
15-855: An Introduction to Computational Complexity Theory V. Guruswami & M. Wootters
Problem Set #5 Fall 2015
Due by 5 pm, Wednesday, November 25, 2015 (in person or by email to yuzhao1@cs.cmu.edu).

Instructions: Same as for problem set 1.

Solve any 5 out of the 6 problems. Note that just because a problem statement is long, doesn’t
mean it is hard or has a long solution; in fact often it is the contrary. If you turn in solutions to
more than 5 problems, we will take your top scoring 5 problems.

1. We begin with two short exercises about the Parity function:

(a) “Isn’t Parity 6∈ AC0”? Show that there is an AC0 circuit with n output bits and
poly(n) input bits such that when the input bits are chosen uniformly at random, the
output bits are distributed uniformly on the set {x ∈ {0, 1}n : x1 ⊕ x2 ⊕ · · · ⊕ xn = 1}.

(b) “Parity ≤AC0 Majority.” Construct an AC0-with-unbounded-fanin-Majority-gates cir-
cuit which computes Parity. (Hint: you can even do it in depth 2, with only negation
and Majority gates, plus wires hard-coded to 0’s and 1’s.) Deduce a size lower bound
for depth d unbounded-fanin AND-OR circuits computing the Majority function on n
bits.

2. “Majority /∈ AC0(⊕).” While Majority gates are helpful for computing Parity by the above
exercise, it turns out that Parity gates are not helpful to compute majority. Let AC0(⊕)d be
the class of circuits of depth-d with unbounded fan-in ∨, ∧, and ⊕ gates (we assume negated
forms of all variables are available at the leaves). Your goal is to work out a polynomial-
based approximation approach similar to lecture to prove that computing Majority of n bits
requires AC0(⊕)d circuits of size exp(Ω(n

1
2d)). Instead of polynomials over reals as in class,

in this problem we will work with polynomials over F2, the field with two elements 0, 1 (so
the addition and multiplication operations will be modulo 2).

(a) Let f : {0, 1}n → {0, 1} be computed by an AC0(⊕)d circuit with S gates. Fix ε ∈
(0, 1/4). Prove that there is a multilinear polynomial p ∈ F2[X1, X2, . . . , Xn] of total
degree at most O((log(S/ε))d) such that f(a) = p(a) for at least 1 − ε fraction of a ∈
{0, 1}n.

(Hint: Follow the gate-by-gate approach from lecture. Working over F2 in fact makes
things easier.)

(b) Define the subset S0 ⊂ {0, 1}n (resp. S1 ⊂ {0, 1}n) to be those inputs for which Majority
outputs 0 (resp. 1); assume n is odd for convenience so there are no ties. Prove that for
any function g0 : S0 → {0, 1}, there is a multilinear polynomial p0 ∈ F2[X1, X2, . . . , Xn]
of degree less than n/2 such that p0 and g0 agree on S0, and a similar claim holds for
any function g1 : S1 → {0, 1}.
(Hint: Linear algebra. Consider the matrix whose rows are indexed by S0 and columns
by monomials

∏
i∈I Xi for |I| < n/2, and each entry being the value of the monomial

corresponding to that column on the point corresponding to that row.)

1

mailto:yuzhao1@cs.cmu.edu

(c) Deduce that for every f : {0, 1}n → {0, 1}, there exist polynomials g, h ∈ F2[X1, . . . , Xn]
of degree < n/2 such that f(x) = g(x)Majority(x) + h(x), ∀x ∈ {0, 1}n.

(d) Conclude that if a degree t polynomial p ∈ F2[X1, . . . , Xn] computes Majority(x) cor-

rectly on 3/4 of the inputs, then t ≥ Ω(
√
n), and from this deduce the claimed exp(Ω(n

1
2d))

lower bound on size of AC0(⊕)d circuits computing Majority.

3. “Majority with margin in AC0.” The previous exercises have shown that constant depth
circuits of polynomial size can’t compute Majority. Prove, however, that there is polynomial-
sized monotone AC0 formula of depth 3 that computes a function ClearMajority : {0, 1}n →
{0, 1} satisfying

ClearMajority(x) =

1 if

∑n
i=1 xi ≥ 3n/4

0 if
∑n

i=1 xi ≤ n/4
don’t care otherwise

(Hint: Show a probabilistic construction that produces such a circuit w.h.p. Build a depth 3
AND-OR-AND formula of carefully chosen fan-in at each of the 3 levels, with each subtree
being an independently sampled formula with the stipulated fan-in structure. Specifically,
each bottom AND gate samples a log n input variables independently, in next layer each OR
is fed the output of nb such AND gates sampled independently, and the top AND gate is
fed nc independent samples of the depth two DNF formula below it (pick constants a, b, c
carefully).)

4. “No not gates please.” Right in the first problem set, you proved that Majority has
O(n)-sized O(log n)-depth circuits (and therefore also poly(n) sized formulae). However, this
construction used NOT gates even though Majority is a monotone function.

(i) Give a simple monotone circuit of O(n2) size for computing the Majority function on n
bits. What is the depth of your circuit?

(Hint: Recall the simple branching program of high width from lecture.)

(ii) Now that we have polynomial-sized monotone circuits for Majority, let’s get ambitious and
ask about polynomial-sized monotone formulae (or equivalently shallow, log depth, monotone
circuits). Instead of ∨, ∧ gates, let’s allow ourselves just one kind of gate, MAJ3, which takes
3 inputs and outputs 1 iff at least 2 of the inputs are 1. Of course, a MAJ3 gate can be
implemented with O(1) many ∨ and ∧ gates, so we are free to build a formula with MAJ3

gates for convenience.

Build the following random monotone formula F with n input bits, where we assume n is odd
for convenience. The formula will consist of a full ternary tree of depth c log n for some large
enough constant c. Each internal node of the tree will be a MAJ3 gate. Each of the leaves
will be assigned an input variable, uniformly and independently at random. Let us number
the levels of the tree from the leaves up, so leaves are at level 0, the first layer of MAJ3 gates
above them are level 1, etc.

Fix an input x = (x1, . . . , xn) ∈ {0, 1}n. By symmetry of the construction, all the gates at
any given level t must have an identical probability distribution on their outputs. So let us
define pt = Pr[gate at level t outputs 1]. Note that this probability is only over the circuit
construction; we treat the input x as fixed for now.

2

(a) Warm-up: If Majority(x) = 1, then p0 ≥ 1
2 + 1

2n , and if Majority(x) = 0, then p0 ≤ 1
2−

1
2n .

(b) Prove that pt+1 = 3p2
t (1 − pt) + p3

t . What are the fixed points of this recurrence? For
later parts, it might help to write an expression for pt+1 − pt in factored form.

(c) Prove that when 1
2 + 1

2n ≤ pt ≤ 3/4, pt+1 − 1/2 ≥ 11
8 (pt − 1/2). Deduce that for

t0 = a log n for some large enough a, pt0 ≥ 3/4.

(d) Prove that when pt ≥ 3/4, (1− pt+1) ≤ 3(1− pt)2. Deduce that for t1 = b log n for some
large enough constant b, pt0+t1 ≥ 1− 2−(n+1).

(e) Use the above to show that the probability that the random formula F satisfies F (y) =
Majority(y) simultaneously for all y ∈ {0, 1}n is at least 1/2, and therefore Majority can
be computed by a monotone formula of depth O(log n).

5. “Natural or not?” Consider the proof in Problem 2 that Majority can’t be computed
by polysized AC0(⊕) circuits. Recall Fn denotes the set of all Boolean functions on {0, 1}n;
assume n is odd for convenience.

(a) What is a property Cn ⊆ Fn useful against AC0(⊕) that yields the lower bound for
Majority? (No need to answer these, but think about: Is the above property large? How
about constructive?)

(b) Consider the following property C ′n defined by C ′n(fn) = 1 iff every function f ∈ Fn

can be written as f(x) = fn(x)g(x) + h(x) where g, h are polynomials of degree < n/2.
Argue that C ′n is constructive, i.e., membership in C ′n can be checked in 2O(n) time given
the truth table of fn. (Again no need to answer this, but is C ′n “large”?)

(Hint: Linear algebra. Use the fact that Fn is a F2-vector space spanned by the 2n

monomial functions
∏

i∈I xi for I ⊆ {1, 2, . . . , n}.)
(c) Now consider the following property C∗n defined by C∗n(fn) = 1 iff the subspace of

functions f ∈ Fn which can be written as f(x) = fn(x)g(x) +h(x) for some polynomials
g, h of degree < n/2 has dimension at least 3

42n.

Argue that C∗n is both large and constructive.

(Hint: For largeness, argue that for every fn ∈ Fn, C∗n(fn) = 1 or C∗n(fn⊕Majority) = 1.)

(d) Explain why the proof in Problem 2 is a natural proof.

6. “No sunflowers please” The monotone circuit lower bound we showed in class approxi-
mated output at each gate by a special form of DNF formula. Let us now develop a method
that uses a pair of formulae, one DNF and one CNF, to approximate each gate. For each gate
g, we will have a c-CNF formula ϕg (an AND of an arbitrary number of disjunctions of up to
c variables each) and a d-DNF formula ψg (an OR of an arbitrary number of conjunctions of
up to d variables each), for suitable parameters c, d.

Below, your problems appear in italicized font, as they are interspersed with the text.

a) Prove that for every c-CNF formula ϕ, there is a d-DNF formula ψ on the same variables
such that ψ(a) ≤ ϕ(a) for every assignment a to input variables, and further there is a
collection C of at most cd+1 conjunctions, each of > d distinct variables, such that every b
such that ψ(b) = 0 and ϕ(b) = 1 satisfies at least one of the conjunctions in C.

3

A similar statement can be shown for rewriting a d-DNF ψ as a c-CNF ϕ with ϕ(a) ≥ ψ(a)
∀a, with the extra inputs that the CNF accepts all having the property that they fail to
satisfy one of at most dc+1 disjunctions of > c distinct variables.

(Hint: Think of the standard approach of converting a CNF to a DNF using distributive law.
But now we have to drop the DNF terms of width > d. Be careful in forming ψ so that more
conjunctions have width at most d. It might be helpful to visualize the rewriting process as
a tree with edges labeled by variables, and each node v corresponding to a conjunction of the
variables on the path from the root to v. We expand the tree from v with the (at most c)
edges labeled by variables in the i+ 1’th clause if the distance of v from root is i. But if this
clause shares a variable with the root to v path, you can grow just one edge below v....)

You may assume the above for the parts below even if you don’t solve it; I’ve carefully
abstracted the approximation so that just the statement is needed to solve the remaining
parts.

Armed with the above CNF↔ DNF conversion process, we can now define a pair of approxi-
mators, one c-CNF ϕC and one d-DNF ψC , for a monotone circuit C. For the leaves, we have
the exact 1-CNF and 1-DNF consisting of just the variable. Then we have recursively:

• For an AND gate g = A∧B, we have ϕg = ϕA ∧ϕB and ψg is the d-DNF obtained from
ϕg as guaranteed by part (a).

• For an OR gate g = A ∨B, we have ψg = ψA ∨ ψB and ϕg is the c-CNF obtained from
ψg as guaranteed by part (a).

Finally, ϕC and ψC are the c-CNF and d-DNF at the output gate of the circuit.

We will now use the above approximator-pairs in the approximation method from class to
prove an exponential lower bound for a certain natural algebraic monotone function. The
function RS is defined as follows. Fix a prime q and let Fq be the finite field with q elements;
let k < q be an integer. The input to RS consists of a q × q bipartite graph G = (Fq,Fq, E)
whose vertices on both sides are identified with Fq.

The function RS(G) = 1 iff there exists a univariate polynomial p ∈ Fq[X] of degree
≤ k such that (a, p(a)) ∈ E for all a ∈ Fq. In other words, the graph G contains
the edges corresponding to the evaluations of some low-degree polynomial on Fq.

We now define positive and negative test cases as follows.

• The positive test graphs are what one would expect. For each degree of the qk+1 polyno-
mials p of degree ≤ k, we define the test graph Gp with edge set Ep = {(a, p(a)) | a ∈ Fq}.
• The negative test graphs are defined randomly, by including each edge independently

with probability 1 − ε for ε = (2k ln q)/q. (Note this construction might result in all
possible q × q bipartite graphs, but you’ll prove below that it is unlikely to yield a
positive test case.)

b) Prove that the probability that a negative test graph G, sampled as above, satisfies RS(G) =
1 is at most q−Ω(k).

4

Suppose C is a monotone circuit with fan-in two ∨ and ∧ gates that computes RS. We will
compute the CNF/DNF approximator pairs with parameters defined below:

d = k and c = bq2/3/2c .

c) Consider the c-CNF approximator ϕC . Prove that it is either identically 1, or fails to
accept at least half the positive test graphs.

As in class, we say that the CNF/DNF approximator pair introduces an error on a input
graph G at gate g, if the approximator-pairs at the gates feeding g are both correct on G,
but the output approximator (either one in the pair) is incorrect on G. Note that at an AND
(resp. OR) gate, only the DNF (resp. CNF) approximator can introduce an error.

d) At an AND gate g, the d-DNF ψg introduces an error for at most cd+1 positive test
graphs.

e) At an OR gate g, the probability that the c-CNF ϕg introduces an error for a random
negative test graph is at most (dε)c+1.

f) Using parts b,c,d, and e, argue that the size of C must be at least qΩ(k) when k ≤ q1/4.

5

