
15-855: An Introduction to Computational Complexity Theory Fall 2015
Problem Set #3 V. Guruswami & M. Wootters
Due on October 22, 2015 (in class, or by email to yuzhao1@cs.cmu.edu).

Instructions: Same as for problem set 1.

Pick any 6 problems to solve out of the 8 problems. If you turn in solutions to more than
6 problems, we will take your top 6 scoring problems.

1. “#P via polynomials.” In this problem, you will give an alternate characterization of the
complexity class #P. Define a “patiently multiplying arithmetic program” (PMAP) to be a
program with a sequence (p1, p2, . . . , pt) of instructions such that each pk, 1 ≤ k ≤ t, is of one
of the following forms:

(i) pk is a constant 0 or 1,

(ii) pk = xi or pk = 1− xi for some i ≤ k,

(iii) pk = pi + pj for some 1 ≤ i, j < k,

(iv) pk = pipj for some i, j such that i+ j ≤ k (“patient” multiplication)

(v) pk = pj|xi=0 or pj|xi=1 for some 1 ≤ i, j < k. (Here, pj|xi=0 means the polynomial
obtained from pj by substituting 0 for the variable xi.)

A PMAP as above defines a sequence of polynomials in the obvious way. A PMAP with
instruction sequence P = (p1, p2, . . . , pt) is said to compute the polynomial pt, which we
denote by P̃ . A family of PMAPs P1, P2, ... is a uniform family if each P̃n has at most n
variables x1, x2, . . . , xn and if there is a polynomial time deterministic Turing machine that
on input 1n prints the instructions of the PMAP Pn.

(a) Prove that a function f : {0, 1}∗ → N is in #P if and only if there is a uniform family of
PMAPs {Pn}n≥0 such that for every non-empty string x ∈ {0, 1}∗, f(x) = P̃|x|(x).

(b) Suppose the patient multiplication rule (iv) above is replaced by the perhaps more
natural rule (similar to the one for addition) that pk = pipj for some 1 ≤ i, j < k, and
we also add the rule

(vi) pk = 1− pi for some i < k.

Now, what is the class of languages whose characteristic function is computed by a
uniform family of arithmetic programs belonging to this new category? Give an infor-
mal/intuitive argument justifying your answer.

2. “Definitions: wrong and right”:

(a) Following the characterization of NP as problems whose solutions can be verified in P
with the help of a certificate, we can imagine that perhaps NL can be characterized as
the class of logspace verifiable languages defined as follows. Define ÑL to be the set of
languages A such that there is a log-space machine (“verifier”) M and a constant c such
that:

x ∈ A ⇔ ∃y with |y| ≤ c|x|c s.t. M(x, y) accepts.

1

mailto:yuzhao1@cs.cmu.edu

Show that ÑL = NP.

(b) Suppose we now restrict the verifier M to have only left-to-right read-once access to the
certificate y. In other words, the verifier is given x on the read-only input tape and the
certificate y on a separate read-only tape in which the head can never move left. In
addition, M has a constant number of read/write tapes each with O(log |x|) cells.

Prove that a language A has such a restricted logspace verifier if and only if A ∈ NL.

(c) Here is a restatement of the definition of RL: A language A is in RL if there is a log-
space, poly-time algorithm, with one-way read-only access to a tape of random bits,
which accepts strings in A with probability at least 1/2 and accepts strings not in A

with probability 0. Define R̃L to be the same class except that the condition of running
in poly-time is dropped. Show that R̃L = NL.

3. “Fun with MA.” For the purposes of this problem, fix the definition of MA as follows:
L ∈ MA if there is a predicate R(x,w, r) ∈ P (with |w|, |r| = poly(|x|)) such that:

x ∈ L⇒ ∃wPr
r

[R(x,w, r) = 1] = 1, (1)

x 6∈ L⇒ ∀wPr
r

[R(x,w, r) = 1] ≤ 1/2. (2)

a) Explain briefly why the 1/2 in (2) can be made 1/2n
c

for any fixed constant c.

b) Show MA ⊆ PP.

c) Suppose we replaced the = 1 in (1) with ≥ 2/3. Show this does not change the definition
of MA.

d) Show that BPP ⊆ MA. How does this compare with the inclusion you proved in Problem 6
on Homework 1?

4. “Checkers.” Imagine you have black-box oracle access to a program that supposedly com-
putes the function f : {0, 1}∗ → {0, 1}∗ (which has the property that |f(x)| ≤ poly(|x|)).
However, you are a skeptic, and are concerned that it might be computing some different
function, f̃ . Nevertheless, you would like to be able to compute f confidently.

We say that a function f has a checker if there is a BPP algorithm A? with oracle access to
some function such that

(i) For every function f̃ used as the oracle, Af̃ (x) always halts in polynomial time and
outputs either a string or “fail”.

(ii) If f is used as the oracle, then for all x, Af (x) = f(x) with probability 1.

(iii) No matter what function f̃ is used as the oracle, and for every x, Pr[Af̃ (x) ∈ {f(x), fail}] ≥
2/3. Here the probability is over the randomness of the BPP algorithm A.

We say that a language L has a checker if the function f(x) which is 1 if x ∈ L and 0 otherwise
has a checker.

Now to your questions:

2

a) Let f be the function which, on input two matrices A,B ∈ Fn×n
2 , outputs AB. Show that

f has a checker which runs in time O(n2).

b) Show that the language Graph-Non-Isomorphism has a checker.

c) Show one of the following (your choice): Permanent has a checker; or, TQBF has a checker.
(Hint: use the proofs that P#P,PSPACE ⊆ IP.)

5. “More rounds don’t help.” For the purposes of this problem, you may assume the following
definitions of AM and MA (and it builds character and/or has already appeared on this
problem set to verify that they are they same as all the other definitions):

• L ∈ MA if there is a predicate R(x,w, r) ∈ P (with |w|, |r| = poly(|x|)) such that:

x ∈ L⇒ ∃wPr
r

[R(x,w, r) = 1] = 1,

x 6∈ L⇒ ∀wPr
r

[R(x,w, r) = 1] ≤ 1/2|x|
c

for any constant c.

• L ∈ AM if there is a predicate R(x,w, r) ∈ P (with |w|, |r| = poly(|x|)) such that:

x ∈ L⇒ Pr
r

[∃w,R(x,w, r) = 1] = 1,

x 6∈ L⇒ Pr
r

[∀w,R(x,w, r) = 1] ≤ 1/2.

a) Show that MA ⊆ AM.

b) Extend your approach from (a) to show that MA[k + 1] ⊆ AM[k] for any constant k.

c) Conclude that AM[k] = AM[2] for all constants k. Why does this approach not work if k
is not constant?

6. “Collapses.” Show:

a) If NP ⊆ P/poly then AM = MA.

b) If a language L has a checker, and L ∈ P/poly, then L ∈ MA. Conclude that PSPACE ∈
P/poly⇒ PSPACE = MA.

c) If coNP ⊆ AM, then PH = Σ2. (Hint: first show that AM ⊆ Π2, and then show that
coNP ⊆ AM⇒ Σ2 ⊆ AM).

7. “Public coins for GNI”

a) Let L ∈ NP and k ∈ N. Arthur and Merlin are both given k as input. Give an AM protocol
so that

|{L ∩ {0, 1}n}| ≥ k ⇒ P {Arthur accepts} ≥ 2/3

and
|{L ∩ {0, 1}n}| ≤ k/2⇒ P {Arthur rejects} ≤ 1/3.

(Hint: you may assume the existence of efficiently computable pair-wise independent hash
families.)

b) Use your solution from (a) to give an AM protocol for Graph Non-Isomorphism.

(Hint: Consider the set {H : H ' G} for a graph G, and use part (a).)

3

8. “An XOR-style lemma.” Below, we denote by U` the uniform distribution on {0, 1}`.

(a) Suppose f1 : {0, 1}n → {0, 1} and f2 : {0, 1}m → {0, 1} are two functions such that for
all circuits C1 (resp. C2) of size s1(n) (resp. s2(m)), we have that Prx←Un [C1(x) =
f(x)] ≤ p1(n) and Pry←Um [C2(y) = f2(y)] ≤ p2(m). Assume that m ≥ n.

Prove that for all circuits C outputting a pair of bits of size

S = min{ s1(n)

poly(m/ε)
, s2(m)−O(m)}

it is the case that

Pr(x,y)←Un×Um
[C(x, y) = (f1(x), g2(y))] ≤ p1(n)p2(m) + ε . (3)

(Hint: Assuming the existence of C with better accuracy than (3), find a circuit of size
C ′ that correctly computes f1(x) with probability exceeding p1(n). To do this, hardwire
the values f2(yi) on a sample of poly(m, ε) points yi.)

(b) Suppose f : {0, 1}n → {0, 1} is such that for every circuit C of size s, Prx←Un [C(x) =
f(x)] ≤ p(n). Define the function f (k) : ({0, 1}n)k → {0, 1}k as f (k)(x1, x2, . . . , xk) =
(f(x1), f(x2), . . . , f(xk)). Prove that for every circuit C̃ (with k output bits) of size
s′ ≤ s · poly(ε/n),

Prx=(x1,x2,...,xk)←(Un)k [C̃(x) = f (k)(x)] ≤ p(n)k + ε .

(Hint: Use (8a) inductively.)

4

