LECTURE 10

Algebraic formulas

I know it's easy to get lost in everything, so let me summarize our algebraic tools.

1. Summary

1.1. The main players. There are two main algebraic players: First, we have the set of all deRham differential forms:

$$\Omega^{\bullet}_{deR}(M)$$

which is a ring. Its unit is the constant function $1 \in \Omega^0_{deR}(M)$. Its product is given by wedging together, pointwise.

The other player is

$$\Gamma(TM)$$

also known as vector fields. It is a Lie algebra.

1.2. Main properties. Skipping definitions, here are all the properties of the algebraic operations you need to know:

- d_{deR} is a degree 1 derivation Ω[•]_{deR}(M) → Ω[•]_{deR}(M). It squares to zero.
 For any X ∈ Γ(TM), i_X : Ω[•]_{deR}(M) → Ω[•]_{deR}(M) is a degree minus 1 derivation. It squares to zero.
- For any $X, \mathcal{L}_X : \Omega^{\bullet}_{deR}(M) \to \Omega^{\bullet}_{deR}(M)$ is a degree zero derivation. It commutes with d_{deR} .

1.3. Useful formulas. Finally, here are the algebraic formulas you need to know.

• Cartan's magic formula,

$$\mathcal{L}_X := d_{deR} \circ \iota_X + \iota_X \circ d_{deR}$$

• How to compute the directional derivative of the values of a differential form:

$$\mathcal{L}_X(\alpha(Y_1,\ldots,Y_k)) = (\mathcal{L}_X\alpha)(Y_1,\ldots,Y_k) + \sum_{i=1}^k \omega(Y_1,\ldots,Y_{i-1},\mathcal{L}_XY_i,Y_{i+1},\ldots,Y_k).$$

• How the deRham derivative changes the values of a form:

$$d\alpha(Y_0, \dots, Y_k) = \sum_{i=0}^k (-1)^i Y_i(\alpha(Y_0, \dots, \hat{Y}_i, \dots, Y_k)) + \sum_{i < j} (-1)^{i+j} \omega([Y_i, Y_j], Y_0, \dots, \hat{Y}_i, \dots, \hat{Y}_j, \dots, Y_k)$$

That's it. Now I'll review the definitions of everything for your convenience.

2. The Lie derivative

Given any $X \in \Gamma(TM)$, one has maps

$$\mathcal{L}_X : \Gamma(TM) \to \Gamma(TM), \qquad \mathcal{L}_X : \Omega^k_{deR}(M) \to \Omega^k_{deR}(M).$$

which go by the same notation. To define this, we needed the theorem about ODEs: X defines a vector field, so you can flow along it. You evaluate α at that point. Since flowing is a diffeomorphism, you can pull back the value of α to the place you started before the flow.

$$(\Phi_t^X)^* \alpha(\Phi_t^X(x)) \in E_x.$$

Here, E is one of the vector bundles

$$TM, T^*M, \Lambda^k(T^*M),$$

and α is a section of *E*. The Lie derivative says let's measure the rate of change of this vector with respect to *t*:

$$\mathcal{L}_X(\alpha)(x) := \lim_{t \to 0} \frac{(\Phi_t^X)^* \alpha(\Phi_t^X(x)) - \alpha(x)}{t}$$

3. The Lie bracket

The Lie bracket was defined formally—if X and Y are two derivations from $C^{\infty}(M)$ to itself, we saw that while $X \circ Y$ may not be a derivation, the operation $X \circ Y - Y \circ X$ is. So we defined

$$[X,Y] := X \circ Y - Y \circ X \in Der(C^{\infty}(M), C^{\infty}(M)).$$

Miraculously, this purely algebraic definition agrees with a more geometric operation:

$$\mathcal{L}_X Y = [X, Y].$$

We proved this last class. One can also see that

$$\mathcal{L}_X f = df(X) = X(f).$$

Making sure you can prove this is a very good way to check that you understand all the basic definitions.

4. Differential forms eat tangent vectors

There is an isomorphism, for each k (and any finite-dimensional vector space V),

$$\Lambda^k(V^{\vee}) \to (\Lambda^k(V))^{\vee}$$

which sends an element of the form $\alpha_1 \wedge \ldots \wedge \alpha_k$ to the linear map

 $v_1 \wedge \ldots \wedge v_k \mapsto \det(\alpha_i(v_j)).$

Since a differential form $\alpha \in \Omega^k(M)$ defines an element

$$\alpha(x) \in \Lambda^k((T^*M)_x)$$

for any $x \in M$, the isomorphism tells us we can think of $\alpha(x)$ as an element of

 $(\Lambda^k((TM)_x))^{\vee}$

i.e., as something that eats k tangent vectors to x and spits out a number. You can check that if $f: M' \to M$ is a smooth map, then

 $((f^*\alpha)(x))(v_1,\ldots,v_k) = \alpha(f(x))(Df_x(v_1),\ldots,Df_x(v_k)).$

5. Contraction/interior multiplication

Given $X \in \Gamma(TM)$, we can define a map

$$\iota_X: \Omega^k(M) \to \Omega^{k-1}(M)$$

by sending

$$\alpha \mapsto \alpha(X, -, \dots, -).$$

This is defined using the isomorphism from the previous section. So for instance $\iota_X(\alpha)$ eats in k-1 vector fields Y_1, \ldots, Y_{k-1} and spits out the function

$$\alpha(X, Y_1, \ldots, Y_{k-1}).$$

6. deRham derivative d_{deR}

I write both d_{deR} and d depending on the context. They are the same thing. For every k, there is a map

$$d^k: \Omega^k(M) \to \Omega^{k+1}(M)$$

and I lazily call each of these maps d.

In local coordinates, this operation was defined as follows. Any k-form α on $U \subset \mathbb{R}^n$ can be written

$$\alpha = \sum_{I} f_{I} dx^{i_{1}} \wedge \ldots \wedge dx^{i_{k}}$$

where the index $I = (i_1 < \ldots < i_k)$ runs through every sequence of k increasing integers between 1 and n. And f_I is a choice of smooth function on U. Then

$$d\alpha := \sum_{I} \sum_{j=1}^{n} \frac{\partial f_{I}}{\partial x^{j}} dx^{j} \wedge dx^{i_{1}} \wedge \ldots \wedge dx^{i_{k}}.$$

Though this is local, you can see that this defines a map of section $\Omega^k(M) \to \Omega^{k+1}(M)$ by checking that this definition is compatible with the transition functions for the bundles $\Lambda^k(T^*M)$ and $\Lambda^{k+1}(T^*M)$.

Remark 10.1. While formulas in local coordinates let you compute, those of you more formally-minded may ask for a more intrinsic characterization of the deRham derivative. There is a non-trivial theorem (see Conlon, Theorem 7.5.5 and its corollaries) asserting that

$$\Gamma(\Lambda^k(T^*M)) \cong \Lambda^k(\Gamma(T^*M)).$$

The lefthand side Λ takes exterior powers over \mathbb{R} ; the righthand side takes exterior powers over $C^{\infty}(M)$. So by the righthand side, demanding that d be a derivation means we only need specify it on 0-forms (functions) and 1-forms. This is what we did in class. (In fact, there is another universal property that characterizes d simply by declaring it on 0-forms; this will be an optional problem on a homework.)

7. Some computational exercises

This is just a sanity check to make sure you know what you're doing. If you cannot do these, definitely come and talk to me and Phil. In what follows, everything is defined on \mathbb{R}^3 .

- $\alpha = x^2 dx + y^2 dy + xy dz.$
- $\beta = xyzdx \wedge dy + zdy \wedge dz.$
- $\omega = xdy \wedge dx + xdx \wedge dy.$
- $\eta = dx \wedge dy \wedge dz$.

•
$$X = x \frac{\partial}{\partial x}$$
.

•
$$Y = x^2 \frac{\partial}{\partial y}$$

(a) Show
$$\omega = 0$$
.

- (b) Compute $\iota_X \alpha$.
- (c) Compute $\iota_Y \beta$.
- (d) Compute $\iota_Y \eta$.
- (e) Compute $\alpha \wedge \beta$.
- (f) Compute $\beta \wedge \alpha$.
- (g) Compute $\mathcal{L}_X \alpha$.

(h) Compute $\mathcal{L}_Y\beta$.

(i) Compute $d\alpha$.

(j) Compute $d\beta$.

(k) Compute [X, Y].

8. Solutions

(a) Show $\omega = 0$. Use that $dy \wedge dx = -dx \wedge dy$. More pedantically, at any point $p \in \mathbb{R}^3$, we have that

$$\omega(p) = x(p)dy|_p \wedge dx|_p + x(p)dx|_p \wedge dy|_p \in \Lambda^2((T^*\mathbb{R}^3)_p).$$

And this vector space was defined by quotienting out $(T^*\mathbb{R}^3)_p \otimes (T^*\mathbb{R}^3)_p$ by imposing the relation $v \otimes v = 0$, which means that $v \wedge w := [v \otimes w] = -[w \otimes v]$ $v] =: -w \wedge v$. Long story short, we know that $dy|_p \wedge dx|_p = -dx|_p \wedge dy|_p$, so $\omega(p) = 0$ for all p. This means that ω is indeed the zero section of $\Lambda^2 T^*\mathbb{R}^3$.

Another, while equivalent, way to go about this: Note that

$$\Gamma(\Lambda^k(T^*\mathbb{R}^n)) \cong \Lambda^k(\Gamma(T^*\mathbb{R}^n))$$

where on the left, the exterior power is over \mathbb{R} , while on the right, it is over $C^{\infty}(\mathbb{R}^n)$. This is another way to reason out that $dy \wedge dx = -dx \wedge dy$. (b) **Compute** $\iota_X \alpha$. ι_X is defined pointwise. That is,

$$(\iota_X \alpha)(p) := \iota_{X(p)} \alpha(p) = \alpha(p)(X(p)).$$

And $dx(\frac{\partial}{\partial x}) = \frac{\partial x}{\partial x} = 1$. Hence we have

$$\iota_X \alpha = x^2 dx(X) = x^2(x) = x^3.$$

One important point to note is that the value of $\iota_X \alpha$ at a point p does not depend at all on how X or α behave in a neighborhood of p, but only on their respective values at p.

One way to say this is that the map

$$\iota: \Gamma(TM) \times \Omega^k(M) \to \Omega^{k-1}(M)$$

is bilinear over $C^{\infty}(M)$, not just over \mathbb{R} . This is very useful and special. For instance, the Lie bracket is far from being bilinear over $C^{\infty}(M)$.

(c) **Compute** $\iota_Y \beta$. We see by linearity that

$$\iota_Y(\beta) = xyz\,\iota_Y(dx \wedge dy) + z\,\iota_Y(dy \wedge dz).$$

The easiest way to compute ι is to pass through the isomorphism between $\Lambda(V^{\vee})$ and $(\Lambda(V))^{\vee}$. Then

$$(dx \wedge dy)(Y, -) = dx(Y)dy(-) - dy(Y)dx(-)$$

and

$$(dy \wedge dz)(Y, -) = dy(Y)dz(-) - dz(Y)dy(-).$$
15

Note that dx(Y) = dz(Y) = 0 while $dy(Y) = x^2$. Hence

$$\iota_Y(\beta) = xyz(-x^2)dx + z\,x^2dz = -x^3yzdx + x^2zdz.$$

Contracting by a vector field with only $\frac{\partial}{\partial y}$ component, note, killed off the dy components of the differential form.

(d) **Compute** $\iota_Y \eta$. This gets more annoying if you use the isomorphism from $\Lambda(V^{\vee})$ to $(\Lambda(V))^{\vee}$ directly. Instead, recall the formula from class that

$$(\alpha \wedge \beta)(v_1, \dots, v_k) = \sum_{\pi \in k, l-\text{shuffles}} \alpha(v_{\pi(1)}, \dots, v_{\pi(k)}) \beta(v_{\pi(k_1)}, \dots, v_{\pi(k+l)}).$$

Since Y only has a $\frac{\partial}{\partial y}$ component, let's take $\alpha = dy$ and $\beta = dz \wedge dx$, so that $\eta = \alpha \wedge \beta$. Then, given any two vector fields V_2, V_3 , we compute

$$(\alpha \wedge \beta)(Y, V_2, V_3)$$

by using the above formula. We see that the β factor is always zero if the shuffle π sends 1 to either 2 or 3. (After all, $dz \wedge dx$ evaluated on two vectors is zero if one of the vectors has no $\frac{\partial}{\partial x}$ or $\frac{\partial}{\partial z}$ component.) So the only terms in the summation that are potentially non-zero are those that come from (1, 2)-shuffles that fix 1—i.e., with $\pi(1) = 1$. But the only such shuffle is the identity shuffle by definition of shuffle. Hence

$$(\alpha \wedge \beta)(Y, V_2, V_3) = \alpha(Y)\beta(V_2, V_3) = x^2\beta(V_2, V_3).$$

Since V_2, V_3 were arbitrary, we conclude that

$$\iota_Y \eta = x^2 dz \wedge dx.$$

(e) **Compute** $\alpha \wedge \beta$. The answer is

$$(x^2z + x^2y^2z) \, dx \wedge dy \wedge dz.$$

(f) **Compute** $\beta \wedge \alpha$. The answer is

$$-(x^2z+x^2y^2z)\,dx\wedge dy\wedge dz.$$

(g) Compute $\mathcal{L}_X \alpha$. We compute

$$(8.1) \qquad \mathcal{L}_{X}(x^{2}dx + y^{2}dy + xydz) = \mathcal{L}_{X}(x^{2})dx + x^{2}\mathcal{L}_{X}(dx) + \mathcal{L}_{X}(y^{2})dy + y^{2}\mathcal{L}_{X}(dy) + \mathcal{L}_{X}(xz)dz + xy\mathcal{L}_{X}(dz)$$

$$(8.2) \qquad = \mathcal{L}_{X}(x^{2})dx + x^{2}d\mathcal{L}_{X}(x) + \mathcal{L}_{X}(y^{2})dy + y^{2}d\mathcal{L}_{X}(y) + \mathcal{L}_{X}(xz)dz + xyd\mathcal{L}_{X}(z)$$

$$(8.3) \qquad = 2x^{2}dx + x^{2}d(x) + 0dy + y^{2}d(0) + xzdz + xyd(0)$$

$$= 2x^{2}dx + x^{2}dx + xzdz$$

where in (8.1) we used that \mathcal{L}_X is a derivation for any X. In (8.2) we use that it commutes with d. Then in (8.3) we use that for functions, $\mathcal{L}_X(f) = df(X) = X(f)$, i.e., one computes the directional derivative of f in the direction of X. Since $X = x \frac{\partial}{\partial x}$, this entails computing $\frac{\partial f}{\partial x}$, then multiplying the result by x.

 $= 3x^2 dx + xz dz.$

(h) **Compute** $\mathcal{L}_Y \beta$. We compute

$$(8.4)$$

$$\mathcal{L}_{Y}(xyzdx \wedge dy + zdy \wedge dz) = \mathcal{L}_{Y}(xyz)dx \wedge dy + \mathcal{L}_{Y}(z)dy \wedge dz + xyz \mathcal{L}_{Y}(dx) \wedge dy + z \mathcal{L}_{Y}(dy) \wedge dz + xyz dx \wedge \mathcal{L}_{Y}(dy) + zdy \wedge \mathcal{L}_{Y}(dz)$$

$$(8.5) = \mathcal{L}_{Y}(xyz)dx \wedge dy + \mathcal{L}_{Y}(z)dy \wedge dz + xyz d(\mathcal{L}_{Y}(x)) \wedge dy + z d(\mathcal{L}_{Y}(y)) \wedge dz + xyz dx \wedge d(\mathcal{L}_{Y}(y)) + zdy \wedge d(\mathcal{L}_{Y}(z))$$

$$(8.6) = x^{3}zdx \wedge dy + 0 + 0 + 0 + z \cdot 2xdx \wedge dz + xyz dx \wedge 2xdx + 0$$

$$(8.7) = x^{3}zdx \wedge dy + 2xzdx \wedge dz.$$

Here, (8.4) again uses that \mathcal{L}_X is a derivation. (8.5) uses that \mathcal{L}_X commutes with d. (8.6) computes d of $\mathcal{L}_Y(f)$ using that $\mathcal{L}_Y(f) = Y(f)$. (8.7) uses that $dx \wedge dx = 0$. (i) Compute $d\alpha$. Set $x = x^1, y = x^2, z = x^3$. Then

$$d\alpha = \sum_{i} \frac{\partial (x^{2})}{\partial x^{i}} dx^{i} \wedge dx + \sum_{i} \frac{\partial (y^{2})}{\partial x^{i}} dx^{i} \wedge dy + \sum_{i} \frac{\partial (xy)}{\partial x^{i}} dx^{i} \wedge dz$$

= $2x \, dx \wedge dx + 2y \, dy \wedge dy + y \, dx \wedge dz + x \, dy \wedge dz$
= $0 + 0 + y \, dx \wedge dz + x \, dy \wedge dz$
= $y \, dx \wedge dz + x \, dy \wedge dz$.

(j) Compute $d\beta$. Set $x = x^1, y = x^2, z = x^3$. Then

$$d\beta = \sum_{i} \frac{\partial (xyz)}{\partial x^{i}} dx^{i} \wedge dx \wedge dy + \sum_{i} \frac{\partial (z)}{\partial x^{i}} dx^{i} \wedge dy \wedge dz$$

= $yz \, dx \wedge dx \wedge dy + xz \, dy \wedge dx \wedge dy + xy \, dz \wedge dx \wedge dy + dz \wedge dy \wedge dz$
= $0 + 0 + xy \, dz \wedge dx \wedge dy + 0$
= $xy \, dx \wedge dy \wedge dz$.

(k) **Compute** [X, Y]. Recall that if

$$X = \sum X^i \frac{\partial}{\partial x^i}, \qquad Y = \sum Y^i \frac{\partial}{\partial x^i},$$

then

$$[X,Y] = \sum_{i,j} \left(X^i \frac{\partial Y^j}{\partial x^i} - Y^i \frac{\partial X^j}{\partial x^i} \right) \frac{\partial}{\partial x^j}.$$

So we have

$$\begin{split} [x\frac{\partial}{\partial x}, x^2\frac{\partial}{\partial y}] &= x\frac{\partial(x^2)}{\partial x}\frac{\partial}{\partial y} - x^2\frac{\partial(x)}{\partial y}\frac{\partial}{\partial x} \\ &= 2x^2\frac{\partial}{\partial y}. \end{split}$$