Instructions: Same as for problem set 1.

Pick any 6 problems to solve out of the 8 problems. If you turn in solutions to more than 6 problems, we will take your top 6 scoring problems.

1. "Karp-Lipton variant." If $\mathsf{EXP} \subseteq \mathsf{P}/\mathsf{poly}$, then $\mathsf{EXP} = \Sigma_2$.

<u>Hint</u>: For any $L \in \mathsf{EXP}$ with an exponential time TM M deciding L, using the hypothesis, guess a circuit that computes any cell of the computation tableau of M on input x, and use it to decide whether $x \in L$ in Σ_2 .

- 2. "Circuit lower bounds."
 - (a) Define $\mathsf{EXPSPACE} = \bigcup_{c \ge 1} \mathsf{SPACE}(2^{n^c})$. Prove that $\mathsf{EXPSPACE} \not\subseteq \mathsf{P}/\mathsf{poly}$, i.e., exponential space does not admit polynomial-sized circuits.
 - (b) Prove that for every fixed integer $k \ge 1$, $\mathsf{PH} \not\subseteq \mathsf{SIZE}(n^k)$.
 - (c) Strengthen the above result to $\Sigma_2^P \cap \Pi_2^P \not\subseteq \mathsf{SIZE}(n^k)$ for any $k \ge 1$. (Hint: Karp-Lipton Theorem.)
- 3. "PH big \Rightarrow PH small.": Show that PH = PSPACE \Rightarrow PH = Σ_k for some finite $k \in \mathbb{N}$.
- 4. "Easy decision, hard counting." A Boolean formula is "monotone" if it uses only ANDs and ORs: no negations. Show that #MONOTONE-SAT (counting the number of satisfying assignments to a given monotone formula) is #P-complete.
- 5. "Toda's theorem for NP via linear codes" Let $K = 2^n$ and $N = 2^{n^2}$, and let us say that a $K \times N G^{(n)}$ with 0-1 entries is nice if
 - Given i, j, the entry $G_{i,j}^{(n)}$ can be computed in $n^{O(1)}$ time.
 - For every $i, 1 \leq i \leq K$, the *i*'th row of $G^{(n)}$ has at least N/8 1's. Moreover, so does every N-vector obtained by XOR-ing any subset S of the rows of $G^{(n)}$.

Take for granted the existence of a family $G^{(n)}$ of such nice matrices for all large enough n. Use this to show that $\mathsf{NP} \subseteq \mathsf{RP}^{\oplus \mathsf{P}[1]}$ where the [1] indicates that the RP machine makes only one query to the $\oplus \mathsf{P}$ oracle.

6. "Deciding by majority": Let us say a language A is in the class PP if there exists a polynomial time Turing Machine M and a positive integer c such that

$$x \in A \quad \Leftrightarrow \quad \mathbf{Pr}_y[M(x,y) \text{ accepts}] > 1/2$$
 (1)

where the probability is over a random choice of y from $\{0,1\}^{c|x|^c}$. In other words, x is in L iff more than half the witnesses y cause M to accept.

- (a) Argue that THRESHOLD SAT = { $\langle \varphi, K \rangle | \varphi$ is a Boolean formula on *n* variables with at least *K* satisfying assignments} is PP-complete.
- (b) Show that $\mathsf{P}^{\mathsf{P}\mathsf{P}} = \mathsf{P}^{\#\mathsf{P}}$.
- (c) Show that PP is closed under complement and symmetric difference.

7. "Counting with a margin for error"

- (a) Suppose there is a polynomial time algorithm A_2 to approximate the number of satisfying assignments to a CNF formula within a factor of 2, i.e., on input φ the algorithm outputs a number $A_2(\varphi)$ such that $\#\varphi/2 \leq A_2(\varphi) \leq 2\#\varphi$ where $\#\varphi$ is the number of satisfying assignments to φ . Prove that for every constant $\epsilon > 0$, there is a polynomial time algorithm $A_{1+\epsilon}$ that approximates the number of satisfying assignments of a CNF formula within a factor $(1 + \epsilon)$, i.e., on input φ , outputs a number $A_{1+\epsilon}(\varphi)$ such that $\frac{\#\varphi}{1+\epsilon} \leq A_{1+\epsilon}(\varphi) \leq (1+\epsilon)\#\varphi$.
- (b) Prove that the following problem can be solved in $\mathsf{BPP}^{\mathsf{NP}}$: Given as input a CNF formula φ on n variables and an integer k, output Yes with probability at least $1 \frac{1}{n^2}$ if $\#\varphi \ge 2^{k+1}$, and No with probability at least $1 1/n^2$ if $\#\varphi < 2^k$. (There is no requirement on the algorithm if $2^k \le \#\varphi < 2^{k+1}$.)

<u>Hint</u>: Use pairwise independent hashing.

- (c) Using the above, prove that one can approximate the number of satisfying assignments of a CNF formula within a factor of 2 in BPP^{NP}.
- 8. "On P^{NP} ." Define the language
 - $L = \{n \text{-variable formulas } \varphi : \varphi \text{'s lexicographically last satisfying assignment has } x_n = 1\}.$

(Let's also say that φ 's with no satisfying assignments are not in L.)

Show that L is complete for the class P^{NP} . (Hint: think of an NP -machine trying to simulate an P^{NP} machine; it can convince itself of *some* of the oracle answers...)