Lecture 4: Vector spaces Thursday, September 3, 2015 9:30 AM

Admin:

VECTOR SPACES

Why? They're everywhere

4D vectors R4

(a,b,c,d)

cubic polynomials

ax3+bx2+cx+d

2×2 matrices

 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$

(a,b,c,d) + (e,f,g,h) = (a+e,b+f,c+g,d+h) $(ax^3+bx^2+cx+d) + (ex^5+fx^2+gx+i) = (a+e)x^3+(b+f)x^2+\cdots$ (ab) + (ef) = (a+e)b+f (cd) + (ef) = (a+e)b+f (cd) + (ef) = (a+e)b+f (cd) + (ef) = (a+e)b+f

>> We should abstract their properties, study them together

(and matrices are best understood as linear) transformations on vector spaces

<u>Definition</u>: A vector space consists of

- · a set of "vectors" V
- · a field F (often the reals IR or complex #s C)
- · operations of

- vector addition V×V→V, denoted ×+4

- scalar multiplication F × V -> V, denoted

that satisfy:

- closure under addition & scalar multiplication:

THAT SUTISTY

- closure under addition & scalar multiplication:

2xeV

-existence of 3 ∈ V 3+x=x for all x

- additive inverses

for all xeV, there exists ge X st. x+4=0

for all a, BEF, x, y, ZEV: $\vec{x} + \vec{y} = \vec{y} + \vec{x}$

-commutativity

-associativity $\vec{x} + (\vec{q} + \vec{z}) = (\vec{x} + \vec{y}) + \vec{z}$

2(BX) = (LB)X -distributivity $(\alpha+\beta)\vec{x} = \lambda\vec{x} + \beta\vec{x}$

又(スナマ)= 人スナスリ

 $-1\vec{x} = \vec{x}$ (identity for multiplication)

Note: The most important properties to check are closure underaddition and scalar multiplication. The other properties are usually automatic.

Examples: Vector spaces are everywhere!

1) Rn: real vectors (x1, x2, ..., xn) coordinate-wise addition ≠ multiplication

D matrices Rmxn or Cmxn

3) the single-point sets 203 or {(0,0,...,0)} (trivially closed under addition & multiplication)

> But these are NOT vector spaces: $\{(1,0,0)\}$

$$\{(0,0), (1,0)\}$$

the nterval $[0,1]$

9 function spaces, eg.,
all functions IR→IR
all functions [0,1] → IR

addition (f+g)(x) = f(x) + g(x)multiplication $(\chi f)(x) = \chi \cdot f(x)$

Subspaces!

ALL subsyaces of 12:

{03, lines through 0 {(xy): ax+by=03, IR2 itself

Not subspaces:

other lines:

curves:

(closed neither under addition or multiplication!)
Important: Lines/planes/hyperplanes that don't
go through the origin (0) are NOT subjectes!!

(a) The SPAN of any (finite or infinite) set of points S Span(S) is defined to be the set of all finite linear combinations of elements from S

(ie., all sums &, v, + &, v, + ... + dr Vr)
for &jeF, vjeS
Ru definition. this is closed under +, x, and

hence a vector space.

Examples:

$$Span \{(1,2)\}$$
 $Span \{(1,2), (-1,-2)\}$
 $Span \{(1,0), (0,1)\}$

Claim: Span(S) is the smallest vector space that contains all the points in S. Proof:

- Let T be a vector space containing all of S.
- Let ve Span(s).

⇒ V=LIV,+d_V_+···+drVr, with all ViES

- ⇒ all vi ∈T
- > all x; v; ∈ T (dosore under mult.)
- ⇒ v= Z; x; v; eT (closure under addition)
- => Span(S) eT.
- € Polynomials = Span {1, x, x², x²,} Continuous functions Differentiable functions Functions f with f(1) = 0, f(2) = 0
- 1 The SUM of two subspaces is a subspace. Definition: For two subsets X and Y in a vector space V, let

 $X + Y = \{x + y \mid x \in X, y \in Y\}$

(In English: all sums of a vector in X and a vector in Y.)

Example: ... 1 1 wort a subspace!

not a subspace!

(sometimes called an Example: "affine subspace" What is X+Y? Example \times Answer: The whole plane! For any other point, draw this parallelogram / Claim 1: If X and Y are subspaces, then X+Y is a subspace. Moof: The key properties to check are closure under addition and multiplication. Closure under addition: want to show (wits) if a, b \in X + Y, then a + b \in X + Y: $a \in X+Y \Rightarrow a = x+y$ for some $x \in X, y \in Y$ $b \in X+Y \Rightarrow b = x'+y'$ " x' " y' " a+b = (x+y) + (x'+y')= $(x+x') + (y+y') \in X+Y$ Closure under multiplication: WTS: If a \in X+4, then for all scalars a, xa \in X+Y: 口 Claim 2: For subsets S and T of a xector space V,

Span(S) + Span(T) = Span(SUT)

Proof: Span(S) = { Anite Imear comb mations of elts of S}

Span(T) = { " " T}

... $x \in Span(S) + Span(T)$ $\Rightarrow x = \sum_{j=1}^{n} x_{j} s_{j} + \sum_{j=1}^{n} \beta_{j} t_{j}$ $\Rightarrow x \text{ is a finite linear combination of elements of SUT. } \square$

Example: From before $X = Span(\xi \times 3)$ $Y = Span(\xi \times 3)$ $Span(\xi \times 3) = R^2 = X + Y$

4.1 Spaces and Subspaces

Proof. To prove (4.1.1), demonstrate that the two closure properties $(\mathbf{A1})$ and (M1) hold for S = X + Y. To show (A1) is valid, observe that if $u, v \in S$, then $\mathbf{u} = \mathbf{x}_1 + \mathbf{y}_1$ and $\mathbf{v} = \mathbf{x}_2 + \mathbf{y}_2$, where $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}$ and $\mathbf{y}_1, \mathbf{y}_2 \in \mathcal{Y}$. Because \mathcal{X} and \mathcal{Y} are closed with respect to addition, it follows that $\mathbf{x}_1 + \mathbf{x}_2 \in \mathcal{X}$ and $\mathbf{y}_1 + \mathbf{y}_2 \in \mathcal{Y}$, and therefore $\mathbf{u} + \mathbf{v} = (\mathbf{x}_1 + \mathbf{x}_2) + (\mathbf{y}_1 + \mathbf{y}_2) \in \mathcal{S}$. To verify (M1), observe that \mathcal{X} and \mathcal{Y} are both closed with respect to scalar multiplication so that $\alpha \mathbf{x}_1 \in \mathcal{X}$ and $\alpha \mathbf{y}_1 \in \mathcal{Y}$ for all α , and consequently $\alpha \mathbf{u} = \alpha \mathbf{x}_1 + \alpha \mathbf{y}_1 \in \mathcal{S}$ for all α . To prove (4.1.2), suppose $\mathcal{S}_X = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_r\}$ and $S_Y = \{\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_t\}$, and write

167

$$\mathbf{z} \in span\left(\mathcal{S}_X \cup \mathcal{S}_Y\right) \Longleftrightarrow \mathbf{z} = \sum_{i=1}^r \alpha_i \mathbf{x}_i + \sum_{i=1}^t \beta_i \mathbf{y}_i = \mathbf{x} + \mathbf{y} \text{ with } \mathbf{x} \in \mathcal{X}, \ \mathbf{y} \in \mathcal{Y}$$
$$\iff \mathbf{z} \in \mathcal{X} + \mathcal{Y}. \quad \blacksquare$$

Example 4.1.8

If $\mathcal{X}\subseteq\Re^2$ and $\mathcal{Y}\subseteq\Re^2$ are subspaces defined by two different lines through the origin, then $\mathcal{X} + \mathcal{Y} = \Re^2$. This follows from the parallelogram law—sketch a picture for yourself.

Exercises for section 4.1

4.1.1. Determine which of the following subsets of \Re^n are in fact subspaces of

$$\begin{cases} \mathbf{x} \mid (n > 2). \\ \mathbf{x} \mid (\mathbf{x} \mid x_i \ge 0), \\ \mathbf{x} \mid \sum_{j=1}^{n} x_j = 0 \end{cases}, \qquad \begin{cases} \mathbf{x} \mid x_1 = 0\}, \\ \mathbf{x} \mid \sum_{j=1}^{n} x_j = 1 \end{cases}, \\ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \text{ where } \mathbf{A}_{m \times n} \ne \mathbf{0} \text{ and } \mathbf{b}_{m \times 1} \ne \mathbf{0} \end{cases}.$$

4.1.2. Determine which of the following subsets of $\Re^{n \times n}$ are in fact subspaces

- (a) The symmetric matrices.
 (b) The diagonal matrices.
 (c) The monsingular matrices.
 (d) The singular matrices.
 (f) The upper-triangular matrices.
- All matrices that commute with a given matrix \mathbf{A} . All matrices such that $\mathbf{A}^2 = \mathbf{A}$.
- (i) All matrices such that $trace(\mathbf{A}) = 0$.
- **4.1.3.** If $\mathcal X$ is a plane passing through the origin in \Re^3 and $\mathcal Y$ is the line through the origin that is perpendicular to \mathcal{X} , what is $\mathcal{X} + \mathcal{Y}$?

4.1.4. Why must a real or complex nonzero vector space contain an infinite number of vectors?

4.1.6. Which of the following are spanning sets for \Re^3 ?

(a)
$$\{(1 \ 1 \ 1)\}$$
 (b) $\{(1 \ 0 \ 0), (0 \ 0 \ 1)\},$
(c) $\{(1 \ 0 \ 0), (0 \ 1 \ 0), (0 \ 0 \ 1), (1 \ 1 \ 1)\},$
(d) $\{(1 \ 2 \ 1), (2 \ 0 \ -1), (4 \ 4 \ 1)\}, 2$ fighthsecond

4.1.7. For a vector space V, and for M, $N \subseteq V$, explain why $span\left(\mathcal{M}\cup\mathcal{N}\right)=span\left(\mathcal{M}\right)+span\left(\mathcal{N}\right).$

- (a) Prove that the intersection $\mathcal{X} \cap \mathcal{Y}$ is also a subspace of \mathcal{V} .
- (b) Show that the union $\mathcal{X} \cup \mathcal{Y}$ need not be a subspace of \mathcal{V} .

4.1.9. For $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathcal{S} \subseteq \mathbb{R}^{n \times 1}$, the set $\mathbf{A}(\mathcal{S}) = {\mathbf{A} \mathbf{x} \mid \mathbf{x} \in \mathcal{S}}$ contains all possible products of A with vectors from S. We refer to A(S) as the set of images of S under A.

- (a) If S is a subspace of \Re^n , prove $\mathbf{A}(S)$ is a subspace of \Re^m .
- (b) If $\mathbf{s}_1, \mathbf{s}_2, \dots, \mathbf{s}_k$ spans \mathcal{S} , show $\mathbf{A}\mathbf{s}_1, \mathbf{A}\mathbf{s}_2, \dots, \mathbf{A}\mathbf{s}_k$ spans $\mathbf{A}(\mathcal{S})$.

4.1.10. With the usual addition and multiplication, determine whether or not the following sets are vector spaces over the real numbers.

- (a) \Re , \int (b) \mathcal{C} , \int (c) The rational numbers

4.1.11. Let $\mathcal{M} = \{\mathbf{m}_1, \mathbf{m}_2, \dots, \mathbf{m}_r\}$ and $\mathcal{N} = \{\mathbf{m}_1, \mathbf{m}_2, \dots, \mathbf{m}_r, \mathbf{v}\}$ be two sets of vectors from the same vector space. Prove that $span(\mathcal{M}) = span(\mathcal{N})$ if and only if $\mathbf{v} \in \operatorname{span}(\mathcal{M})$.

4.1.12. For a set of vectors $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$, prove that span(S) is the intersection of all subspaces that contain S. Hint: For $\mathcal{M} = \bigcap_{S \subseteq \mathcal{V}} \mathcal{V}$, prove that $span(S) \subseteq \mathcal{M}$ and $\mathcal{M} \subseteq span(S)$.

Fr = field of numbers mod p (for a prime p)
Fr = 80, 13 Bit strings of length n form a vector space: n=3: (0,0,0), (0,0,1), (0,1,0), (0,1,1) (1,0,0), (1,0,1), (1,1,0), (1,1,1)addition is coordinate-wise, mod 2 (0,0,1)+(0,1,1)=(0,1,0) subspace, eg.,

 $Span(\{(0,0,1),(1,0,1)\})$ $= \{(0,0,0), (0,0,1), (1,0,1), (1,0,0)\}$

Problem:

- 1. How many subspaces are there of R? Auswer: Infinitely many (lines through the origin)
- 2. How many subspaces are there of R? Answer: Two! (0) and Ritself.
- 3. How many subspaces are there of 80,132? {(0,0)}, everything {0,1}2 {(0,0),(0,1)}, {(0,0),(1,0)} {(0,0),(0,0)}, {(0,0),(1,1)} and that's it!

if a subspace contains two of the nonzero points, then it also includes their sum, which is the last nonzero point: (1,0)+(0,1)+(1,1)=(0,0) means that any two sum to the third

1+4+1=G

4. How many subspaces are there of EO,13"? Well answer this later! Definitely <00 though i

Binary operations on subspaces
sum intersection union does not generally give another vector space
Binary operations on vector spaces
direct sum of these are the same on a finite number of operand
/
Basically, IRM Rn = Rm x IRn = IRm+n
Extensor product
Basically,
VOW = Span ({ vow I ve V, we W}
(not quite a precise definition)
eg., $(1,0)\otimes(1,0)+(0,1)\otimes(0,1)\in\mathbb{R}^2\otimes\mathbb{R}^2$
and cannot be simplified further
(to vow)
$\mathbb{R}^m \otimes \mathbb{R}^n \cong \mathbb{R}^{nn}$

82

vector (1,1,-1) and automatically contains any multiple (c,c,-c):

Nullspace is a line
$$\begin{bmatrix} 1 & 0 & 1 \\ 5 & 4 & 9 \\ 2 & 4 & 6 \end{bmatrix} \begin{bmatrix} c & c & -c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

The nullspace of *B* is the line of all points x = c, y = c, z = -c. (The line goes through the origin, as any subspace must.) We want to be able, for any system Ax = b, to find C(A) and N(A): all attainable right-hand sides b and all solutions to Ax = 0.

The vectors b are in the column space and the vectors x are in the nullspace. We shall compute the dimensions of those subspaces and a convenient set of vectors to generate them. We hope to end up by understanding all *four* of the subspaces that are intimately related to each other and to A—the column space of A, the nullspace of A, and their two perpendicular spaces.

Problem Set 2.1

- 1. Construct a subset of the x-y plane \mathbb{R}^2 that is
 - (a) closed under vector addition and subtraction, but not scalar multiplication.
 - (b) closed under scalar multiplication but not under vector addition.

Hint: Starting with u and v, add and subtract for (a). Try cu and cv for (b).

- **2.** Which of the following subsets of \mathbb{R}^3 are actually subspaces?
 - (a) The plane of vectors (b_1, b_2, b_3) with first component $b_1 = 0$.
 - (b) The plane of vectors b with $b_1 = 1$.
 - (c) The vectors b with $b_2b_3 = 0$ (this is the union of two subspaces, the plane $b_2 = 0$ and the plane $b_3 = 0$).
 - (d) All combinations of two given vectors (1,1,0) and (2,0,1).
 - (e) The plane of vectors (b_1, b_2, b_3) that satisfy $b_3 b_2 + 3b_1 = 0$.
- 3. Describe the column space and the nullspace of the matrices

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 & 0 & 3 \\ 1 & 2 & 3 \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

- **4.** What is the smallest subspace of 3 by 3 matrices that contains all symmetric matrices *and* all lower triangular matrices? What is the largest subspace that is contained in both of those subspaces?
- 5. Addition and scalar multiplication are required to satisfy these eight rules:

1.
$$x + y = y + x$$
.

2.
$$x + (y+z) = (x+y) + z$$
.

- 3. There is a unique "zero vector" such that x + 0 = x for all x.
- 4. For each x there is a unique vector -x such that x + (-x) = 0.
- 5. 1x = x.
- 6. $(c_1c_2)x = c_1(c_2x)$.
- 7. c(x+y) = cx + cy.
- 8. $(c_1+c_2)x = c_1x + c_2x$.
- (a) Suppose addition in \mathbb{R}^2 adds an extra 1 to each component, so that (3,1)+(5,0)equals (9,2) instead of (8,1). With scalar multiplication unchanged, which rules are broken?
- (b) Show that the set of all positive real numbers, with x + y and cx redefined to equal the usual xy and x^c , is a vector space. What is the "zero vector"?
- (c) Suppose $(x_1,x_2)+(y_1,y_2)$ is defined to be (x_1+y_2,x_2+y_1) . With the usual cx= (cx_1, cx_2) , which of the eight conditions are not satisfied?
- **6.** Let **P** be the plane in 3-space with equation x + 2y + z = 6. What is the equation of the plane P_0 through the origin parallel to P? Are P and P_0 subspaces of \mathbb{R}^3 ?
- 7. Which of the following are subspaces of \mathbb{R}^{∞} ?
 - (a) All sequences like (1,0,1,0,...) that include infinitely many zeros. \bigcirc
 - (b) All sequences $(x_1, x_2,...)$ with $x_i = 0$ from some point onward.
- - (c) All decreasing sequences: $x_{j+1} \le x_j$ for each j.
 - (d) All convergent sequences: the x_j have a limit as $j \to \infty$.
 - (e) All arithmetic progressions: $x_{j+1} x_j$ is the same for all j.
 - (f) All geometric progressions $(x_1, kx_1, k^2x_1,...)$ allowing all k and x_1 .

$$Ax = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

form

- (a) a plane.
- (b) a line.
- (c) a point.
- (d) a subspace.

- 84
- (e) the nullspace of A.
- (f) the column space of A.
- 9. Show that the set of nonsingular 2 by 2 matrices is not a vector space. Show also that the set of singular 2 by 2 matrices is not a vector space.
- **10.** The matrix $A = \begin{bmatrix} 2 & -2 \\ 2 & -2 \end{bmatrix}$ is a "vector" in the space **M** of all 2 by 2 matrices. Write the zero vector in this space, the vector $\frac{1}{2}A$, and the vector -A. What matrices are in the smallest subspace containing A?
- **11.** (a) Describe a subspace of **M** that contains $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ but not $B = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$.
 - (b) If a subspace of **M** contains *A* and *B*, must it contain *I*?
 - (c) Describe a subspace of M that contains no nonzero diagonal matrices.
- 12. The functions $f(x) = x^2$ and g(x) = 5x are "vectors" in the vector space **F** of all real functions. The combination 3f(x) - 4g(x) is the function h(x) =____. Which rule is broken if multiplying f(x) by c gives the function f(cx)?
- 13. If the sum of the "vectors" f(x) and g(x) in **F** is defined to be f(g(x)), then the "zero vector" is g(x) = x. Keep the usual scalar multiplication cf(x), and find two rules that are broken.
- **14.** Describe the smallest subspace of the 2 by 2 matrix space **M** that contains
 - (a) $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. (b) $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

(c) $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$.

- (d) $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$.
- 15. Let **P** be the plane in \mathbb{R}^3 with equation x+y-2z=4. The origin (0,0,0) is not in **P**! Find two vectors in **P** and check that their sum is not in **P**.
- **16.** P_0 is the plane through (0,0,0) parallel to the plane **P** in Problem 15. What is the equation for P_0 ? Find two vectors in P_0 and check that their sum is in P_0 .
- 17. The four types of subspaces of \mathbb{R}^3 are planes, lines, \mathbb{R}^3 itself, or \mathbb{Z} containing only (0,0,0).
 - (a) Describe the three types of subspaces of \mathbb{R}^2 .
 - (b) Describe the five types of subspaces of \mathbb{R}^4 .
- **18.** (a) The intersection of two planes through (0,0,0) is probably a _____ but it could be a ____. It can't be the zero vector Z!
 - (b) The intersection of a plane through (0,0,0) with a line through (0,0,0) is probably a ____ but it could be a ____.

2.1 Vector Spaces and Subspaces

- (c) If **S** and **T** are subspaces of \mathbb{R}^5 , their intersection $\mathbb{S} \cap \mathbb{T}$ (vectors in both subspaces) is a subspace of \mathbb{R}^5 . Check the requirements on x + y and cx.
- **19.** Suppose **P** is a plane through (0,0,0) and **L** is a line through (0,0,0). The smallest vector space containing both **P** and **L** is either ____ or ____.
- **20.** True or false for M = all 3 by 3 matrices (check addition using an example)?
 - (a) The skew-symmetric matrices in **M** (with $A^{T} = -A$) form a subspace.
 - (b) The unsymmetric matrices in **M** (with $A^T \neq A$) form a subspace.
 - (c) The matrices that have (1,1,1) in their nullspace form a subspace.

Problems 21–30 are about column spaces C(A) and the equation Ax = b.

21. Describe the column spaces (lines or planes) of these particular matrices:

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 0 & 0 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 0 & 0 \end{bmatrix}$.

22. For which right-hand sides (find a condition on b_1, b_2, b_3) are these systems solvable?

(a)
$$\begin{bmatrix} 1 & 4 & 2 \\ 2 & 8 & 4 \\ -1 & -4 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$
 (b)
$$\begin{bmatrix} 1 & 4 \\ 2 & 9 \\ -1 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

23. Adding row 1 of *A* to row 2 produces *B*. Adding column 1 to column 2 produces *C*. A combination of the columns of _____ is also a combination of the columns of *A*. Which two matrices have the same column _____?

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$.

24. For which vectors (b_1, b_2, b_3) do these systems have a solution?

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

- **25.** (Recommended) If we add an extra column b to a matrix A, then the column space gets larger unless _____. Give an example in which the column space gets larger and an example in which it doesn't. Why is Ax = b solvable exactly when the column space doesn't get larger by including b?
- **26.** The columns of *AB* are combinations of the columns of *A*. This means: *The column space of AB is contained in* (possibly equal to) *the column space of A*. Give an example where the column spaces of *A* and *AB* are not equal.

Chapter 2 Vector Spaces

86

27. If A is any 8 by 8 invertible matrix, then its column space is ____. Why?

- **27.** If *A* is any 8 by 8 invertible matrix, then its column space is ____. Why?
- 28. True or false (with a counterexample if false)?
 - (a) The vectors b that are not in the column space C(A) form a subspace.
 - (b) If C(A) contains only the zero vector, then A is the zero matrix.
 - (c) The column space of 2A equals the column space of A.
 - (d) The column space of A I equals the column space of A.
- **29.** Construct a 3 by 3 matrix whose column space contains (1,1,0) and (1,0,1) but not (1,1,1). Construct a 3 by 3 matrix whose column space is only a line.
- **30.** If the 9 by 12 system Ax = b is solvable for every b, then $C(A) = \underline{\hspace{1cm}}$.
- 31. Why isn't \mathbb{R}^2 a subspace of \mathbb{R}^3 ?

2.2 Solving Ax = 0 and Ax = b

Chapter 1 concentrated on square invertible matrices. There was one solution to Ax = b and it was $x = -A^{-1}b$. That solution was found by elimination (not by computing A^{-1}). A rectangular matrix brings new possibilities—U may not have a full set of pivots. This section goes onward from U to a reduced form R—the simplest matrix that elimination can give. R reveals all solutions immediately.

For an invertible matrix, the nullspace contains only x = 0 (multiply Ax = 0 by A^{-1}). The column space is the whole space (Ax = b has a solution for every b). The new questions appear when the nullspace contains *more than the zero vector* and/or the column space contains *less than all vectors*:

1. Any vector x_n in the nullspace can be added to a particular solution x_p . The solutions to all linear equations have this form, $x = x_p + x_n$:

Complete solution $Ax_p = b$ and $Ax_n = 0$ produce $A(x_p + x_n) = b$.

2. When the column space doesn't contain every b in \mathbb{R}^m , we need the conditions on b that make Ax = b solvable.

A 3 by 4 example will be a good size. We will write down all solutions to Ax = 0. We will find the conditions for b to lie in the column space (so that Ax = b is solvable). The 1 by 1 system 0x = b, one equation and one unknown, shows two possibilities:

0x = b has no solution unless b = 0. The column space of the 1 by 1 zero matrix contains only b = 0.

0x = 0 has infinitely many solutions. The nullspace contains all x. A particular solution is $x_p = 0$, and the complete solution is $x = x_p + x_n = 0 + (\text{any } x)$.

More important examples: SUBSPACES OF A MATRIX

11 lore important examples:

SUBSPACES OF A MATRIX

Let A ∈ Rm×n be on m×n real-valued matrix.

· Range (A) = {Ax | x∈Rn}

= Span(columns of A)
AKA "column space" of A

Observe: $\vec{b} \in Range(A) \iff A\vec{x} = \vec{b}$ has a solution

- · Range (AT) = Span (rows of A) "row space"
- Kernel(A) = $\frac{1}{2}$ $\frac{1}{2}$