
15-855: An Introduction to Computational Complexity Theory Fall 2015
Problem Set #2 V. Guruswami & M. Wootters
Due on October 8, 2015 (in class, or by email to yuzhao1@cs.cmu.edu).

Instructions: Same as for problem set 1.

Pick any 6 problems to solve out of the 8 problems. If you turn in solutions to more than
6 problems, we will take your top 6 scoring problems.

1. “Karp-Lipton variant.” If EXP ⊆ P/poly, then EXP = Σ2.

Hint: For any L ∈ EXP with an exponential time TM M deciding L, using the hypothesis,
guess a circuit that computes any cell of the computation tableau of M on input x, and use
it to decide whether x ∈ L in Σ2.

2. “Circuit lower bounds.”

(a) Define EXPSPACE =
⋃
c≥1 SPACE(2n

c
). Prove that EXPSPACE 6⊆ P/poly, i.e., exponen-

tial space does not admit polynomial-sized circuits.

(b) Prove that for every fixed integer k ≥ 1, PH 6⊆ SIZE(nk).

(c) Strengthen the above result to ΣP
2 ∩ ΠP

2 6⊆ SIZE(nk) for any k ≥ 1. (Hint: Karp-Lipton
Theorem.)

3. “PH big ⇒ PH small.”: Show that PH = PSPACE⇒ PH = Σk for some finite k ∈ N.

4. “Easy decision, hard counting.” A Boolean formula is “monotone” if it uses only ANDs
and ORs: no negations. Show that #MONOTONE-SAT (counting the number of satisfying
assignments to a given monotone formula) is #P-complete.

5. “Toda’s theorem for NP via linear codes” Let K = 2n and N = 2n
2
, and let us say

that a K ×N G(n) with 0-1 entries is nice if

• Given i, j, the entry G
(n)
i,j can be computed in nO(1) time.

• For every i, 1 ≤ i ≤ K, the i’th row of G(n) has at least N/8 1’s. Moreover, so does
every N -vector obtained by XOR-ing any subset S of the rows of G(n).

Take for granted the existence of a family G(n) of such nice matrices for all large enough n.
Use this to show that NP ⊆ RP⊕P[1] where the [1] indicates that the RP machine makes only
one query to the ⊕P oracle.

6. “Deciding by majority”: Let us say a language A is in the class PP if there exists a
polynomial time Turing Machine M and a positive integer c such that

x ∈ A ⇔ Pry[M(x, y) accepts] > 1/2 (1)

where the probability is over a random choice of y from {0, 1}c|x|c . In other words, x is in L
iff more than half the witnesses y cause M to accept.
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(a) Argue that THRESHOLD SAT = {〈ϕ,K〉 | ϕ is a Boolean formula on n variables with
at least K satisfying assignments} is PP-complete.

(b) Show that PPP = P#P.

(c) Show that PP is closed under complement and symmetric difference.

7. “Counting with a margin for error”

(a) Suppose there is a polynomial time algorithm A2 to approximate the number of satisfying
assignments to a CNF formula within a factor of 2, i.e., on input ϕ the algorithm
outputs a number A2(ϕ) such that #ϕ/2 ≤ A2(ϕ) ≤ 2#ϕ where #ϕ is the number of
satisfying assignments to ϕ. Prove that for every constant ε > 0, there is a polynomial
time algorithm A1+ε that approximates the number of satisfying assignments of a CNF
formula within a factor (1 + ε), i.e., on input ϕ, outputs a number A1+ε(ϕ) such that
#ϕ
1+ε ≤ A1+ε(ϕ) ≤ (1 + ε)#ϕ.

(b) Prove that the following problem can be solved in BPPNP: Given as input a CNF formula
ϕ on n variables and an integer k, output Yes with probaility at least 1− 1

n2 if #ϕ ≥ 2k+1,
and No with probability at least 1− 1/n2 if #ϕ < 2k. (There is no requirement on the
algorithm if 2k ≤ #ϕ < 2k+1.)

Hint: Use pairwise independent hashing.

(c) Using the above, prove that one can approximate the number of satisfying assignments
of a CNF formula within a factor of 2 in BPPNP.

8. “On PNP.” Define the language

L = {n-variable formulas ϕ : ϕ’s lexicographically last satisfying assignment has xn = 1}.

(Let’s also say that ϕ’s with no satisfying assignments are not in L.)

Show that L is complete for the class PNP. (Hint: think of an NP-machine trying to simulate
an PNP machine; it can convince itself of some of the oracle answers. . . )
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