Rank, Rank-nullity theorem

LINEAR INDEPENDENCE

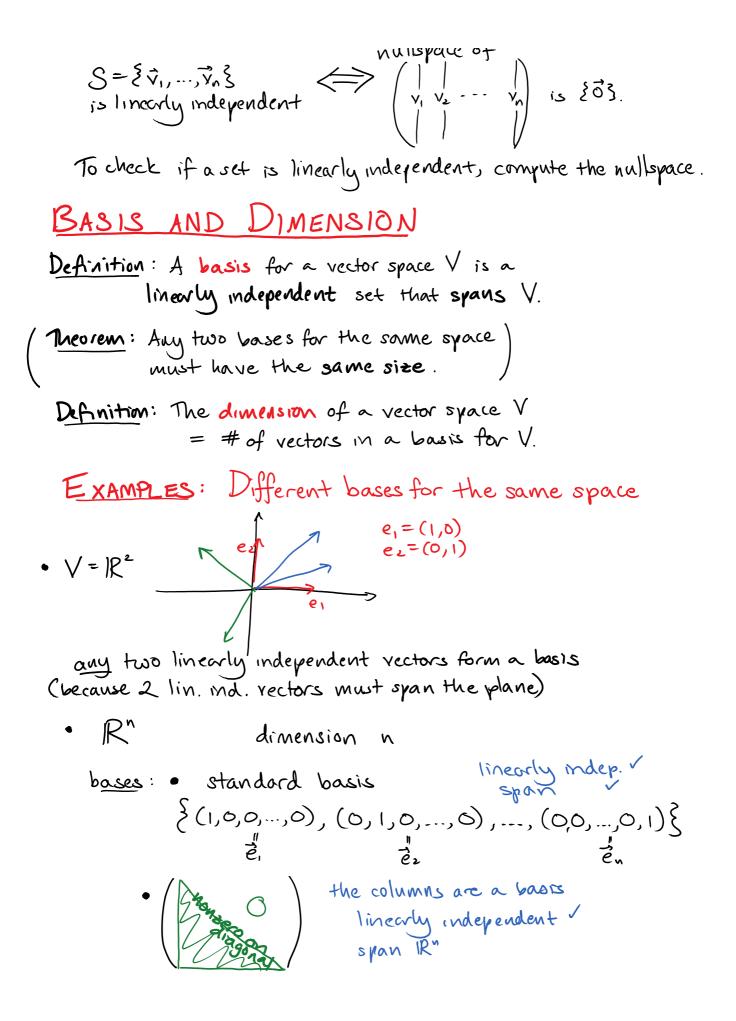
Definitions:
• A vector v is linearly independent of a set S if

$$v \notin Span(S)$$

(If veSpan(S), we say "v is linearly independent if no vector
com be expressed as a linear combination of the others
(i.e., every vector is linearly independent of the others).
Example: Assume $S = \xi v_1, v_2, v_3 \delta$ is linearly independent.
 $\Rightarrow v_1 \notin Span(v_1, v_3)$
 $v_2 \notin Span(v_1, v_3)$
 $v_3 \notin Span(v_1, v_4)$
 $\Rightarrow knowing f(v_2), f(v_3)$ tells us nothing about $f(x_1)$, etc.
Equivalent definition: A set $S = \xi v_1, v_2, \dots, v_n \delta$ is linearly
independent if the only solution to
 $a_1v_1 + a_2v_4 + \dots + a_nv_n = O$
is trivial: $a_1 = a_2 = \dots = a_n = O$.
Why are these definitions equivalent?
• If $v_1 \in Span(v_1, v_3)$, say $v_1 = a_2v_4 + a_3v_3$, then
 $-v_1 + a_2v_2 + a_3v_3 = O$.
• If $v_1v_1 + \dots + a_nv_n = O$ with $a_3 \neq O_3$ then
 $v_3 = -\frac{1}{a_3} (\sum_{i \neq 3}^{i \neq} v_i) \in Span(\{v_i \mid i \neq_j \delta\})$.

Observe:

$$S = \{\vec{v}_1, \dots, \vec{v}_n\} \iff (| | |)$$
 is sort



Lecture 8 Linear independence, bases and dimension Page 3

• Haar basis (if n is a power of 2)

$$\begin{cases} (1,1,1,1), (1,1,-1,-1), (1,-1,0,0), (0,0,1,-1) \\ \vdots \\ \vdots \\ z = (x_{1,1}x_{2,2}x_{3,3}x_{4}) = x_{1}\vec{e}_{1} + x_{2}\vec{e}_{2} + x_{3}\vec{e}_{3} + x_{4}\vec{e}_{4} \\ = a(1,1,1,1) + b(1,1,-1,-1) \\ + c(1,-1,0,0) + d(0,0,1) - 1) \\ (1 + -1 + 0) \\ (1$$

$$= \frac{2}{2} |_{x, x^{2}, ..., x^{n}}$$
form a basis

$$= \frac{2}{2} |_{x, x^{2}, ..., x^{n}}$$
form a basis

$$= \frac{1}{2} |_{x, x^{2} - 1, x^{3} - 3x, x^{4} - 6x^{2} + 3,$$

$$= \frac{2}{3} |_{x, x^{2} - 1, x^{3} - 3x, x^{4} - 6x^{2} + 3,$$

$$= \frac{2}{3} |_{x, x^{2} - 1, x^{3} - 3x, x^{4} - 6x^{2} + 3,$$

$$= \frac{2}{3} |_{x, x^{2} - 1, x^{3} - 3x, x^{4} - 6x^{2} + 3,$$

$$= \frac{2}{3} |_{x, x^{2} - 1, x^{3} - 3x, x^{4} - 6x^{2} + 3,$$

$$= \frac{2}{3} |_{x, x^{2} - 1, x^{3} - 3x, x^{4} - 6x^{2} + 3,$$

$$= \frac{2}{3} |_{x, x^{2} - 1, x^{3} - 3x, x^{4} - 6x^{2} + 3,$$

$$= \frac{2}{3} |_{x, x^{2} - 1, x^{3} - 3x, x^{4} - 6x^{2} + 3,$$

$$= \frac{2}{3} |_{x, x^{2} - 1, x^{3} - 3x, x^{4} - 6x^{2} + 3,$$

$$= \frac{2}{3} |_{x, x^{2} - 1, x^{3} - 3x, x^{4} - 6x^{2} + 3,$$

$$= \frac{2}{3} |_{x^{2} - 1, x^{3} - 3x, x^{4} - 6x^{2} + 3,$$

$$= \frac{2}{3} |_{x^{2} - 1, x^{3} - 3x, x^{4} - 6x^{2} + 3,$$

$$= \frac{2}{3} |_{x^{2} - 1, x^{3} - 3x, x^{4} - 6x^{2} + 3,$$

$$= \frac{2}{3} |_{x^{2} - 1, x^{3} - 3x, x^{4} - 6x^{2} + 3,$$

$$= \frac{2}{3} |_{x^{2} - 1, x^{3} - 3x, x^{4} - 6x^{2} + 3,$$

$$= \frac{2}{3} |_{x^{2} - 1, x^{3} - 3x, x^{4} - 6x^{2} + 3,$$

$$= \frac{2}{3} |_{x^{2} - 1, x^{3} - 3x, x^{4} - 6x^{2} + 3,$$

$$= \frac{2}{3} |_{x^{2} - 1, x^{4} - 6x^{4} + 3,$$

$$= \frac{2}{3} |_{x^{2} - 1, x^{4} - 6x^{4} + 3,$$

$$= \frac{2}{3} |_{x^{2} - 1, x^{4} - 6x^{4} + 3,$$

$$= \frac{2}{3} |_{x^{2} - 1, x^{4} - 6x^{4} + 3,$$

$$= \frac{2}{3} |_{x^{2} - 1, x^{4} - 6x^{4} + 3,$$

$$= \frac{2}{3} |_{x^{2} - 1, x^{4} - 6x^{4} + 3,$$

$$= \frac{2}{3} |_{x^{2} - 1, x^{4} - 6x^{4} + 3,$$

$$= \frac{2}{3} |_{x^{2} - 1, x^{4} - 6x^{4} + 3,$$

$$= \frac{2}{3} |_{x^{2} - 1, x^{4} - 6x^{4} + 3,$$

$$= \frac{2}{3} |_{x^{2} - 1, x^{4} - 6x^{4} + 3,$$

$$= \frac{2}{3} |_{x^{2} - 1, x^{4} - 6x^{4} + 3,$$

$$= \frac{2}{3} |_{x^{2} - 1, x^{4} - 6x^{4} + 3,$$

$$= \frac{2}{3} |_{x^{2} - 1, x^{4} - 6x^{4} + 3,$$

$$= \frac{2}{3} |_{x^{2} - 1, x^{4} - 6x^{4} + 3,$$

$$= \frac{2}{3} |_{x^{2} - 1, x^{4} - 6x^{4} + 3,$$

$$= \frac{2}{3} |_{x^{2} - 1, x^{4} - 1, x^{4} - 3,$$

$$= \frac{2}{3} |_{x^{2} - 1, x^{4} - 1, x^{4} - 3, x^{4} - 3, x^{4} - 3, x^{4} + 3, x^{4} -$$

Why care?

Why care?
(1) Makes all (Anite-dimensional, real) vector
spaces look just like
$$R^{n}$$

eg. $a+b\times +cx^{2} \iff (a,b,c)\in R^{s}$
for the polynomial basis $\xi_{1,X,X}$?
(2) Specifying a linear transformation on a basis
gives its values everywhere.
 $f(\alpha, V_{1} + \alpha_{2}V_{2} + \cdots + \alpha_{n}V_{n}) = \sum_{s} \alpha_{s}^{s} f(V_{s})$
(3) Dimension measures the "size" of a vector space ...
heorem 1: Any two bases for the some space (ⁿ Dimension
must have the same # of elements. (ⁿ Dimension
makes sense",
Theorem 2: If U is a subspace of V and $U \neq V$, then
 $dim(U) < dim(V)$.
Proof of Theorem 1:

1

Froof of Theorem 1.
Let
$$S = \xi s_1, ..., s_m \delta$$
 be two bases for a vector space V.
 $T = \xi t_1, ..., t_n \delta$
Assume $m < n$.
Goal: Show T is linearly dependent.
Let $B = \begin{pmatrix} t_1 & t_2 & \dots & t_n \\ t_1 & t_2 & \dots & t_n \end{pmatrix}$
be the matrix whose columns are the vectors t_i expanded
in the basis S. (Thus $t_i = \sum_{i=1}^{m} B_{ij} s_{i}$.)
B is an $m \times n$ matrix.
Recall Lemma: If A is an $m \times n$ matrix with men, then
 $N(A) \neq \xi \circ \delta$.

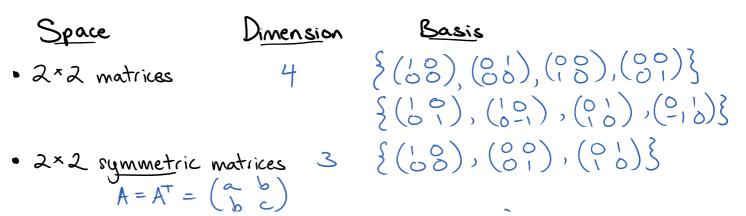
$$\Rightarrow$$
 its columns, the vectors in T, are linearly dependent. \Box

<u>Corollary</u>: If dim(V) = n, then <u>any</u> linearly independent set SCV with n elements is a basis for V.

We saw this before for \mathbb{R}^2 : Proof idea: If Span(S) $\neq V$, then there is $v \in V$, $v \notin Span(S)$. Let $T = S \cup \{v\}$, with n+1 elts. By the above argument, T is linearly dependent, a contradiction. \square

Theorem 2: If U is a subspace of V and
$$U \neq V$$
, then
 $dim(U) < dim(V)$.
Proof: Assume $dim(U) = dim(V) = n$.
Let S be a basis for U. By the corollary,
S is a basis for V, too: $U = V$. Contradiction. \square

EXAMPLES



- 2×2 an<u>tisymmetric</u> matrices 1 $\xi(-10)\xi$ $A = -A^{T} = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}$
- polynomials in x of degree ≤ 2 3 $\{\xi, x, x^*\}$ $a+bx+cx^*$
- polynomials in x and y with total degree ≤ 2
 A + b × + c ײ + dy + ey² + f × y
- polynomials in x $\infty \{1, x, x^2, x^3, \dots\}$
- $N((1 | 1 | \dots 1))$ = $\{\vec{x} \in \mathbb{R}^n | x_1 + x_2 + \dots + x_n = 0\}$ $n - 1 \quad \{\vec{e}_1 - \vec{e}_2, \vec{e}_1 - \vec{e}_3, \dots, \vec{e}_n - \vec{e}_n\}$
- functions f: R→R
- functions $f: 20, 13^2 \rightarrow \mathbb{R}$ 4

• functions
$$f: SO, 13^2 \rightarrow IR$$

that are symmetric: $f(x,y) = f(y,x)$
 $f(0,0), f(0,1) = f(1,0), f(1,1)$

$$f: (l \rightarrow V \text{ linear transformation} \\ \text{basis} \\ \text{basis} \\ \text{fully-jund} \\ \text{Since } f\left(\sum_{j=1}^{n} d_{j} \cdot \hat{u}_{j}\right) = \sum_{j=1}^{n} d_{j} f\left(\hat{u}_{j}\right)_{j}$$

Lecture 8 Linear independence, bases and dimension Page 7

Example 1: Matrix transpose

$$U = V = \S 2 \times 2$$
 matrices \S
 $f: U \rightarrow V$, $f(A) = A^T$
In the basis $\S(00), (00), (10), (00)$
 $f \text{ corresponds to } (90), (00), (00), (00)$
 $(90), 000 \text{ J}$
 $Olserve: Order matters!$
In the basis $\S(00), (10), (00), (01) \S$,
 $f \text{ corresponds to } (100), (00), (01) \S$,
 $f \text{ corresponds to } (100), (00), (01) \S$,
 $f \text{ corresponds to } (100), (00), (01) \S$,
 $f \text{ corresponds to } (100), (00), (01) \S$,
 $f \text{ corresponds to } (100), (00), (01) \S$,
 $f \text{ corresponds to } (100), (00), (01) \S$,

In the basis
$$\hat{\xi}(0,1), (0,-1), (1,0), (-1,0)\hat{\xi}$$
,
 f corresponds to $(0,1,-1)$.
Remark: A basis in which a linear transformation
acts diagonally is called an "eigenbasis". These are
useful...
Example 2: $f(x,y,z) = (x,y)$
 $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$
- using the standard basis for both
 $\begin{bmatrix} f \end{bmatrix} = \hat{\xi}_1 \begin{pmatrix} 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$
- using $\hat{\xi}(1,1), (1,-1)\hat{\xi}$ as the basis for \mathbb{R}^2
 $\begin{bmatrix} f \end{bmatrix} = (1) \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ (\frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$
since $f(\hat{\epsilon}_1) = (\hat{\delta}) = \frac{1}{2}(1) + \frac{1}{2}(1)$
 $f(\hat{\epsilon}_1) = 0$

CHANGING BASIS

Notation: [f]Bu, By

denotes the matrix representation of $f: U \rightarrow V$ in the respective bases BU, By.

\$

Example:
$$g(x,y) = (x,y)$$

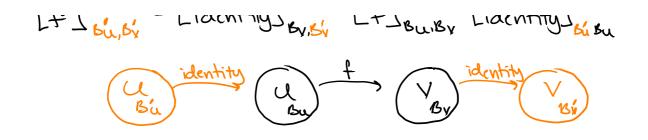
the identity $\mathbb{R}^2 \rightarrow \mathbb{R}^2$
in any basis $\xi \vec{u}_1, \vec{u}_2 \vec{z},$
 $\mathbb{L}g] = (0,1)$

But for
$$\vec{u}_{1} = (1, 1), \quad \vec{u}_{2} = (1, -1)$$

 $\vec{e}_{1} = \frac{1}{2}(\vec{u}_{1} + \vec{u}_{2}), \quad \vec{e}_{2} = \frac{1}{2}(\vec{u}_{1} - \vec{u}_{1})$
 $\boxed{Igg}_{e_{1}e_{1}} = \frac{1}{2}(\vec{u}_{1} + \vec{u}_{2}), \quad \vec{e}_{1} = \frac{1}{2}(\vec{u}_{1} - \vec{u}_{1})$
 $\boxed{Igg}_{e_{1}e_{1}e_{1}} = (x, y), \quad \vec{u}_{2} = (x, y), \quad \vec{u}_{2}$

You can similarly change the basis for U computing Eidentity] Bir, Bu:	by
basis Bu identity u p v basis Bu basis Bu)
[f] Bu By = [f] Bu, By [identity] Bu, Bu	

HARDER EXAMPLES (i) Polynomial differentiation $f(p) = \frac{d}{dx}p$



Exercise: With the same U, V as above, consider the linear map g: V→U given by g(p) = (2+3×)·p. Give the matrices [g]ByBu s[g]BýBu, [g]ByBu, [g]By

Example: Rowspace to columnspace

Consider the linear transformation f: IR3 - IR3 given, in the standard basis, by

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 0 & 4 \\ 2 & -1 & 1 \end{pmatrix}$$

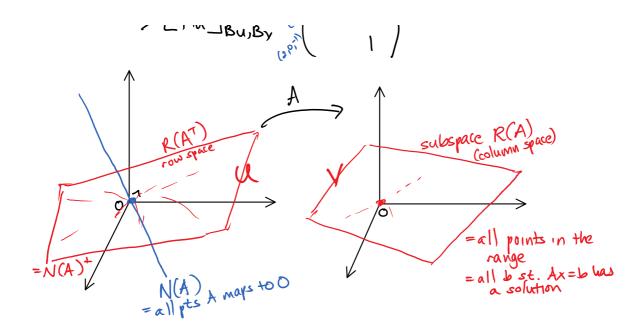
$$\Rightarrow R(A) = Span \begin{cases} (1, 4, 2), (2, 0, 7) \\ (1, 2, 3), (1, 0, 1) \\ \end{cases}$$

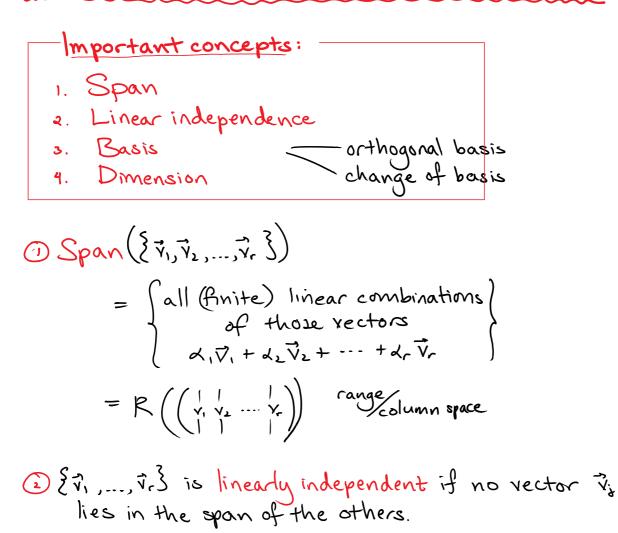
$$E = R(A^{T}) = Span \begin{cases} (1, 2, 3), (1, 0, 1) \\ (1, 2, 3), (1, 0, 1) \\ \end{cases}$$
Let $U = R(A^{T}), V = R(A)$.
Then f restricted to rectors in U is still a linear transformation, which can be considered as mapping to V.
$$Q: What is [flu]_{Bu,By}?$$

$$\frac{\mathbf{A}:}{f(1,2,3)} = (14,16,3) = 4 \cdot (1,4,2) + 5 \cdot (2,0,-1)$$

$$f(1,0,1) = (4,8,3) = 2 \cdot (1,4,2) + (2,0,-1)$$

$$\implies [flu]_{Bu,By} = (1,0,1) + (2,0,-1)$$





-equivalently, if the only solution to $x_1 \overline{y}_1 + a_2 \overline{y}_2 + \cdots + a_r \overline{y}_r = \overline{O}$