Lecture 28: Review 9:30 AM

Admin: Final exam is Thursday, Dec. 10, Ilam-Ipm You are allowed to use two pages of notes. Course evaluations are online.

Topics since the midterm

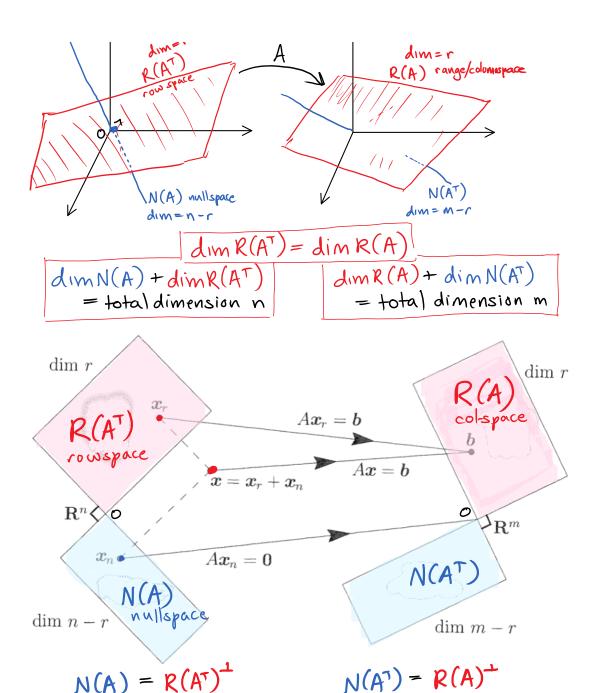
- · Singular-value decomposition
- · Spectral decomposition
- · Least squares: min || Ax-b|| -either using normal equations or the pseudoinverse
- · Condition number, stability of linear systems
- of equations
 Power method for finding eigenvectors Spectral gap

- Special watrices
 - Diagonalizable
 - Normal
 - Unitary, orthogonal (and isometries)
 Symmetric, Hermitian

 - Positive semi-definite, positive definite
 - -Stochastic
- · Applications:
 - -Solving recurrences and differential equations
 - -Linear regression
 - Principal component analysis low-rank approx of matrices
 PageRank Markov chains
 - PageRank

 - Quantum physics unitary & Hermitian matrices,
 Spectral graph analysis tensor products, commuting matrices

RANK- NULLITY THEOREM



SINGULAR- VALUE DECOMPOSITION (SYD)

Informally: Any linear transformation can be split into:
- a rotation, followed by

- scaling vectors in or out

Formally.

Theorem: Any mxn real matrix A can be written

 $A = \sum_{i=1}^{m(n)} \lambda_i \vec{u}_i \vec{v}_i^{\mathsf{T}}$

where

λ1, λ2, ..., Zmrnsmins ≥ O

singular values

where $\lambda_1, \lambda_2, \ldots, \lambda_{mrnsm,ns} \geqslant 0$

singular values

¿ūi]_{i=1,...,m} is an orthonormal basis for R^m ← right singular vectors ¿vi ∫_{i=1,...,n} is an orthonormal basis for Rⁿ ← left singular vectors

Interpretation:

$$\frac{\text{atton:}}{A \vec{v}_{j}} = \sum_{i} \lambda_{i} u_{i} (v_{i} \cdot v_{j}) = \lambda_{j} \vec{u}_{j}$$

⇒ A "rotates" v; into d; , and scales it by l; >0

Matrix notation:

SPECTRAL DECOMPOSITION for normal matrices

THEOREM: A has a complete, orthogonal set of eigenvectors

$$A^{\dagger}A = AA^{\dagger}$$
. ("A is normal")

GAUSSIAN ELIMINATION

Theorem: (LU Decomposition)

Any m × n matrix A can be factored as

permutation lower triangular mxn matrix triangular (mxm)

 $(m \times m)$

Applications:

* Solving the same system of linear equations repeatedly

- Computing Det(A) = Det(P). Det(L). Det(U)

MORE REVIEW MATERIAL [Strang]

Matrices Eigenvalues Symmetric: $A^{T} = A$ Orthogonal: $Q^{T} = Q^{-1}$ all $|\lambda| = 1$ Skew-symmetric: $A^{T} = -A$ imaginary λ's Complex Hermitian: $\overline{A}^{T} = A$ real λ's Positive Definite: $x^{T}Ax > 0$ all $\lambda > 0$ **Markov:** $m_{ij} > 0, \sum_{i=1}^{n} m_{ij} = 1$ $\lambda_{\text{max}} = 1$ Similar: $B = M^{-1}AM$ $\lambda(B) = \lambda(A)$ **Projection:** $P = P^2 = P^T$ $\lambda = 1:0$ $e^{i\theta}$ and $e^{-i\theta}$ Plane Rotation Reflection: $I - 2uu^{T}$ $\lambda = -1; 1, ..., 1$ Rank One: uv^T $\lambda = v^{\mathrm{T}}u; 0, ..., 0$ Inverse: A^{-1} $1/\lambda(A)$ Shift: A + cI $\lambda(A) + c$ Stable Powers: $A^n \to 0$ all $|\lambda| < 1$ Stable Exponential: $e^{At} \rightarrow 0$ all Re $\lambda < 0$ $\lambda_k = e^{2\pi i k/n}$ Cyclic Permutation: row 1 of I last **Tridiagonal:** -1, 2, -1 on diagonals $\lambda_k = 2 - 2\cos\frac{k\pi}{n+1}$ Diagonalizable: $A = S \Lambda S^{-1}$ diagonal of A Symmetric: $A = Q \Lambda Q^{T}$ diagonal of Λ (real) Schur: $A = QTQ^{-1}$ diagonal of T Jordan: $J = M^{-1}AM$ diagonal of J**Rectangular:** $A = U \Sigma V^{\mathrm{T}}$ $rank(A) = rank(\Sigma)$

Eigenvectors orthogonal $x_i^T x_i = 0$ orthogonal $\overline{x}_{i}^{T}x_{i}=0$ orthogonal $\overline{x}_{i}^{T}x_{i}=0$ orthogonal $\overline{x}_{i}^{T} x_{i} = 0$ orthogonal since $A^{T} = A$ steady state x > 0 $x(B) = M^{-1}x(A)$ column space; nullspace x = (1, i) and (1, -i)u; whole plane u^{\perp} u; whole plane v^{\perp} keep eigenvectors of A keep eigenvectors of A any eigenvectors any eigenvectors $x_k = (1, \lambda_k, \dots, \lambda_k^{n-1})$ $x_k = \left(\sin\frac{k\pi}{n+1}, \sin\frac{2k\pi}{n+1}, \ldots\right)$ columns of S are independent columns of Q are orthonormal columns of Q if $A^{T}A = AA^{T}$ each block gives $\mathbf{x} = (0, ..., 1, ..., 0)$ eigenvectors of $A^{T}A$, AA^{T} in V, U

LINEAR ALGEBRA IN A NUTSHELL

((The matrix A is n by n))

LINEAR ALGEBRA IN A NUTSHELL

((The matrix A is n by n))

Nonsingular

A is invertible

The columns are independent

The rows are independent

The determinant is not zero

Ax = 0 has one solution x = 0

Ax = b has one solution $x = A^{-1}b$

A has n (nonzero) pivots

A has full rank r = n

The reduced row echelon form is R = I

The column space is all of \mathbb{R}^n

The row space is all of \mathbb{R}^n

All eigenvalues are nonzero

 $A^{\mathrm{T}}A$ is symmetric positive definite

A has n (positive) singular values

Singular

A is not invertible

The columns are dependent

The rows are dependent

The determinant is zero

Ax = 0 has infinitely many solutions

Ax = b has no solution or infinitely many

A has r < n pivots

A has rank r < n

R has at least one zero row

The column space has dimension r < n

The row space has dimension r < n

Zero is an eigenvalue of A

 $A^{T}A$ is only semidefinite

A has r < n singular values

Conceptual review problems [Strang]

Vectors and matrices

- 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)?
- 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths. Which is larger? Whose inequality?
- 1.3 What is the cosine of the angle between v and w in Question 1.2? What is the cosine of the angle between the x-axis and v?

linear equations

- 2.1 Multiplying a matrix A times the column vector $\mathbf{x} = (2, -1)$ gives what combination 2.9 Suppose $A = \begin{bmatrix} \mathbf{1} & \mathbf{U} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}$ is a matrix with 2 by 2 blocks. What is the inverse matrix? of the columns of A? How many rows and columns in A?
- 2.2 If Ax = b then the vector b is a linear combination of what vectors from the matrix A? In vector space language, b lies in the _
- 2.3 If A is the 2 by 2 matrix $\begin{bmatrix} 2 & 1 \\ 6 & 6 \end{bmatrix}$ what are its pivots?
- 2.5 If A is the matrix $\begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix}$ find b and c so that Ax = b has no solution and Ax = c has 1.13 What is the factorization (from elimination with possible row exchanges) of any
- 2.6 What 3 by 3 matrix L adds 5 times row 2 to row 3 and then adds 2 times row 1 to 2.14 What is the transpose of the inverse of AB? row 2, when it multiplies a matrix with three rows?
- row 2 from row 3? How is E related to L in Question 2.6?
- 2.8 If A is 4 by 3 and B is 3 by 7, how many row times column products go into AB? How many column times row products go into AB? How many separate small multiplications are involved (the same for both)?

- 1.10 How can you find the inverse of A by working with $[A \ I]$? If you solve the n equations Ax = columns of I then the solutions x are columns of
- 1.11 How does elimination decide whether a square matrix A is invertible?
- 2.4 If A is the matrix $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ how does elimination proceed? What permutation matrix P .12 Suppose elimination takes A to U (upper triangular) by row operations with the multipliers in L (lower triangular). Why does the last row of A agree with the last row of L times U?
 - square invertible matrix?
- 2.7 What 3 by 3 matrix E subtracts 2 times row 1 from row 2 and then subtracts 5 times 2.15 How do you know that the inverse of a permutation matrix is a permutation matrix? How is it related to the transpose?

Vector spaces

- 3.1 What is the column space of an invertible n by n matrix? What is the nullspace of 3.13 Why is every row of A perpendicular to every vector in the nullspace? that matrix?
- 3.2 If every column of A is a multiple of the first column, what is the column space of
- 3.3 What are the two requirements for a set of vectors in \mathbb{R}^n to be a subspace?
- 3.4 If the row reduced form R of a matrix A begins with a row of ones, how do you know that the other rows of R are zero and what is the nullspace?
- 3.5 Suppose the nullspace of A contains only the zero vector. What can you say about solutions to Ax = b?
- 3.6 From the row reduced form R, how would you decide the rank of A?
- 3.7 Suppose column 4 of A is the sum of columns 1, 2, and 3. Find a vector in the nullspace.
- 3.8 Describe in words the complete solution to a linear system Ax = b.
- 3.9 If Ax = b has exactly one solution for every b, what can you say about A?
- 3.10 Give an example of vectors that span \mathbb{R}^2 but are not a basis for \mathbb{R}^2 .
- 3.11 What is the dimension of the space of 4 by 4 symmetric matrices?
- 3.12 Describe the meaning of basis and dimension of a vector space.

Orthogonality and projections

- 4.1 What does the word complement mean about orthogonal subspaces?
- 4.2 If V is a subspace of the 7-dimensional space \mathbb{R}^7 , the dimensions of V and its orthogonal complement add to
- 4.3 The projection of **b** onto the line through **a** is the vector ____
- 4.4 The projection matrix onto the line through a is P =
- 4.5 The key equation to project b onto the column space of A is the normal equation
- 4.6 The matrix $A^{T}A$ is invertible when the columns of A are _
- 4.7 The least squares solution to Ax = b minimizes what error function?
- 4.8 What is the connection between the least squares solution of Ax = b and the idea of projection onto the column space?
- 4.9 If you graph the best straight line to a set of 10 data points, what shape is the matrix A and where does the projection p appear in the graph?
- 4.10 If the columns of Q are orthonormal, why is $Q^{T}Q = I$?
- 4.11 What is the projection matrix P onto the columns of Q?
- 4.12 If Gram-Schmidt starts with the vectors a = (2,0) and b = (1,1), which two orthonormal vectors does it produce? If we keep a = (2,0) does Gram-Schmidt always produce the same two orthonormal vectors?
- 4.13 True? Every permutation matrix is an orthogonal matrix.
- 4.14 The inverse of the orthogonal matrix Q is _____.

§ 5 Determinants

- 3.14 How do you know that a column u times a row v^{T} (both nonzero) has rank 1?
- 3.15 What are the dimensions of the four fundamental subspaces, if A is 6 by 3 with rank
- 3.16 What is the row reduced form R of a 3 by 4 matrix of all 2's?
- 3.17 Describe a pivot column of A.
- 3.18 True? The vectors in the left nullspace of A have the form $A^{T}y$.
- 3.19 Why do the columns of every invertible matrix yield a basis?

- 5.1 What is the determinant of the matrix -I?
- 5.2 Explain how the determinant is a linear function of the first row.
- 5.3 How do you know that $\det A^{-1} = 1/\det A$?
- 5.4 If the pivots of A (with no row exchanges) are 2, 6, 6, what submatrices of A have known determinants?
- 5.5 Suppose the first row of A is 0, 0, 0, 3. What does the "big formula" for the determinant of A reduce to in this case?
- 5.6 Is the ordering (2, 5, 3, 4, 1) even or odd? What permutation matrix has what determinant, from your answer?
- 5.7 What is the cofactor C_{23} in the 3 by 3 elimination matrix E that subtracts 4 times row 1 from row 2? What entry of E^{-1} is revealed?
- 5.8 Explain the meaning of the cofactor formula for det A using column 1.
- 5.9 How does Cramer's Rule give the first component in the solution to Ix = b?
- 5.10 If I combine the entries in row 2 with the cofactors from row 1, why is $a_{21}C_{11}$ + $a_{22}C_{12} + a_{23}C_{13}$ automatically zero?
- 5.11 What is the connection between determinants and volumes?
- 5.12 Find the cross product of u = (0, 0, 1) and v = (0, 1, 0) and its direction.
- 5.13 If A is n by n, why is $det(A \lambda I)$ a polynomial in λ of degree n?

Eigenvalues and eigenvectors

- 6.1 What equation gives the eigenvalues of A without involving the eigenvectors? How .8 What is the difference between the algebraic and geometric multiplicities of an eigenwould you then find the eigenvectors?
- 6.2 If A is singular what does this say about its eigenvalues?
- 6.3 If A times A equals 4A, what numbers can be eigenvalues of A?
- 6.4 Find a real matrix that has no real eigenvalues or eigenvectors.
- 6.5 How can you find the sum and product of the eigenvalues directly from A?
- 6.6 What are the eigenvalues of the rank one matrix $[1 \ 2 \ 1]^T[1 \ 1 \ 1]$?

§7 Linear transformations

7.1 Define a linear transformation from \mathbb{R}^3 to \mathbb{R}^2 and give one example.

- 6.7 Explain the diagonalization formula $A = S\Lambda S^{-1}$. Why is it true and when is it true? ... 14 What is the diagonalization formula when A is symmetric?
- value of A? Which might be larger?
- .9 Explain why the trace of AB equals the trace of BA.
- 10 How do the eigenvectors of A help to solve du/dt = Au?
- 11 How do the eigenvectors of A help to solve $u_{k+1} = Au_k$?
- 12 Define the matrix exponential e^A and its inverse and its square.
- 13 If A is symmetric, what is special about its eigenvectors? Do any other matrices have eigenvectors with this property?

 - 6.15 What does it mean to say that A is positive definite?
 - 6.16 When is $B = A^{T}A$ a positive definite matrix (A is real)?
 - 6.17 If A is positive definite describe the surface $x^{T}Ax = 1$ in \mathbb{R}^{n} .
 - 6.18 What does it mean for A and B to be similar? What is sure to be the same for A and
 - 6.19 The 3 by 3 matrix with ones for $i \ge j$ has what Jordan form?
 - 6.20 The SVD expresses A as a product of what three types of matrices?
- 7.2 If the upper middle house on the cover of the book is the original, find sc. 6.21 How is the SVD for A linked to $A^{T}A$? nonlinear in the transformations of the other eight houses.
- 7.3 If a linear transformation takes every vector in the input basis into the next basis vector (and the last into zero), what is its matrix?
- 7.4 Suppose we change from the standard basis (the columns of I) to the basis given by the columns of A (invertible matrix). What is the change of basis matrix M?
- 7.5 Suppose our new basis is formed from the eigenvectors of a matrix A. What matrix represents A in this new basis?
- 7.6 If A and B are the matrices representing linear transformations S and T on \mathbb{R}^n , what matrix represents the transformation from v to S(T(v))?
- 7.7 Describe five important factorizations of a matrix A and explain when each of them succeeds (what conditions on A?).