
15-855: Introduction to Complexity Theory Fall 2015
Take-Home Midterm
Due before class October 29, 2015.

Instructions

You must work entirely by yourself. You may refer to any material from your notes, the posted
lecture notes and other material, the homework problems, and the homework solutions; nothing
else. Use piazza to ask any clarifications about the questions or pertaining material.

Attempt any 6 out of 9 problems. If you attempt more then 6 problems, we will take the highest
six scores.

1. For each of the following statements, answer

True, False, or Open

according to our current state of knowledge of complexity theory, as described in class. Give
brief but convincing justifications for your answers (if your choice is Open, describe which
major open problem would be resolved by a resolution of the stated question in either direc-
tion).

(a) The language {0n1n | n ≥ 1} is NP-complete (under many-one poly-time reductions).

(b) TQBF ∈ NL.

(c) coNP 6= NEXPTIME.

(d) 2SAT polytime mapping reduces to CLIQUE

(e) CLIQUE polytime mapping reduces 2SAT

(f) 3SAT is NL-complete.

(g) #L = #P, where #L is the class of functions f such that there is a nondeterministic
logspace machine M with f(x) = #{accepting paths of M on x}.

(h) EXPSPACE contains all decidable languages.

(i) There is some fixed integer c for which every language in PSPACE has a circuit family
of size O(nc). (Here n = size of input.)

(j) NP ⊆ PP.

2. Let Shortest-Path = {〈G, s, t, d〉 | d is the length of the shortest path from s to t in directed
graph G}. In other words, 〈G, s, t, d〉 ∈ Shortest-Path if and only if there is no path from s
to t in G of length d− 1 but there is such a path of length d.

Prove that Shortest-Path is NL-complete. (Do not forget to show that Shortest-Path ∈ NL!)
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3. Prove that a language A ∈ P/poly if and only if A ∈ PS for some set S ⊆ Σ∗ with the
property that there exists a finite c such that for all positive integers n, |S ∩ Σn| ≤ cnc.

4. Define a language to be k-shallow if it is accepted by a family of depth two circuits that
consist of an AND of OR’s where the fan-in of each OR gates is bounded by a constant k,
independent of the length n of the input. Prove that if both A and the its complement are
k-shallow, then membership in A can be tested by examining a constant number (independent
of n) of input positions.

(Hint: One approach is to use induction on k.)

5. Prove that BPP ⊆ ZPPNP.

6. You showed in Problem Set 2 that for every k ≥ 1, PH 6⊆ SIZE(nk). In this problem, you will
show the same conclusion for the class PP.

(a) We know by Toda’s theorem, and the equality P#P = PPP that you showed in problem
set 2, that PH ⊆ PPP. Thus, PP is at least as powerful as PH. Give a brief reason why
this doesn’t immediately show PP 6⊆ SIZE(nk) as a consequence of PH 6⊆ SIZE(nk).

(b) Show that if PPP ⊆ P/poly, then PPP ⊆ MA.

(Hint: Use the fact that Permanent has a checker, as defined in Problem Set 3.)

(c) Prove that for every k ≥ 1, PP 6⊆ SIZE(nk).

(Hint: Assume otherwise, and derive a contradiction. Towards this, start by using part
(b) above.)

7. In this problem you’ll prove the hitting property for expander walks that we saw in class.

(a) Let G = (V,E) be an expander graph on N vertices with degree d and expansion
parameter λ(G) = λ. Let X1, X2, . . . , Xn be a random walk on G starting from a
uniformly random vertex X1 ∈ V . For any B ⊆ V with |B|/N = β, show that

P[∧i∈[n](Xi ∈ B)] ≤ (β + λ)n.

The proof of (a) will proceed in several parts.

(i) Show that the normalized adjacency matrix A of G can be written as

A = J + λE,

where J is the matrix with all entries equal to 1/N , and ‖E‖ ≤ 1. (Here, ‖ · ‖
denotes spectral norm).

(ii) Let D be the diagonal matrix where Dj,j is 1 if j ∈ B and 0 otherwise. Show that

P[∧i∈[n](Xi ∈ B)] = ‖(DA)n−1 ·D · 1/N‖1.

(iii) Use part (i) to bound

‖(DA)n−1 ·D · 1/N‖1 ≤ (β + λ)n.

(Note: Any bound that decays exponentially in n will receive partial credit)

2



(b) Extend your argument in part (a) to show that, for any S ⊆ [n],

P[∧i∈S(Xi ∈ B)] ≤ (β + λ)|S|.

8. In this problem you’ll use the conclusion of the previous problem (which you may assume for
this problem) to prove the Chernoff bound for expander walks that we saw in class. (As well
as giving an alternative proof for the standard Chernoff bound.)

(a) Let X1, . . . , Xn be {0, 1}-valued random variables. Suppose there is some δ ∈ (0, 1) so
that for all S ⊆ [n],

P[∧i∈S(Xi = 1)] ≤ δ|S|.

Show that for any γ ∈ [δ, 1],

P

[
n∑
i=1

Xi ≥ γn

]
≤ e−nD(γ||δ),

where
D(p||q) := p log(p/q) + (1− p) log((1− p)/(1− q)).

(Hint: Imagine choosing S ⊆ [n] so that each index is included independently with
probability q = (γ − δ)/(γ(1 − δ)). Let E be the event that

∑n
i=1Xi ≥ γn, and notice

that P[E ] ≤ E[∧i∈SXi=1]
E[∧i∈SXi=1|E] , where the expectation is over both S and the Xi. )

(b) Show that D(x+ ε||x) ≥ 2ε2, and arrive at the same conclusion with

P

[
n∑
i=1

Xi ≥ γn

]
≤ e−2n(γ−δ)2 .

Given the conclusion of the previous problem, conclude a Chernoff-like bound for ex-
pander walks.

9. Consider a random variable X = (X1, . . . , Xn) ∈ {0, 1}n with the following property. For
some δ > 0, and for all i, and for all x1, . . . , xi−1 ∈ {0, 1}i−1,

P [Xi = 1 | Xj = xj∀j < i] ∈ [δ, 1− δ].

Call such a source “δ-unpredictable.”

(a) Show that such a random variable X has H∞(X) ≥ log
(

1
1−δ

)
· n.

(b) Show that for all f : {0, 1}n → {0, 1}, there exists a δ-unpredictable source X on {0, 1}n
with ∣∣∣∣P[f(X) = 1]− 1

2

∣∣∣∣ ≥ 1

2
− δ.

Conclude that we cannot have deterministic extractors for such sources.

(Hint: Prove by induction on n the stronger statement that for any function f : {0, 1}n →
{0, 1,⊥}, there is a δ-unpredictable source X so that |P[f(X) = 1 | f(X) 6= ⊥]− 1/2| ≥
1/2− δ.)
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