
15-855: Intensive Intro to Complexity Theory
Spring 2009

Lecture 7: The Permanent, Toda’s Theorem, XXX

1 #P and Permanent

Recall the class of counting problems, #P , introduced last lecture. It was introduced by Valiant
in 1979; he was interested in the following intriguing question:

Question: We saw that the natural counting versions of NP-complete problems tend to be #P-
complete. Could the counting version of a natural problem in P be #P-complete?

Well, the answer is yes, because of #3DNF: it’s #P-complete, but as we saw, deciding 3DNF
is trivial. On the other hand, this example seems unfair because it’s really the #3CNF problem in
disguise. Another example is on the homework, #MONOTONE-SAT; but again, this seems just
like SAT in disguise. Valiant’s Theorem is a famous “real” example of this phenomenon:

Theorem 1.1. Given a bipartite graph, counting the number of perfect matchings is #P-complete.

It’s well known that deciding if a bipartite graph has a perfect matching is in P (using a Max-
Flow algorithm). Valiant’s Theorem is usually stated another way:

Valiant’s Theorem: Computing the permanent of matrix of 0’s and 1’s is #P-complete.

Definition 1.2. The permanent of the n× n matrix A is

perm(A) =
∑

permutations π
on [n]

n∏
i=1

Aiπ(i).

Exercise 1.3. Check that if G is a bipartite graph on n+n nodes, the number of perfect matchings
in G is precisely the permanent of the n× n “adjacency matrix” of G.

Valiant’s Theorem is interesting and important for several reasons. First, it’s somewhat surpris-
ing that computing the permanent is as hard as solving #3SAT, since computing the determinant
of a matrix is easy, and the permanent and determinant have very similar-looking formulas. Second,
computing the permanent is a beautiful problem because it is both “downward self-reducible” and
“randomly self-reducible”. We will see the importance of these facts when we discuss the theories
of “interactive proofs” and “derandomization”.

Since it is such an important theorem, you would expect us to prove it. But we won’t! It
seems to be the result in complexity theory with the least enlightening proof. The outline of the
proof is standard and obvious: make a “gadget-based” reduction from #3SAT to #PERFECT-
MATCHING. However the gadgets used are very complicated and somewhat magical-seeming.

1



One reason for this is that one has to avoid reducing SAT to PERFECT-MATCHING! Ben-Dor
and Halevi have slightly simplified Valiant’s original proof. I don’t recommend reading this paper
though; instead, try reading the proof in Papadimitrious’s book. If you can’t obtain it, try either
the Arora-Barak book (which has an elegant-looking but sketched proof) or the Goldreich book
(which heroically does it in a long, detailed way).

2 Toda’s Theorem

Toda’s Theorem says that solving #3SAT exactly is extremely hard — much harder than approxi-
mating it. Specifically, it’s at least as hard as any problem in the Polynomial-Time Hierarchy. We
will see a proof of the following:

Theorem 2.1. (Slightly weak version of Toda’s Theorem.) PH ⊆ BPP#P.

I.e., given an oracle for #3SAT, you can solve any problem in the Hierarchy with an efficient,
zero-error randomized algorithm. In particular, it follows that it’s very unlikely that #3SAT can
be solved in BPPNP like Approximate-#3SAT can. The reason is that this would imply (via Laute-
mann’s Theorem, BPP ∈ Σ2) that PH is in some fixed level of the Hierarchy (specifically, the 3rd,
if you’re careful), contradicting the Infinite Hierarchy Assumption.

Although Theorem 2.1 already contains the main point — solving #P problems is harder than
anything in the Hierarchy — the full Toda’s Theorem has some slight extra touches:

Theorem 2.2. PH ⊆ P#P[1].

There are two advantages here. First, the [1] indicates that you only need to make 1 call to the
#P oracle. Second, there is a “derandomization” from BPP to P.

The proof of Toda’s Theorem passes through a rather goofy complexity class called ⊕P:

Definition 2.3. ⊕P is the class of all languages L such that there is a polynomial-time nondeter-
ministic Turing Machine M such that for all x,

x ∈ L⇔M(x) has an odd number of accepting computation paths.

You can think of ⊕P as the “least significant bit” version of #P. By the parsimonious Cook
reduction, we get:

Proposition 2.4. ⊕SAT, the problem of determining if #ϕ is odd for a given formula ϕ, is ⊕P-
complete under parsimonious reductions.

2.1 Outline of the proof

The most basic theorem about PH is the Collapse Theorem: If NP = P then PH = P. In other
words, if NP can be solved efficiently, the whole Hierarchy can be solved efficiently. Now actually,
we usually identify “practical efficiency” with BPP, not P. Does the Collapse Theorem still hold?
Although the proof is not completely straightforward, the answer is yes. The following is a good
exercise:

Theorem 2.5. NP ⊆ BPP⇒ PH ⊆ BPP.

2



The basic idea behind Toda’s Theorem is that we have an interesting unconditional containment
for NP, from the Valiant-Vazirani Theorem. This theorem roughly speaking tells us that there is a
randomized reduction from SAT to Unique-SAT. But of course, if you have an oracle for ⊕SAT, you
can immediately use it to distinguish whether a formula has 0 or 1 satisfying assignments. Hence:

Corollary 2.6. (of Valiant-Vazirani) NP ⊆ RP⊕P ⊆ BPP⊕P.

Given this, one can imagine repeating the proof of Theorem 2.5, but with BPP⊕P as the notion
of “practical efficiency”! This is essentially what we’ll do, although one has to be rather careful
in the proof. The key aspect is that “⊕P calculations” can be composed with one another.1 The
ingenuity of Toda’s Theorem is in working with neither “Unique-SAT” (as one would guess from
Valiant-Vazirani) nor #P (the class of interest), but rather with this goofy but flexible intermediate
class.

We will not fully prove Theorem 2.2 (sometimes called “Toda’s Second Theorem”). Instead
we will prove something halfway between Theorems 2.1 and 2.2 (sometimes called “Toda’s First
Theorem”):

Theorem 2.7. PH ⊆ BPP⊕P[1].

This comes pretty close to the full Toda’s Theorem, Theorem 2.2 — in fact, we’re using an even
weaker oracle than it does. We will not actually show how to get the full theorem, “derandomizing”
BPP to P (at the expense of calling a #P oracle once rather than a ⊕P oracle once). It is a bit of
a funny trick for reducing BPP⊕P to P#P[1]. You can find the trick in many Complexity Theory
lecture notes.

2.2 Proof of Theorem 2.2

Let c ∈ N and recall the problem ΣcSAT: Given is a size-n “c-level quantified formula” of the form

Φ = ∃x1∀x2∃x3 · · ·Qxcϕ(x1, . . . , xc);

The task is to decide if the formula is true or not. As we saw, this problem is complete for Σc.
Similarly, ΠcSAT is complete for the class Πc.

To prove Theorem 2.2, we will look at quantified formulas with a new type of quantifier, ⊕. A
formula

⊕x ∈ {0, 1}nΨ(x)

is true iff the number of x’s for which Ψ(x) is true is odd. This new quantifier has similarities and
differences when compared with ∃ and ∀:

Proposition 2.8.

1. Like ∃ and ∀, the ⊕ quantifier “merges”: the formula ⊕x ∈ {0, 1}n ⊕y ∈ {0, 1}mΦ(x, y) is
equivalent to ⊕(x, y) ∈ {0, 1}n+mΦ(x, y).

2. Unlike ∃ and ∀, the ⊕ quantifier can’t be tacked on with unused variables: assuming Ψ does
not mention x, we don’t in general have ⊕x Ψ ≡ Ψ.

3. Peculiarly, ⊕x ¬Φ(x) always has the same truth value as ⊕xΦ(x).
1In fact, here is another good exercise: Show ⊕P⊕P = ⊕P.

3



The proofs of these statements are exercises.

Finally, to show Theorem 2.2, it suffices to show the following:

Theorem 2.9. For any c ≥ 1, there is an efficient randomized reduction that takes a ΣcSAT or
⊕ΣcSAT formula Φ and outputs a ⊕Πc−1SAT formula Φ′ which has the same truth value as Φ with
probability at least 1− 1/(10c).

This suffices to put Σc ∈ BPP⊕P[1]: First, we can go from a ΣcSAT formula to a ⊕Πc−1SAT
formula which is equivalent except with probability 1/(10c). This formula has the form ⊕x∀yΨ.
By De Morgan’s laws, this is the same as ⊕x¬∃y¬Ψ. By Proposition 2.8.3, this is equivalent to
⊕x∃y¬Ψ, which is a ⊕Σc−1SAT formula. Now we repeat, going to a ⊕Σc−2SAT formula, ⊕Σc−3SAT
formula, etc., ending up with a ⊕SAT formula having the same truth value as the original ΣcSAT
formula, except with probability 1/10. Finally, we determine the truth of the ⊕SAT formula with
one call to the oracle.

Proof. We assume the initial formula Φ is a ⊕ΣcSAT formula; the case where it is just ΣcSAT is a
simplification. So express Φ as

Φ = ⊕x∃yΨ(x, y),

where Ψ(x, y) is a Πc−1SAT formula. The idea is to use the Valiant-Vazirani reduction on the
“∃yΨ(x, y)” part. Say y ranges over {0, 1}`. Valiant-Vazirani would involve picking a random hash
function h on {0, 1}` and outputting a formula

Θ = Ψ(x, y) ∧ “h(y) = 0”.

Here the “formula” for h(y) = 0 will also have some auxiliary variables z in it. Note that for each
x, y, z, the formula Θ is equivalent to a Πc−1SAT formula, since Ψ is Πc−1SAT.

The Valiant-Vazirani guarantee is that:

For each x,

∃yΨ(x, y) false⇒ Θ(x, y, z) unsatisfiable w.p. 1⇒ ⊕(y, z)Θ(x, y, z) false w.p. 1,

∃yΨ(x, y) true⇒ Θ(x, y, z) uniquely satisfiable w.p. ≥ 1
8`
⇒ ⊕(y, z)Θ(x, y, z) true w.p. ≥ 1

8`
.

We now need two main ideas. First, we need to boost this probability of 1/8` to something
extremely close to 1, because we want to take a union bound over all x’s. So we run the Valiant-
Vazirani reduction t = O(m` log c) times independently, where m is the number of xi variables,
producing Θ1, . . . , Θt. Then:

For each x,

∃yΨ(x, y) false⇒ ⊕(y, z)Θ1(x, y, z), . . . ,⊕(y, z)Θt(x, y, z) all false w.p. 1,

∃yΨ(x, y) true⇒ at least one of ⊕(y, z)Θ1(x, y, z), . . . ,⊕(y, z)Θt(x, y, z) true w.p. ≥ 1− 2−m

10c
.

4



Note here that the random Valiant-Vazirani reduction does not depend on x; i.e., the t hash
functions chosen are independent x. So we can union-bound over all x ∈ {0, 1}m and conclude that,
with probability at least 1− 1/(10c) over the choice of the hash functions (and hence Θ1, . . . , Θt),

Φ = ⊕x∃yΨ(x, y) has the same truth value as ⊕x

(
t∨
i=1

⊕(y, z)Θt(x, y, z)

)
. (1)

The second and last main idea in the proof is to convert the parenthesized expression in (1),
viz.,

(⊕(y, z)Θ1(x, y, z)) ∨ · · · ∨ (⊕(y, z)Θt(x, y, z)) , (2)

to some ⊕Πc−1SAT formula Ξ(x) with the same truth value. This will complete the proof because
⊕xΞ(x) is also a ⊕Πc−1SAT formula (using Proposition 2.8.1).

For each i, let ci denote the number of (y, z)’s for which Θi(x, y, z) is true. We would like a
single ⊕-formula which is true if and only if at least one of the ci’s is odd. Observe that this holds
if and only if (c1 + 1)(c2 + 1) · · · (ct + 1) + 1 is odd. Now we do some tricks. Let b be a single-bit
variable. Then the number of (y, z, b)’s for which

Θ̃i := (b = 0 ∧Θi(x, y, z)) ∨ (b = 1 ∧ y = 0 ∧ z = 0)

is true is precisely ci + 1. Next, introduce t copies (yi, zi, bi) of the variable set (y, z, b). Then the
number of (y1, z1, b1, . . . , yt, zt, bt) for which

Ξ′ = Θ̃1(y1, z1, b1) ∧ · · · ∧ Θ̃t(yt, zt, bt)

is true is exactly (c1 + 1) · · · · · (ct + 1). Finally, we can use the same trick we used in going from Θi

to Θ̃i to get a formula Ξ′′ for which the number of satisfying assignments is (c1 +1) · · · · · (ct+1)+1.
It is easy to check that this Ξ′′ is equivalent to a Πc−1SAT formula, because the Θi’s and hence Θ̃i’s
are. Hence Ξ = ⊕(y1, . . . , bt, b′)Ξ′′ is the desired ⊕Πc−1SAT formula equivalent to (2), completing
the proof.

5


