15-855: Intensive Intro to Complexity Theory
Spring 2009

Lecture 7: Space vs. Time, Savitch’s Theorem, TQBF, Immerman-Szelepcsényi
Theorem, Intro to Circuits

1 Three main theorems

We will see three basic, major theorems about space classes. The first is very easy; the second and
third are quite surprising. All three statements involve nondeterministic space, although as we will
see, they have consequences for deterministic (i.e., “real-world”) space classes.

Theorem 1.1. NSPACE(s(n)) C DTIME(29¢(") = Uy DTIME(2F(™),
Theorem 1.2. (Savitch’s Theorem.) NSPACE(s(n)) C DSPACE(s(n)?).
Theorem 1.3. (Immerman-Szelepcsényi Theorem.) coNSPACE(s(n)) = NSPACE(s(n)).

The first theorem here just gives a straightforward upper-bound on nondeterministic space —
hence deterministic space — by time. From it we conclude:

LCNLCP, and PSPACE C NPSPACE C EXP.

The second theorem, proved by Savitch in 1970, is very important: First, it shows that nondeter-
minism is surprisingly weak in the context of space. Second, its proof is an important paradigm
that comes up again and again in complexity theory. As we’ll see several times in the course, several
theorems have proofs that are “basically Savitch’s Theorem” or are “based on Savitch’s proof”. In

particular, Savitch implies:
NPSPACE = PSPACE.

Since PSPACE is closed under complement, this immediately implies coNPSPACE = NPSPACE.
Whether this holds for “lower space” as well took about 20 years to resolve; Theorem 1.3 was
proved simultaneously by Immerman and Szelepcsényi in 1988. It also shows an unexpected result
about nondeterminism and space. It hasn’t been as wuseful, subsequently, as Savitch’s Theorem,
but it is of course essential to know.

Summarizing some of what we’ve learned:
L € NL = coNL C P C PSPACE C EXP,

and there’s no need to ever write NPSPACE or coNPSPACE, since these equal PSPACE. Recall also
from the Space Hierarchy Theorem that we know

L £ PSPACE,

but we can’t prove any of L # NL, NL £ P, or P ## PSPACE.

2 Bounding space by time: configuration graphs

Let’s first prove Theorem 1.1, which is quite easy. Suppose we have an NTM M.

Definition 2.1. A configuration of M is a tuple
(M ’s work tape contents, location of M’s TM heads, M’s current state).

Recall that NTMs have some O(1)-size alphabet, some O(1) many work tapes (hence heads),
and O(1) states. So if an NTM uses s(n) space on all branches, the total number of configurations
possible is at most

0(1)*™ . . 5(n)°W . O(1) < 206,

(The n was for the head-location on the input tape; this is at most 2°(™) because s(n) > logn.)

Definition 2.2. Given a length-n input x, the configuration graph is the directed graph G = (V, E),
where V is the set of all configurations, and (u,v) € E if M may transition from configuration u
to configuration v.

NB: 1. The set V does not depend on the input z, but the edges E do. 2. A vertex u may have
multiple outgoing edges because M is nondeterministic.

We can now prove Theorem 1.1.

Proof. Suppose L € NSPACE(s(n)), and let M be an NTM deciding L. It is not hard to see that,
given input z, a deterministic algorithm can write down the entire configuration graph for M on x
in time 29() There is a unique “start” configuration S, and we may also assume WOLOG that
there is a unique “accepting” configuration 7' (because we can require that M reset all its tapes to
blank and its heads to the left before accepting). So by definition of an NTM, = € L iff there is a
directed path from S to T. This can be decided in poly(|V||E|) = 2°¢(™) time by any standard
method; e.g., depth-first search. O

Here is a very important corollary:

Definition 2.3. “STCON” is the problem: Given a directed graph and two distinguished vertices
S and T, is there a path from S to T?

Corollary 2.4. STCON is NL-complete (under log-space reductions). Hence NL = L iff STCON
€ L.

Proof. STCON € NL is easy: Start at S and use nondeterminism to guess the next vertex to visit.
Repeat up to |V steps and accept if you've reached T'. All you need to write on the work tape is
the index of the current vertex, the next one you’ll visit, and the number of steps you’ve taken, all
O(logn) space.

The fact that STCON is NL-hard follows by the proof of Theorem 1.1; we just have to check
that outputting the configuration graph for an NL-machine on x can be done not just in poly(n)
time but actually in O(logn) space. O

Subtlety #3: Just a reminder, we mentioned that even NP-completeness can and perhaps should
be defined in terms of log-space reductions. The subtlety we want to mention is that composing
two log-space reductions in log-space is not trivial; in fact, it’s a bit tricky. The point is, to output
Ry(Ri(z)), you can’t just run R(z), write down its output on your work tape, and then run Ra:
this output may be polynomially long. We leave it as an exercise to show how you can nevertheless
compose log-space reductions.

One more comment: STCON is obviously a fundamental, important problem, so the fact that
it is complete for NL means that NL is a fundamental, important class. One also defines the equally
fundamental and important problem “USTCON”: checking if T is reachable from .S in an undirected
graph. Is it any easier? Theorem 1.2, proved in 1970, tells us that STCON can be done in O(log? n)
space. In 2004, Trifonov showed USTCON can be done in space O(lognloglogn) and Reingold!
simultaneously improved this:

Theorem 2.5. (Reingold’s Theorem.) USTCON € L.

We will prove this outstanding theorem later in the course.

2.1 Savitch’s Theorem

We now prove Theorem 1.2. Note that in particular it shows NL C DSPACE(log?n); i.e., STCON
can be solved in deterministic O(log®n) space. Note that depth-first and breadth-first search for

STCON use linear space (and polynomial time). We will see an algorithm using O(log® n) space
(and n@0og™) timel!).

Proof. Suppose we have an NTM M deciding L using space O(s(n)). Write m = O(s(n)) for
the number of bits required to write down a configuration. WOLOG M has a unique accepting
configuration Cyec. Given input z, let Cgiat denote the starting configuration. We know that if M
accepts x it does so in at most 2™ time. So our goal is to determine if C,.. is reachable from Cigiart
in at most 2™ steps.

The idea is, “guess the midpoint configuration and recurse”. Specifically, consider the following
decision problem: REACH(C, C’,), which is true if one can reach C’ from C in the configura-
tion graph in at most 2¢ steps. For i > 1, we can solve it recursively by enumerating over all
possible midpoint configurations C” and checking if we ever have both REACH(C,C",i — 1) and
REACH(C”,C",i — 1). Writing down each configuration requires m bits. The key idea is to reuse
space when performing the two recursive calls. Note that we can solve REACH(C, C’,0) in O(m)
space (we're just checking if C = C’ or C is connected to C’), and we can solve REACH(-, -,) using
O(m) space plus the space required for REACH(-,-,i—1). To find the final answer we just compute
REACH (Cstart; Cace, m). This requires O(m?) space. (There is maybe an additional O(logm) space
for keeping track of the overall position in the recursion.) O

There is a “logicky” version of this proof with a very nice consequence: a natural problem for
PSPACE. A “totally quantified boolean formulas” (TQBFSs) is one with 3 and V quantifiers, where
there are no “free” variables. We write size(®) for the number of bits it takes to literally write ®
down. We do not assume these TQBF's are in “prenex form”, although you should check (exercise)
that one can always convert a ® to an equivalent TQBF in prenex form in polynomial time. Here
is an exercise:

1Omer Reingold; there’s another Reingold.

Exercise 2.6. Let TQBF be the problem of deciding whether a given input TQBF is true. Then
TQBF € PSPACE.

Theorem 2.7. TQBF is also PSPACE-hard, hence PSPACE-complete.

Proof. The proof is very similar to Savitch’s Theorem; we just use “logic”. Suppose we have an
NTM M deciding L using polynomial space; write m = O(n*) for the number of bits required to
write down a configuration. Note that given input z, it’s easy to write down a size-O(m) (unquan-
tified) formula ¢, such that such that ¢, (C,C") iff C' is connected to C’ in the configuration graph.
Our goal here is to write down a TQBF @& which is true iff Cgapt can reach Cyec in the configuration
graph in at most 2™ steps. [[Draw tableau.]]

We do this by writing a TQBF ®;(C, ") which is true if C' can reach C’ in at most 2' steps.
We take ®¢(C, C") to be (¢, (C,C") Vv (C = C")). In general, the naive approach would be to write:

@i(C, C,) = 30”((1%;1(0, C”) A\ <I>i,1(C”, C/))

But this will cause size(®;) to be at least double that of size(®;_1), giving an exponential (in m)
size TQBF for ®,,. Again, the trick is to “reuse” space, making only one “call” to ®;_;. We write

<I>Z-(C, C,) = HC,/VChCQ [((Cl =C'A Cy = C”) V (Cl =C" A Cy = C'/)) = <I>i_1(01,02)] .

Note that we can convert this to properly use just =, A, and V and still have only one “call” to
®; 1. Hence we get size(®;) = size(®;_1) + O(m), so finally size(®,(Cstart, Cacc)) = O(m?); i.e.,
we’ve produced a poly-size TQBF deciding M (z). O

2.2 Immerman-Szelepcsényi

For this theorem, let’s just do the case NL = coNL; the statement for general space bounds s(n) is
no harder.

Since STCON is NL-complete, we get that STCON is coNL-complete, where STCON is the
problem: Given a directed graph G and vertices s and ¢, is t unreachable from s. Our task is
then to show that this problem is in NL. This is pretty weird if you think about it; we want a
nondeterministic log-space algorithm for checking that s cannot reach t.

Idea 1: Suppose you magically know the exact number of nodes in G reachable from s, call it R.
Then you can solve STCON in NL. Here is the algorithm:

e Foreachv eV,

— Guess if it’s reachable from s.

— If you guess also guess and check the path to v. (Doable in log-space.) Reject if your
path guess errs.

If v = t, reject.

— Else, increment counter.

e If counter equals R, accept. Else reject.

It’s easy to verify that this is log-space. Now how could you possibly have a sequence of guesses
leading to an accept? This could only happen if: a) counter indeed ends up at R; b) hence you
correctly guessed the reachability /path for exactly R nodes; ¢) you saw all reachable nodes; d) you
did not see t.

Great. So we're done — if only we could compute R. If we could compute it deterministically,
that would be great. But really, the only thing we have to do is compute it “in NL”. L.e., we need
a log-space nondeterministic computation where each branch either rejects or computes the correct
R. This part is somewhat harder!

Idea 2: Let R(i) be the number of vertices reachable from s in at most ¢ steps. We'll try to
compute R(i) from R(i — 1) in NL. Note that once we have done this we can discard R(i — 1) and
reuse all space.

Of course, R(0) is just 1. Here’s how we do R(i + 1):
e Initialize R(i + 1) = 0.
e For eachv eV,

— Guess if v is reachable from s in at most ¢ + 1 steps.

— If you guessed yes, guess the path of length at most i + 1. (Reject if you screw up.)
Increment R(i + 1).

— If you guessed no, “visit all R(7) nodes reachable from s in < i steps” and reject if you
visit v or you visit a node connected to v.

The point here is that we can do the “visit all R(7) nodes” step in a way similar to how we
solve STCON assuming R = R(n). The idea is that you guess for each w € V whether it can be
reached in < 7 steps. If you guess yes, you verify this with a guessed path; you reject if w is v or is
connected to v; and, you increment a counter. Having done this for all w, you reject if the counter
differs from R(3).

It remains to make the easy check that this second algorithm computing R(i + 1) from R(%)
indeed uses only O(logn) space.

3 Circuits and Parallelism

Recall our standard definition of a circuit:

Definition 3.1. A circuit is a dag with n input wires, binary AND and OR gates, unary NOT
gates, and one (or more, sometimes) output wires. It computes a function f :{0,1}" — {0,1} in
the obvious way. Its size is the number of AND and OR gates; its depth is the number of AND
and OR gates along the longest input-to-output path.

Note that NOT gates can be pushed all the way to the input wires, by De Morgan’s laws, and
they are typically not counted toward size/depth.

Definition 3.2. A family of circuits is a list Cy, Cs, ..., where C, is an n-input circuit. We say
it computes a language L if v € L < C),(x) = 1. For reasons explained on Homework 1, the set
of languages decided by “polynomial-size circuits” — meaning size(Cy) < poly(n) — is denoted
P/poly.

Recall that in Lecture 3 we saw:
Theorem 3.3. P C BPP C P/poly.

Subtlety #4: Circuit families are a bit funny because they are “non-uniform”, meaning they
can “have a different algorithm for each length n”. The proof of BPP C P/poly took full advantage
of this fact. Note that this is very unrealistic: an O(1)-size circuit family solves the Unary Halting
Problem: just let C), compute the constant 1 iff n is the encoding of a TM that halts.

To get around this, we sometimes but not always restrict to families that are in some sense
“based on one algorithm”:

Definition 3.4. A circuit family (Cy) is (log-space) uniform if there is a log-space DTM which,
on input 1™, outputs C,,.

The following is easy; the only trick is using that CIRCUIT-VAL is P-complete.
Proposition 3.5. L € P iff L is decidable by a uniform family of poly-size circuits.

As a remark, we therefore have:
NP # P iff NP does not have uniform poly-size circuit families.

In fact, the following conjecture is widely believed:
Conjecture 3.6. NP does not even have nonuniform poly-size circuit families.

Although it is formally weaker than NP # P, the sentiment is that the conjectures are roughly
the same: It’s hard to imagine how nonuniformity could help so much; it’s not like anyone’s ever
built a circuit that was surprisingly better than an algorithm at solving SAT. Indeed, if you put
a gun to a complexity theorist’s head and ask him/her for the best possible approach to NP # P,
you’d probably get the suggestion, “Prove NP Z P/poly by some kind of combinatorial means.”

Not that we’re so great at proving circuit lower bounds! In 1949, Shannon proved:

Theorem 3.7. Almost all functions f {O 1}" — {0,1} require circuits of size (1 —o(1))% Also,
every function has a circuit of size 4

(Getting size O(n2™) is trivial using DNFs. Also, Lupanov improved the 4 to a 1 + o(1).)

Frustratingly, although almost every function requires exponential-size circuits, and even SAT
— which is in NP — seems to too, here is the best we know:

Theorem 3.8. (Iwama-Lachish-Morizumi-Raz). There is an explicit language in P which requires
circuits of size > 5n — o(n). We do not know any language even in NP requiring higher circuit
complexity.

Similarly depressing:

Fact: It is not known whether NEXP C P/poly.

3.1 Parallel time

Given that uniform P/poly is the same as P, is there anything to be gained by studying it as a
complexity class? The answer is yes, by looking not just at size but at depth. At a very rough level,
it is reasonable to equate:

circuit depth = parallel time.

This is somewhat reasonable, as one can imagine making each gate into a “parallel processor”. It’s
quasi-reasonable to imagine poly(n) processors; the goal then is to get depth which is logarithmic,
or perhaps polylogarithmic. Here is a complexity class definition:

Definition 3.9. For k € N, the class NC* is the set of all languages decidable by a uniform family
of circuits of polynomial size and depth O(logk n). We also define NC = UpenNCF 2

The first reasonable class here is NC!. (However, the class NCY is still frequently referred to;
check that a function is in NCY if its value depends on only O(1) many input bits.)

Note that NC C P. Unsurprisingly we can’t prove NC # P although this is widely believed.
It used to be contended sometimes that NC is a reasonable notion of what can be “parallelized
efficiently”, but people don’t seem to claim this much any more. It is perhaps reasonable to say
that languages is NC! and NC? can be parallelized efficiently. On the other hand, it is widely agreed
that anything not in NC cannot be parallelized efficiently. Of course, we don’t know any languages
in P that are definitively not in NC, but assuming P # NC, any P-complete language is not in NC.

Proposition 3.10. NC* is closed under log-space reductions for k > 2.

Hence if you’re looking for “inherently sequential” problems, look to P-complete ones: CIRCUIT-
VALUE, LINEAR-PROGRAMMING, “DEPTH-FIRST-SEARCH” (appropriately decision-versioned). .. There
is one mysterious intermediate problem, a la FACTORING’s status for P vs. NP:

Fact: Computing the GCD of two numbers is not known to be in NC and is not known to be
P-complete.
3.2 Deeper into NC' and NC?

. NC! C L: was on the homework.
. Sketch proof that Matrix Multiplication (over Fy say) is in NC!. In fact, it’s a formula!

Theorem 3.11. NC! equals the set of language decided by (uniform families of) poly-sized formu-
las.3

. Part of this was on the homework. NC! circuit to formula: recursive, starting at top. (Need
to do it in log-space, technically.) Formula to NC!: rebalancing. Take out large subtrees.

. NL C NC?: Need to show STCON is in it. Raise the adj. matrix to power of n. (log n-depth
tree of multiplications.)

2NC stand’s for “Nick [Pippenger]’s Class”, believe it or not.
3The size of a formula is the number of leaves, which are literals.

