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Thursday, September 3, 2015 9:30 AM
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Exercise: Fove Yok for oo &e/vxem\\ 275 wodrix
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V)
= =<| LZ)‘/
x \ 22

[Bud: /V\ov\'r\x MVersion s o e answer we wand.

% prachice, we awost never invert matrices |
(D Too dowd. @f\/%\/\* not eyen exist.

€ NwN\e(\“co\M unstable
Exampe :

> A= [.01 0; 8 1]; > A= [.02 @; 81];
inv(A) inv(A)
ans = ans =
108 ) 50 0
B 1 a 1

® Con take spacse wodrices to devnse wmadices
= uses oo M Y\/\eN\Of\Lﬁ’)
Exawv\\o\e, :
5> n = 108;

e = ones(n-1,1);
= -2weye(n) + diag{ones(n-1,1), -1) + diag(ones(n-1,13, 1)

=
n

[l R~ I~ R IR I - ]

=~ I I~~~

[l R R o R R o RS ]
550 8 8 8 &8 & —
[l R~ I~ R I R B LS I ]
(ool I R (IS g B~ )
1
[l B R R - R )
LB SR - BB -~ - -~ i ]
1
Rl I B < R R o ]
LGSR~ R o R R R o B )

= invi(A)
ans =

-@.9891 -@.8182 -@.7273 -8.6364 -0.5455 -@.4545 -8.3636 -0.2727 -@.1818 -@.@9%@9
-@.8182 -1.6364 -1.4545 -1.2727 -1.@989  -@.9@891 -8.7273 -@.5455 -8.3636 -@.1818
-@.7273 -1.4545 -2.1818  -1.9891 -1.6364 -1.3636 -1.898% -@.8182 -@.5455 -8.2727
-@.6364 -1.2727  -1.5@91 -2.5455 -2.,1818 -1.8182 -1.4545 -1.@98% -@.7273 -B.3636
-@.5455 -1.@9@8% -1.6364 -2.1818 -2.7273 -2.2727 -1.8182 -1.3636 -@.9891 -8.4545
-@.4545  -@.9891 -1.3636 -1.8182 -2.2727 -2.7273 -2.1818 -1.6364 -1.8989 -B.5455
-@.3636 -@.7273 -1.8983 -1.4545 -1.8182 -2.1818 -2.5455 -1.9@91 -1.2727 -8.6364
-@.2727 -@.5455 -@.8182 -1.@9@% -1.3636 -1.6364 -1.9@91 -2.1818 -1.4545 -8.7273
-@.1818 -@.3636 -8.5455 -@.7273  -@.9891 -1.89@9  -1.2727  -1.4545 -1.6364 -B.8182
-@.e989 -@.1818 -@.2727 -B.3636 -B8.4545 -@.5455 -@.6364 -0.7273 -8.8182 -8.9891

Recall:

| . /\\{\QP/Q {ltl\/QO/‘ AIOA‘\HW\I\ f..ﬁ.,,n--l.nre\ |
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cosed under additton (f vects ts)
anc W\U\\\'\‘o]\cocﬁm ( |® scalars)
Q\(\\&s ~ Lex> other \(ros‘er-\'\(o)

\/e,d—of 5p ale, =

Examples:
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. o o © ] o “ ‘hm /
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o O se < \/,
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EE 441 Page 5



E &\l donckions From S” bo IRY
R
£ 3
@ iﬁ) (x) = £0<) tj(x)

Qﬂ@ (x) =« 3<><>
g fﬁ(@mow\}&kl\s c@erﬁfe@ <L -3
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Exercise: (Dot owve ALL sulos‘ookc:e,s o R™2

EC)_Zs , nes Hrropaln O 2z
zcx@:o\g@_,gé . IR® sdlf

NoT su\osmces © other \nes, corves

11MPOI+0\V\‘\"' L\\r\@/k\av\eb/bw?«r(om@ o Ao
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fFe = Liedd of aumbers mod- p (for o prime )
TFE = 20,13
Bit stritae o lenaPn n farm & Yector space :

EE 441 Page 6



nee (@(O/o}/ (0,6,1), (o,1,5), (0,), D)
(1,00),00,), G1ro), 00
additfion s coordinate-Orse Mmook 2
(0,0, +Co, 1,1 =(o,1,0)
S‘(LloSY)OLCQ) eqy -,
Span (g(@,@, D, (1,0, 1)9
= Coop), (oo, (15 1), (10,003

Probleme -
. Ho®d wan s ubepaces ace there of g °
Awswer o lnprmtey wmann !
Clwes -HA(‘O\@\/\ O TEN
2. Howd ey subspaces ae there of R 2
hnswer T Two!  0) and R eell,

3. How Vol J‘v\&osxyo\ces ace Hrcre of $0,13%7
07, evegyting 0,15
E(0,0)/(o,l)ﬁ , §Co}o))Cl/O)§
¢ (o,0),, %, 550@))(‘)')3

and. Hroks !
TANN Q(A,lo)POLC@ csfains e of e

non 2ero pewits, Hren i also mchudes
Hheir suwm i s Me loat nomze o

roms( . (1,0 + (o, D) -1{\,\) =(0,0)
means Haodk a@ oo sam to thhe Pnird
l+ 4+ =G

4. Hod vmo\y\uﬁ MacesmHWa 010 so )3 2
Well answaer Huis ber! Defitdy <o thoughn

® The Sum of fuwo sespaces s o subyrace .
Defihon - For fwo suosets X ande Y in oo Yeotor

svace V ,  let
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space V 5 led
X+Y = gx*j [ xeX,je Y g
(]vx €t3\»3\/\ K OL” SumsS of o vecto in X ow\&a\ vectr wm YB

E xampe -
VrAx

L

{

Exawm le -
-

C’/IQ\W\ l..; lP X CM\& Y oce 8&&‘98@&%5) ‘HAQ/\ X*_Y S a
m)oSK)O\CQ, .

Claym L * For subseks Q M\ATOPGLY¢Q«+0( Sfdkce,v)

NI r~\ . o. f/\ = C.. (:Q lﬁ-‘\
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SVOU\ CS) + Sboo\z)C’l’> = Srom S Q—r)

(; le - = Le-
e A R pan (x3)
x X \/:‘Spa\nQéSD
Syan (2)<,¢>$>= RL"X‘f\'f

Y

De{l\‘(\'\‘\'\o\r\‘- AS—)—F ine ‘5\)\\03(JO\C6 = 4+ronslated su\bs\oace

e, o~ sek G Y for avector a%é
NS S\A\oS\OCACG, \/

@/)/‘/\e, SPAN og)' o\vi,\ (P\"f\\\'c or ‘w\%\ /{r\'e> S oP ‘oo'\/\‘\—s 'S
Sp&ﬂ@) \S &Q@‘\/\e&—\’o ve e ser o?' a\“ ?m'\*e,

\inear conmonnarions oS} elements Prom S

e oJ\ SUWMWNS o(\—\?ﬁ a(;_\/l"’ Tt v O(p—\)/’r
for scalovs Ky Ak V,EeS

J

o defvition his s cosed under +, »
ad

Wence s oo veckor space .

Exomples: (dnok are
* Span L8 = e \ine $(x,2x) 1xeRY

\/J

* Span 201, 2) ,C-\,—ni /\

= Hre same line
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""i"/\e'sa\me \ine /j

o 8\90»\/\ %CO, D, LD = the x{)\o\vxe R"

¢ Spom?ib x, ®, X, 3=l po\l_\ﬁvxomia\\&

Note: The infwite sum 2 x*
: 0=0
e not n Yhae span .

. (\, D,
SPN\{CO,O) |>j % = Hhe x2-plave in R*

Q (‘?>=(é>+(%>)>

doesnt Wncreose tawe spani

(\) A\ > S>J
’ &‘e ISAR AL )-L‘) O ,4, -"l> B
Gy, 2,2,4, CD
—Hhis s a sulospace of+ R® — it must be
either o line , & plow\e) of aw ID \z\b\(«\o\o\f\e
Two _opproadaes 1o B oudk :
@ A‘I& Yecrors one o a_time

8\00\"\36) L, | )j S)g S o \i/\e_ .
Does (’&,’%O) 9, =) O’\\)e. 80/\/\6,'\’\/\(/\\5 wew ,
oc is It o\\/eo\&\vx n tWod e 2
—Some:l'b\ii\j wew, swvee i is not o V\M,L\H‘o\g o@ (\'A,\, I,S)

DO% 0 ) R)QJL‘,‘) ﬁ) CSNQ SCNV\QJ'\'\/\(A new
oc is it already W the pane % V\%(\ 2 11.9), ?SZ'
(’L)"U\JO ) k’(, ’)-)

1€ lies indhae \Ao\me E Hnece s o sdhon to
O 2a40=02) LS)x + (274,640 4

Lo /1 =y \ /1
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(\ /'7\/9\)"()6\) = (‘ ,fl,’; {)§>)< t ("‘qu/()/q/i)ﬂ

- \
<= (I =
9,\ g <3> = % \m,.s o salution
g 4
S -2 9

Thece S o sdurn: (x,:33 "‘(9\, ’/)_D
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&)M\é(u,;\,\ 1,8, gb v/
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- —
Span$ 0,0 Jo, o S
pa— ) ) —
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Yo
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- — —
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" - ,,3 R
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Hre 2avmne set as +he or\‘émm\ OWS |

Exercise: Prove (\o\v) Co»/\‘\'fad\\'c'\ﬁob At
S\oow\C&) o the SVV\O\\\C&’\' veckror SpacLe co\/\'\a\i/\m 8

Clawm: Span (D) e the smalest veckor spoe
ok contrains o)l the. points wn |
Prock
— LeX T e on vector space CQn‘\—o\'\mg 2\ o
— et 3 eg‘)o\wCS)
= I =AU\ oLVt F AN wvh o)l TeeS
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= o\ LVET (dosure onder ol
=3 = Z.; ANee T (esore onder QA\&\‘HQVO
SN @O Kt O

@ Pc)(:ﬁ\/\m\/\\\d\\\s = S\?(M\E L, Xy R x®, i
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—D‘)%CQV\"W\U\\"Q funchons ,
Funchons £ wit £(0) =0 PY=0O

More QMM?\% QS} Vector spaces

C[OLQOL (AV\AQ(‘ \ector
Vo =
S ace OOQA]-(-W? wﬂ—\_‘gm spae
Vf, C‘ﬂl ?L,k})e,ﬁs % \/ '\/ \/)@5
| st. b, "2b, +3n=0
- G b,k eR? / e
Ve E( st by b= O g X N
CoeR | byrby = 13 X X e sobepace
"'é(’/O)ﬁ*\/l

Sbgan (E (o) ,O)} (z,o/‘ﬁ) v J V4
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Sboan(f(i,l/OD (2,0 Di) / J S/
Ewyyc/-hsa wlar J / y

mw XN mw 7 ices
J v N

fa\io&om\\ WX W Mad'r';cgslg

|Ox 1O Mod'nce_s A S/
V’l’ gwﬂ"/\ Trace(A) "ZO\ vbg v ‘/

10 X (D wodvices A X X
{ piFnh Tr(A) = lg vgﬂ%_\f(_’imo
= L g QQ’)
3%x3% W\O\'\'(\, S A J J \/
DJH’t/\ ,A( (\ >:
é symmetnT nxn :ZS J J/ Vv
warates C\e T)
oLmHAMchCy rRSNONS / J
X Lqommees x;_xs, /
Wit xd SEF ccmﬁvw\'\‘

ey, (®,8,4,6,8,10,...)

s ,03(’ ventioble funchons
% L R= IR with }’C%)’?:@ X X >§pla\

, 0), (&,
g(oo(zw(qz\ ((,‘Q% »

» (14,49), (a6, 44)

< (Zhrz) (24 2)

(a7 s rrwe

é o) morices Mot ¢ gvinmute Y
WA o\,:)wo,n Mok x A J
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4.1 Spaces and Subspaces 167

Example 4.1.8

Proof.  To prove (4.1.1), demonstrate that the two closure properties (A1) and
(M1) hold for § = X'+). To show (A1) is valid, observe that if u,v € §, then
u=x;+y; and v = x; +ys, where x1,x; € X and y;,y2 € V. Because
A and Y are closed with respect to addition, it follows that x; + x € &
and y, + y2 € YV, and therefore u+v = (x; + x2) + (y1 + y2) € §. To
verify (ML), observe that X and ) are both closed with respect to scalar
multiplication so that ax; € A and ay; € V for all o, and consequently
au = ax; +ay; € 8 for all a. To prove (4.1.2), suppose Sy = {x1,%2,....%,}
and Sy = {y1,¥2,..., v:}, and write

T 3
z € span (Sx U Sy) 4=>z=2(r‘-x,- +E,3,-y,- =x+ywithxeX, ye)y

=1 =1

—=zeX+Y. 1

If X CR? and Y C R? are subspaces defined by two different lines through
the origin, then X' + )Y = R2. This follows from the parallelogram law—sketch
a picture for yourself.

Exercises for section 4.1

‘* 4.1.1. Determine which of the following subsets of R™ are in fact subspaces of

R* (n=>2).
(a) {x|ax; =0}, (b) {x|x =0}, (¢) {x|axyzs =0},

(f) {x| Ax=Db, where A, ., #0 and by, # 0}.

\k 4.1.2. Determine which of the following subsets of R™*™ are in fact subspaces

Of iR'nX'n_
(

a)  The symmetric matrices.  (b) _The diagonal matrices.

[0 X Iretrensimkarteters. 2( FIatrces.

{(e) The triangular matrices. The upper-triangular matrices.
{g) All matrices that commute with a given matrix A.
(h) All matrices such that A? = A.

(i) All matrices such that trace (A) =

4.1.3. If X is a plane passing through the origin in ®* and Y is the line
through the origin that is perpendicular to X', what is X' + Y7
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168

4.1.4.

Chapter 4

Vector Spaces

Why must a real or complex nonzero vector space contain an infinite
number of vectors?

4.1.5. Sketch a picture in ®* of the subspace spanned by each of the following.
A?\ 1 2 -3 -4 0 1
(a) 3 6 -9 . (b) 0),15]. 1|1
2 4 —G (0 1] 0
1 1 1
(c) 0 1
0 0] 1
4.1.6. Which of the following are spanning sets for R* 7
(a) {(1 1 1)} (b)) {(1 0 0).(0 0 1)}
(¢) {(1 0 0),(0 1 0).(0 0 1), (1 1 1)},
(d {(1 2 1).(2 0 -1),(4 4 1)},
(€ {(1 2 1),(2 0 —1),(4 4 0)}
4.1.7. For a vector space V, and for M, N"C V, explain why
d‘ i o span (M UN) = span (M) + span (N).
4.1.8. Let X and Y be two subspaces of a vector space V.

4.1.9.

4.1.10.

4.1.11.

{a) Prove that the intersection X' MY is also a subspace of V. J
(b) Show that the union & U )Y need not be a subspace of V.

For A e R™*" and & C R"*!, the set A(S) = {Ax|x € S} contains
all possible products of A with vectors from §. We refer to A(S) as
the set of images of § under A.
(a) If & is a subspace of R", prove A(S) is a subspace of R™.
(b) If sy.80..... si spans S, show As;, As,, ..., As; spans A(S).

With the usnal addition and multiplication, determine whether or not
the following sets are vector spaces over the real numbers.
(a) W, by C, (¢) The rational numbers.

Let M ={m;.ms,..., m,} and N = {m;, ms,..., m,, v} betwo sets
of vectors from the same vector space. Prove that span (M) = span (N)
if and only if v € span (M). f

4.1.12. For a set of vectors & = {vy,va,...,v,}, prove that span(8) is the
intersection of all subspaces that contain &, HintyFor M = :.-Ov V.
prove that span(S) C M and M C span (S).
1 01 0
Nullspace is a line 549 [C c —r:] =10
2 46 0

The nullspace of B is the line of all points x = ¢, y = ¢, z = —c. (The line goes through
the origin, as any subspace must.) We want to be able, for any system Ax = b, to find
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[c e ~]=o|.

10
Nullspace is a line 5 4
2 4 0

e —

The nullspace of B is the line of all points x = ¢, y = ¢, z = —c. (The line goes through
the origin, as any subspace must.) We want to be able, for any system Ax = b, to find
C(A) and N(A): all attainable right-hand sides b and all solutions to Ax = 0.

The vectors b are in the column space and the vectors x are in the nullspace. We shall
compute the dimensions of those subspaces and a convenient set of vectors to generate
them. We hope to end up by understanding all four of the subspaces that are intimately
related to each other and to A—the column space of A, the nullspace of A, and their two
perpendicular spaces.

Problem Set 2.1

1. Construct a subset of the x-y plane R? that is
(a) closed under vector addition and subtraction, but not scalar multiplication.
(b) closed under scalar multiplication but not under vector addition.
Hint: Starting with « and v, add and subtract for (a). Try cu and cv for (b).
2. Which of the following subsets of R* are actually subspaces?
(a) The plane of vectors (by,by.b3) with first component by = 0.
(b) The plane of vectors b with b) = 1.

(c) The vectors b with byby = 0 (this is the union of two subspaces, the plane by, =0
and the plane b3 = 0).

(d) All combinations of two given vectors (1.1,0) and (2,0,1).
(e) The plane of vectors (b, b,,bs) that satisfy b3 — b, +3b; = 0.

3. Describe the column space and the nullspace of the matrices

: _Ol] and B= 00 3] and C =

123
4. What is the smallest subspace of 3 by 3 matrices that contains all symmetric matrices
and all lower triangular matrices? What is the largest subspace that is contained in
both of those subspaces?

A=

000
00 0

5. Addition and scalar multiplication are required to satisfy these eight rules:

2.1 Vector Spaces and Subspaces 83
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8.

2.1 Vector Spaces and Subspaces 83

l. x+y=y+ux
x+(y+z)=(x+y) +z
There is a unique “zero vector” such that x40 = x for all x.

won

For each x there is a unique vector —x such that x+ (—x) = 0.
Ly =x.

(ere2)x = cy(c2x).

clx+y)=cx+cy.

(c1+e)x=cx+cax.

®© NS A

(a) Suppose addition in R? adds an extra 1 to each component, so that (3,1) +(5,0)
equals (9,2) instead of (8, 1). With scalar multiplication unchanged, which rules
are broken?

(b) Show that the set of all positive real numbers, with x+y and cx redefined to equal
the usual xy and x¢, is a vector space. What is the “zero vector™?

(c) Suppose (x;,x2) + (y,y2) is defined to be (x| +y,,x; + y; ). With the usual ex =
(cxy,ex3), which of the eight conditions are not satisfied?

Let P be the plane in 3-space with equation x+ 2y +z = 6. What is the equation of
the plane Py through the origin parallel to P? Are P and P subspaces of R3?

Which of the following are subspaces of R™?
(a) All sequences like (1,0,1,0,...) that include infinitely many zeros.
(b) All sequences (x1,x2,...) with x; = 0 from some point onward.
(c) All decreasing sequences: x;; < x; for each j.
(d) All convergent sequences: the x; have a limit as j — oc.
(e) All arithmetic progressions: x;; | —x; is the same for all j.
(f) All geometric progressions (x,kx;.k2x;....) allowing all k and x;.
Which of the following descriptions are correct? The solutions x of

oo )l

1 02 0
X3

form
(a) a plane.
(b) a line.
(c) a point.
(d) a subspace.

84 Chapter 2 Vector Spaces

(e) the nullspace of A.
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9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Chapter 2 Vector Spaces

(e) the nullspace of A.

(f) the column space of A.

Show that the set of nonsingular 2 by 2 matrices is not a vector space. Show also that
the set of singular 2 by 2 matrices is not a vector space.

The matrix A = [% :%] is a “vector” in the space M of all 2 by 2 matrices. Write the
zero vector in this space, the vector %A, and the vector —A. What matrices are in the
smallest subspace containing A?

(a) Describe a subspace of M that contains A = [} 3] butnot B= [ ©,].

(b) If a subspace of M contains A and B, must it contain [?

(c) Describe a subspace of M that contains no nonzero diagonal matrices.

The functions f(x) = x*> and g(x) = 5x are “vectors” in the vector space F of all real

functions. The combination 3 f(x) —4g(x) is the function i(x) = . Which rule
is broken if multiplying f(x) by ¢ gives the function f(cx)?

If the sum of the “vectors” f(x) and g(x) in F is defined to be f(g(x)), then the “zero
vector” is g(x) = x. Keep the usual scalar multiplication ¢ f(x), and find two rules
that are broken.

Describe the smallest subspace of the 2 by 2 matrix space M that contains

10 0 1 1 0 10
@ [0 0} [0 0} ®) L} 0} and [0 1}'
i ' 1ol fo1
© {0 0} @ L} 0}’ {0 1}‘ {0 1]'

Let P be the plane in R? with equation x+y — 2z = 4. The origin (0,0,0) is not in P!

Find two vectors in P and check that their sum is not in P.

Py is the plane through (0,0,0) parallel to the plane P in Problem 15. What is the
equation for Py? Find two vectors in Py and check that their sum is in Py.

The four types of subspaces of R? are planes, lines, R* itself, or Z containing only
(0,0,0).

(a) Describe the three types of subspaces of R?.
(b) Describe the five types of subspaces of R*.

(a) The intersection of two planes through (0,0,0) is probably a but it could be
a . It can’t be the zero vector Z!

(b) The intersection of a plane through (0,0,0) with a line through (0.,0,0) is prob-
ably a but it could be a .

2.1 Vector Spaces and Subspaces 85
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19.

20.

21.

22.

23.

24,

25.

26.

2.1 Vector Spaces and Subspaces 85

(¢) If S and T are subspaces of R, their intersection SN'T (vectors in both subspaces)
is a subspace of R. Check the requirements on x+y and cx.

Suppose P is a plane through (0,0,0) and L is a line through (0,0,0). The smallest
vector space containing both P and L is either or

True or false for M = all 3 by 3 matrices (check addition using an example)?
(a) The skew-symmetric matrices in M (with AT = —A) form a subspace.
(b) The unsymmetric matrices in M (with AT £ A) form a subspace.

(c) The matrices that have (1,1, 1) in their nullspace form a subspace.
Problems 21-30 are about column spaces C(A) and the equation Ax = b.

Describe the column spaces (lines or planes) of these particular matrices:

1 2 1 0 1 0
A=10 0 and B= 1|0 2 and C= 1|2 0].
00 00 00

For which right-hand sides (find a condition on by, b1, by) are these systems solvable?

14 27 [x b 1 4 b
X
@ |2 8 4||lx|=|bhl.- O |2 9 H = |by
1 4 2| |x bs 1 4| 2,
Adding row 1 of A to row 2 produces B. Adding column 1 to column 2 produces C.
A combination of the columns of is also a combination of the columns of A.
Which two matrices have the same column ?
1 13
A= 2 and B= L2 and C= 1 .
2 4 3 6_ _2 6

For which vectors (b, b, b3) do these systems have a solution?
1 1 1 X b|
01 1| |x|=]|b| and
001 X3 b3

117 [x] by
11 X2l — bz
0 0 X_J,_ b},

oS o =

(Recommended) It we add an extra column b to a matrix A, then the column space
gets larger unless . Give an example in which the column space gets larger and
an example in which it doesn’t. Why is Ax = b solvable exactly when the column
space doesn’t get larger by including b?

The columns of AB are combinations of the columns of A. This means: The column
space of AB is contained in (possibly equal to) the column space of A. Give an
example where the column spaces of A and AB are not equal.

86 Chapter 2 Vector Spaces

27. If A is any 8 by 8 invertible matrix, then its column space is . Why?
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27. If A is any 8 by 8 invertible matrix, then its column space is . Why?
28. True or false (with a counterexample if false)?

(a) The vectors b that are not in the column space C(A) form a subspace.
(b) If C(A) contains only the zero vector, then A is the zero matrix.
(c) The column space of 2A equals the column space of A.
(d) The column space of A — I equals the column space of A.
29. Construct a 3 by 3 matrix whose column space contains (1,1,0) and (1,0, 1) but not
(1,1,1). Construct a 3 by 3 matrix whose column space is only a line.
30. If the 9 by 12 system Ax = b is solvable for every b, then C(A) = ____

31. Why isn’t R? a subspace of R*?

2.2 SolvingAx=0and Ax=1»

Chapter 1 concentrated on square invertible matrices. There was one solution to Ax = b
and it was x = —A~!'b. That solution was found by elimination (not by computing A—").
A rectangular matrix brings new possibilities—U may not have a full set of pivots. This
section goes onward from U to a reduced form R—the simplest matrix that elimina-
tion can give. R reveals all solutions immediately.

For an invertible matrix, the nullspace contains only x = 0 (multiply Ax=0by A~ ).
The column space is the whole space (Ax = b has a solution for every ). The new ques-
tions appear when the nullspace contains more than the zero vector and/or the column
space contains less than all vectors:

1. Any vector x;, in the nullspace can be added to a particular solution x;. The solutions
to all linear equations have this form, x = x, +x;,:
Complete solution Axp,=b and Ax,=0 produce A(x,+x,)=b.
2. When the column space doesn’t contain every b in R™, we need the conditions on

b that make Ax = b solvable.

A 3 by 4 example will be a good size. We will write down all solutions to Ax = 0. We
will find the conditions for b to lie in the column space (so that Ax = b is solvable). The
1 by 1 system Ox = b, one equation and one unknown, shows two possibilities:

Ox = b has no selution unless b = 0. The column space of the 1 by 1 zero
matrix contains only b = ().

Ox = 0 has infinitely many solutions. The nullspace contains all x. A particular
solution is x, = 0, and the complete solution is x = x, +x, = 0+ (any x).

MNore '\mgor‘\-om'\' QXO\w\p\eS‘-
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