15-855: An Introduction to Computational Complexity Theory Fall 2015
Problem Set #4
Due on November 10, 2015 (in class, or by email to yuzhaol@Qcs.cmu.edu)).

Instructions: Same as for problem set 1.

Solve the first 5 problems. The last one on Discrete Fourier Transform is not to be turned in.

1. “Non-uniform complexity relationships.” For a Boolean function f : {0,1}" — {0,1},
let (i) C(f) be the smallest number of gates in a circuit with (A, V,) gates (of fan-in at most
2) that computes f; (ii) BP(f) denote the smallest number of nodes in a branching program
computing f; and (iii) L(f) denote the minimum number of a leaves in a (A, V, —)-formula
(again with fan-in 2) computing f.

(a)
(b)

Prove the inequalities mentioned in class: C(f) < O(BP(f)) < O(L(f))-

Prove that a family F of Boolean functions {f, : {0,1}" — {0,1}},,>1 has polynomial
size formulas, i.e., L(f,) < cn€ for all n for some absolute constant ¢ < oo, if and only
if F is in non-uniform NC!.

(Hint: The main thing to show is that formulas can be rebalanced to logarithmic depth
in their size, as mentioned without proof in class.)

2. “Decision trees: Deterministic, Nondeterministic, and Unambiguous.” For a
Boolean function f: {0,1}" — {0,1}, define the following decision tree complexities:

e P9(f) = smallest depth of a decision tree computing f.

o NPY(f) = the minimum cost of a nondeterministic decision tree for f, where a nonde-

terministic decision tree is a collection of 1-certificates, that is partial assignments to
variables of f that force the function to be 1, and its cost is the maximum number of
variables fixed by such a partial assignment. In other words, a nondeterministic decision
tree is is just a DNF formula, and its cost is the maximum width of its terms, that is
the width of the DNF.

UPdt(f) = the minimum cost of an unambiguous decision tree for f, where a nondeter-
ministic decision tree is unambiguous if for each input, there is at most one accepting
certificate. In other words, an unambiguous decision tree is a DNF formula where for
each input there is at most one term in the DNF formula that evaluates to true.

Prove that NP9 (f) < UPY(f) < Pdt(f) for every Boolean function f.
Give an example of f : {0,1}" — {0,1} with P9 (f) = n and NP(f) = 1.
Give an example of f: {0,1}" — {0,1} with

PU(f) > Q(n) and max{NP"(f),NP*(~f)} < O(v/n) (1)

where —f stands for the negation of f. What is the asymptotic value of UPdt(f) for your
example function f?

mailto:yuzhao1@cs.cmu.edu

(Can you make the quadratic gap in any larger? No need to turn in the answer to
this question, but it is related to one of your midterm problems. Another related fact is
that PYt(f) < UPY(f)2, and the exercise below gives an example with nearly quadratic
gap between deterministic and unambiguous decision tree complexity.)

(d) (Warmup) Let n = m? and consider the function f : {0,1}™*™ — {0,1} defined on
Boolean matrices M € {0,1}™*™ such that f(M) = 1 iff M has a unique all-1 column.
Argue that

NPU(f)<2m—1 and PY(f)=m?.

(e) Modify the previous function, with a view towards bounding UPYt, as follows. We will
give a function g : ¥™*™ — {0,1} whose input alphabet is ¥ = {0,1} x P where
P = ([m] x [m]) U{L} and [m] denotes {1,2,...,m}. Note that a decision tree for
g will thus read values from ¥ for each variable and will be |X|-ary instead of binary
(its decision tree complexities can be defined analogously to the Boolean input case,
though for nondeterministic and unambiguous case we can’t express it as a Boolean
DNF formula). E|
The set P = ([m] x [m]) U {L} is to be thought of a set of pointer values, where we
interpret an entry M;; = (m;j,pij) € ¥ in the (¢,7)’th cell of the matrix as pointing to
another entry M, if p;; # L, and refer to m;; € {0,1} as the value in the (i, j)'th cell.
If p;; = L then we have a null pointer.

Finally, we define the function g : ¥™*™ — {0,1} as follows: g(M) = 1 if and only if:

e M has a column where all but one cell contains the entry (1, L), the remaining cell
contains (1,p) for p # L1; and

e Following the pointer from p successively for m — 1 steps leads us to one cell in
each of the remaining (m — 1) columns, where all those cells have value 0 and the
last pointer value is L (i.e., we have a chain of cells with entries (1,p) — (0,p1) —
(0,p2) = -+ = (0,pm—2) — (0, L) where p1,...,pm—2 # L, and no two of these
cells lie in the same column)

For the above function, prove the quadratic separation
Pd(g) =m? and UP¥(g)<2m —1.
3. “Exact formula size for parity.” The parity function on n inputs is

@(ml,xg,...,xn):xl@xg@---@:rn

n

i.e., it is 1 if and only if there are an odd number of 1’s among its n inputs.

(a) Show that L(€P,,) < n? when n is a power of 2.

(b) A formal complexity measure FC is a function mapping Boolean functions on n variables
to the natural numbers, and satisfying the following properties:

1One can get a near-quadratic gap, with some logarithmic losses, for functions with a Boolean input alphabet by
considering g o h"™ where h : {0, 1}“Og IZIT -5 5 is some onto map, but for simplicitly let’s ignore this aspect.

21 really should have drawn a picture for this, so please ask if something isn’t clear, either about the function, or
what UP%(g) means for non-Boolean inputs.

4.

i. FC(z;) =1for1 <i<n
ii. FC(f) = FC(—f) for all f
iii. FC(f Vv g) <FC(f)+FC(g) for all f,g
Show that for every formal complexity measure FC we have FC(f) < L(f).
(c) For subsets A and B of {0,1}", define

H(A,B) = {(a,b):a€ Abe B,a and b differ in exactly 1 coordinate}

|H(A, B)|?
K - ke At
(/) Acs-1 (1, Bef-10) JA||B]

Show that K is a formal complexity measure.
Hint: To prove property (iii), which is the main part, partition 4 into A C f~(1) and
f
A, C g7(1) for the subsets A, B that maximize the expression defining K(f V g).)
(d) Show that L(€P,) > n.

“Neciporuk again.” The indirect access function (IDA) is defined as follows. For an
integer £ > 1, let m = 222, E=2—¢ andn = 2m + k. For x = (zg,21,...,2Zm_1),
Yy = (y()vylu o 7y’m—1) and b= (bﬂubl) CIEa 7bk—1)7

IDAn(xa Y, b) = Yt

for t = (| 10g m> T|p|log m+15>* " * » Tb|log m+log m—1) Where |z| denotes the binary number repre-
sented by the bit-string z = (2o, ..., 2p).

Prove that Lp,(IDA,) > Q(n?/logn), where Lp,(f) is the minimum number of leaves in a
formula over the full binary basis (of all 16 functions on two inputs) that computes f. Note
that this lower bound is a logn factor better than the lower bound for branching programs.

“Decision trees and Fourier spectrum.” Suppose f : {0,1}" — {0,1} is computed by
a decision tree 7" with depth d and M leaves. Let f(a) be the Fourier coefficient of f in the
notation of Problem |§|, and let sparsity(f) be the number of nonzero f(«) among o € {0,1}".
Prove that

(a) L log(sparsity(f)) < d,

(b) Zae{0,1}n |[fle)] <M.

(Hint: Express f = >, f, as the sum of over leaves v of T' of functions f, such that f,(z)
equals the value at the leaf v if the computation of 1" on input x ends up at leaf v, and 0
otherwise.) Then compute the Fourier spectrum of each f,.)

“Fourier basics.” (This question need not be turned in. But if you aren’t familiar with
this, I recommend you work it out anyway. You can use any of these facts for Problem [j
above.) Let F ={f | f:{0,1}" — R} be the space of real-valued functions on {0, 1}". For
two functions f, g € F define their inner product

o) =g O f@la) 2

z€{0,1}"

3

For o € {0,1}", define the function x, : {0,1}" — R by xa(z) = (=1)*? (here a - z denotes
the dot product of the vectors a and x over the reals).

a) Prove that the functions {Xa}aefo,1}» form an orthonormal basis for the space F with
respect to the inner product defined above.

b) Conclude that every f € F has a unique representation as

f@)= Y o) xal@)

ae{0,1}"

o~ o~

for real coefficients f(«) given by f(a) = (f, Xa)-
c¢) Prove that for f,g € F, the following identity holds:

(foy= > fle)gla).

ae{0,1}"

Deduce that for a function f:{0,1}" — [-1,1], >, J?(a)2 <1.

d) Suppose f € F is invariant under translations by a vector h € {0,1}", i.e., f(x+h) = f(x)
for all « (here x + h is computed by component-wise addition modulo 2).

~

Prove that f(a) =0 whenever - h =1 modulo 2.

