so you can flow along it. You evaluate α at
that point. Since flowing is a diffeomorphism, you can pull back the value of
α to the place you started before the flow.

(ΦX
t )

∗α(ΦX
t (x)) ∈ Ex.

Here, E is one of the vector bundles

TM, T ∗M, Λk(T ∗M),

and α is a section of E. The Lie derivative says let’s measure the rate of
change of this vector with respect to t:

LX(α)(x) := lim
t→0

(ΦX
t )

∗α(ΦX
t (x))− α(x)

t

3. The Lie bracket

The Lie bracket was defined formally—if X and Y are two derivations
from C∞(M) to itself, we saw that while X ◦ Y may not be a derivation, the
operation X ◦ Y − Y ◦X is. So we defined

[X, Y ] := X ◦ Y − Y ◦X ∈ Der(C∞(M), C∞(M)).

Miraculously, this purely algebraic definition agrees with a more geometric
operation:

LXY = [X, Y ].

We proved this last class. One can also see that

LXf = df(X) = X(f).

Making sure you can prove this is a very good way to check that you understand
all the basic definitions.
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4. Differential forms eat tangent vectors

There is an isomorphism, for each k (and any finite-dimensional vector
space V ),

Λk(V ∨) → (Λk(V ))∨

which sends an element of the form α1 ∧ . . . ∧ αk to the linear map

v1 ∧ . . . ∧ vk �→ det(αi(vj)).

Since a differential form α ∈ Ωk(M) defines an element

α(x) ∈ Λk((T ∗M)x)

for any x ∈ M , the isomorphism tells us we can think of α(x) as an element of

(Λk((TM)x))
∨

i.e., as something that eats k tangent vectors to x and spits out a number.
You can check that if f : M � → M is a smooth map, then

((f ∗α)(x))(v1, . . . , vk) = α(f(x))(Dfx(v1), . . . , Dfx(vk)).

5. Contraction/interior multiplication

Given X ∈ Γ(TM), we can define a map

ιX : Ωk(M) → Ωk−1(M)

by sending

α �→ α(X,−, . . . ,−).

This is defined using the isomorphism from the previous section. So for in-
stance ιX(α) eats in k− 1 vector fields Y1, . . . , Yk−1 and spits out the function

α(X, Y1, . . . , Yk−1).

6. deRham derivative ddeR

I write both ddeR and d depending on the context. They are the same
thing. For every k, there is a map

dk : Ωk(M) → Ωk+1(M)

and I lazily call each of these maps d.
In local coordinates, this operation was defined as follows. Any k-form α

on U ⊂ Rn can be written

α =
�

I

fIdx
i1 ∧ . . . ∧ dxik
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where the index I = (i1 < . . . < ik) runs through every sequence of k increasing
integers between 1 and n. And fI is a choice of smooth function on U . Then

dα :=
�

I

n�

j=1

∂fI
∂xj

dxj ∧ dxi1 ∧ . . . ∧ dxik .

Though this is local, you can see that this defines a map of section Ωk(M) →
Ωk+1(M) by checking that this definition is compatible with the transition
functions for the bundles Λk(T ∗M) and Λk+1(T ∗M).

Remark 10.1. While formulas in local coordinates let you compute, those
of you more formally-minded may ask for a more intrinsic characterization of
the deRham derivative. There is a non-trivial theorem (see Conlon, Theorem
7.5.5 and its corollaries) asserting that

Γ(Λk(T ∗M)) ∼= Λk(Γ(T ∗M)).

The lefthand side Λ takes exterior powers over R; the righthand side takes
exterior powers over C∞(M). So by the righthand side, demanding that d be
a derivation means we only need specify it on 0-forms (functions) and 1-forms.
This is what we did in class. (In fact, there is another universal property
that characterizes d simply by declaring it on 0-forms; this will be an optional
problem on a homework.)

7. Some computational exercises

This is just a sanity check to make sure you know what you’re doing. If
you cannot do these, definitely come and talk to me and Phil. In what follows,
everything is defined on R3.

• α = x2dx+ y2dy + xydz.
• β = xyzdx ∧ dy + zdy ∧ dz.
• ω = xdy ∧ dx+ xdx ∧ dy.
• η = dx ∧ dy ∧ dz.
• X = x ∂

∂x .
• Y = x2 ∂

∂y .

(a) Show ω = 0.
(b) Compute ιXα.
(c) Compute ιY β.
(d) Compute ιY η.
(e) Compute α ∧ β.
(f) Compute β ∧ α.
(g) Compute LXα.
(h) Compute LY β.
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(i) Compute dα.
(j) Compute dβ.
(k) Compute [X, Y ].

8. Solutions

(a) Show ω = 0. Use that dy ∧ dx = −dx ∧ dy. More pedantically, at any
point p ∈ R3, we have that

ω(p) = x(p)dy|p ∧ dx|p + x(p)dx|p ∧ dy|p ∈ Λ2((T ∗R3)p).

And this vector space was defined by quotienting out (T ∗R3)p⊗(T ∗R3)p by
imposing the relation v⊗v = 0, which means that v∧w := [v⊗w] = −[w⊗
v] =: −w∧v. Long story short, we know that dy|p∧dx|p = −dx|p∧dy|p, so
ω(p) = 0 for all p. This means that ω is indeed the zero section of Λ2T ∗R3.

Another, while equivalent, way to go about this: Note that

Γ(Λk(T ∗Rn)) ∼= Λk(Γ(T ∗Rn))

where on the left, the exterior power is over R, while on the right, it is
over C∞(Rn). This is another way to reason out that dy ∧ dx = −dx∧ dy.

(b) Compute ιXα. ιX is defined pointwise. That is,

(ιXα)(p) := ιX(p)α(p) = α(p)(X(p)).

And dx( ∂
∂x) =

∂x
∂x = 1. Hence we have

ιXα = x2dx(X) = x2(x) = x3.

One important point to note is that the value of ιXα at a point p does not
depend at all on how X or α behave in a neighborhood of p, but only on
their respective values at p.

One way to say this is that the map

ι : Γ(TM)× Ωk(M) → Ωk−1(M)

is bilinear over C∞(M), not just over R. This is very useful and special.
For instance, the Lie bracket is far from being bilinear over C∞(M).

(c) Compute ιY β. We see by linearity that

ιY (β) = xyz ιY (dx ∧ dy) + z ιY (dy ∧ dz).

The easiest way to compute ι is to pass through the isomorphism between
Λ(V ∨) and (Λ(V ))∨. Then

(dx ∧ dy)(Y,−) = dx(Y )dy(−)− dy(Y )dx(−)

and
(dy ∧ dz)(Y,−) = dy(Y )dz(−)− dz(Y )dy(−).
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Note that dx(Y ) = dz(Y ) = 0 while dy(Y ) = x2. Hence

ιY (β) = xyz(−x2)dx+ z x2dz = −x3yzdx+ x2zdz.

Contracting by a vector field with only ∂
∂y component, note, killed off the

dy components of the differential form.
(d) Compute ιY η. This gets more annoying if you use the isomorphism from

Λ(V ∨) to (Λ(V ))∨ directly. Instead, recall the formula from class that

(α ∧ β)(v1, . . . , vk) =
�

π∈k,l-shuffles

α(vπ(1), . . . , vπ(k))β(vπ(k1), . . . , vπ(k+l)).

Since Y only has a ∂
∂y component, let’s take α = dy and β = dz ∧ dx, so

that η = α ∧ β. Then, given any two vector fields V2, V3, we compute

(α ∧ β)(Y, V2, V3)

by using the above formula. We see that the β factor is always zero if the
shuffle π sends 1 to either 2 or 3. (After all, dz ∧ dx evaluated on two
vectors is zero if one of the vectors has no ∂

∂x or ∂
∂z component.) So the

only terms in the summation that are potentially non-zero are those that
come from (1, 2)-shuffles that fix 1—i.e., with π(1) = 1. But the only such
shuffle is the identity shuffle by definition of shuffle. Hence

(α ∧ β)(Y, V2, V3) = α(Y )β(V2, V3) = x2β(V2, V3).

Since V2, V3 were arbitrary, we conclude that

ιY η = x2dz ∧ dx.

(e) Compute α ∧ β. The answer is

(x2z + x2y2z) dx ∧ dy ∧ dz.

(f) Compute β ∧ α. The answer is

− (x2z + x2y2z) dx ∧ dy ∧ dz.
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(g) Compute LXα. We compute

LX(x
2dx+ y2dy + xydz) = LX(x

2)dx+ x2LX(dx) +(8.1)

LX(y
2)dy + y2LX(dy) +

LX(xz)dz + xyLX(dz)

= LX(x
2)dx+ x2dLX(x) +(8.2)

LX(y
2)dy + y2dLX(y) +

LX(xz)dz + xydLX(z)

= 2x2dx+ x2d(x) +(8.3)

0dy + y2d(0) +

xzdz + xyd(0)

= 2x2dx+ x2dx+ xzdz

= 3x2 dx+ xz dz.

where in (8.1) we used that LX is a derivation for any X. In (8.2) we
use that it commutes with d. Then in (8.3) we use that for functions,
LX(f) = df(X) = X(f), i.e., one computes the directional derivative of
f in the direction of X. Since X = x ∂

∂x , this entails computing ∂f
∂x , then

multiplying the result by x.
(h) Compute LY β. We compute

(8.4)

LY (xyzdx ∧ dy + zdy ∧ dz) = LY (xyz)dx ∧ dy + LY (z)dy ∧ dz +

xyz LY (dx) ∧ dy + z LY (dy) ∧ dz +

xyz dx ∧ LY (dy) + zdy ∧ LY (dz)

= LY (xyz)dx ∧ dy + LY (z)dy ∧ dz +(8.5)

xyz d(LY (x)) ∧ dy + z d(LY (y)) ∧ dz +

xyz dx ∧ d(LY (y)) + zdy ∧ d(LY (z))

= x3zdx ∧ dy + 0 +(8.6)

0 + z · 2xdx ∧ dz +

xyz dx ∧ 2xdx+ 0

= x3zdx ∧ dy + 2xzdx ∧ dz.(8.7)

Here, (8.4) again uses that LX is a derivation. (8.5) uses that LX commutes
with d. (8.6) computes d of LY (f) using that LY (f) = Y (f). (8.7) uses
that dx ∧ dx = 0.
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(i) Compute dα. Set x = x1, y = x2, z = x3. Then

dα =
�

i

∂(x2)

∂xi
dxi ∧ dx+

�

i

∂(y2)

∂xi
dxi ∧ dy +

�

i

∂(xy)

∂xi
dxi ∧ dz

= 2x dx ∧ dx+ 2y dy ∧ dy + y dx ∧ dz + x dy ∧ dz

= 0 + 0 + y dx ∧ dz + x dy ∧ dz

= y dx ∧ dz + xdy ∧ dz.

(j) Compute dβ. Set x = x1, y = x2, z = x3. Then

dβ =
�

i

∂(xyz)

∂xi
dxi ∧ dx ∧ dy +

�

i

∂(z)

∂xi
dxi ∧ dy ∧ dz

= yz dx ∧ dx ∧ dy + xz dy ∧ dx ∧ dy + xy dz ∧ dx ∧ dy + dz ∧ dy ∧ dz

= 0 + 0 + xy dz ∧ dx ∧ dy + 0

= xy dx ∧ dy ∧ dz.

(k) Compute [X, Y ]. Recall that if

X =
�

X i ∂

∂xi
, Y =

�
Y i ∂

∂xi
,

then

[X, Y ] =
�

i,j

�
X i∂Y

j

∂xi
− Y i∂X

j

∂xi

�
∂

∂xj
.

So we have

[x
∂

∂x
, x2 ∂

∂y
] = x

∂(x2)

∂x

∂

∂y
− x2∂(x)

∂y

∂

∂x

= 2x2 ∂

∂y
.
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