
15-855: An Introduction to Computational Complexity Theory V. Guruswami & M. Wootters
Problem Set #6 Fall 2015
Due by 5 pm, Thursday, December 10, 2015 (in person or by email to yuzhao1@cs.cmu.edu).

Instructions: Same as for problem set 1.

Solve any 4 out of the 5 problems. Note that just because a problem statement is long, that
doesn’t mean it is hard or has a long solution; in fact often it is the contrary. If you turn in
solutions to more than 4 problems, we will take your top scoring 4 problems.

1. (Why we didn’t prove a lower bound for F2) For a data stream a1, a2, . . . , am, with
ai ∈ {1, . . . , n} for all i, let fj be the number of times that j appears in the stream. Define
the k’th frequency moment by

Fk =

n∑
j=1

fkj ,

with F∞ := maxj fj and F0 = |{j : fj > 0}|. In class, we saw that F∞ required Ω(n) space
to approximate using a randomized streaming algorithm. In this exercise, we’ll show how to
use O(log(n)) space to approximate F2 using a randomized streaming algorithm.1

For this exercise, you may assume the following fact:

Fact. There is a family H of 4-wise independent hash functions h : [n]→ {±1} of
size poly(n). Here, 4-wise independent means that for any distinct x1, x2, x3, x4 ∈
[n] and any sign pattern (s1, s2, s3, s4) ∈ {±1}4,

Ph∼H[h(xi) = si∀i] =
1

16
,

where the probability is over h drawn uniformly at random from H. (Notice that
this is the natural extension of our definition of pairwise independent hash families).

LetH be as in the fact above, and let b ∈ N be a parameter. Consider the following randomized
streaming algorithm, which runs on a stream a1, a2, . . .

Choose h(1), . . . , h(b) independently, uniformly at random from H.

Initialize Z(i) = 0 for i = 1, . . . , b.

For j = 1, 2, . . .

Z(i) = Z(i) + h(i)(aj)

Return Y = 1
b

∑b
i=1(Z

(i))2

(a) Argue that the algorithm above requires space O (b · (log(m) + log(n))).

(b) For each i, show that Eh[(Z(i))2] = F2, and hence E[Y ] = F2.

1In fact, Fk can be computed with small space for k ≤ 2, and for k > 2 it requires Ω(n); the algorithm for F1 is
easy—can you come up with an algorithm for F0?
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(c) For each i, show that Var[Y ] ≤ 2F 2
2
b . (Hint: use 4-wise independence)

(d) Show that taking b = 2/(ε2δ),

Ph [(1− ε)F2 ≤ Y ≤ (1 + ε)F2] ≥ 1− δ.

2. (Public coins vs. private coins) Recall that R
(private)
ε (f) denotes the randomized many-

round communication complexity of f : {0, 1}n → {0, 1}, with error probability ε, where Alice

and Bob have private randomness; R
(public)
ε (f) is the same with public randomness. Prove

R
(private)
ε+δ (f) ≤ R(public)

ε (f) +O(log(n/δ)).

(Hint: Given a public coin protocol for f , suppose that there were strings r1, . . . , rt, for
t = poly(n/δ) so that the protocol worked when it’s random seed were drawn uniformly from
{r1, . . . , rt}; how could you turn this into a low-complexity private coin protocol? Now, use
Chernoff bounds to show that there exist such strings r1, . . . , rt.)

3. (Low rank functions with a large monochromatic rectangle.) Let g : N → N be a
function so that the following holds: suppose that for any f : X×Y → {0, 1} with rank(f) = r,
there is a monochromatic rectangle in Mf ⊂ {−1, 1}X×Y of size |R| ≥ 2−g(r)|X × Y |. As in
class, rank(f) is the rank of Mf over R, and Mf is the matrix with (Mf )x,y = (−1)f(x,y).

Show that any function f : X×Y → {0, 1} with rank(f) ≤ r is computable by a deterministic

many-round communication protocol with communication cost O(log2(r) +
∑log(r)

i=0 g(r/2i)).

(Hint: Define a protocol that reduces the rank of f from r to r/2, and bound the number of
leaves of this protocol. You may use the fact that any protocol with T leaves may be balanced
to run with O(log(T )) communication cost.)

Notice that if the hypothesis holds with g(r) = polylog(r), this would imply the log rank
conjecture.

4. (To prove the log-rank conjecture, it suffices to show that low-rank functions
have low randomized communication complexity) In this exercise you will prove the
following theorem.

Theorem. Let f : X × Y → {0, 1}. Suppose that R(pub)(f) = c is the randomized
(public coin) communication cost of f . Then the deterministic communication cost
of f is

D(f) = O(c log2(rank(f))),

where as in class rank(f) is the rank (over R) of the matrix Mf ∈ {−1,+1}|X|×|Y |
which has (Mf )x,y = (−1)f(x,y).

(a) Suppose that there is a randomized protocol for f with communication complexity c.
For any ε > 0, show that there’s a deterministic protocol Π that partitions Mf into
N = 2O(log(1/ε)c) rectangles R1, . . . , RN , so that there is some rectangle Ri with

|{(x, y) ∈ Ri : f(x, y) = 1}| ≥ (1− 2ε)|Ri|,
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and |R| ≥ |X×Y |2N . That is, there is some reasonably large rectangle on which the value
of f is nearly constant.

(Hint: Use a deterministic protocol which is correct with probability at least 1− ε when
x, y are drawn uniformly at random.)

(b) Prove the following claim:

Claim. Suppose that f has rank(f) = r, and that there is some rectangle
R ⊂ X × Y so that

|{(x, y) ∈ R : f(x, y) = 1}| ≥
(

1− 1

4r

)
|R|.

Then there is a sub-rectangle R′ ⊆ R with |R′| ≥ |R|/8, so that f(x, y) = 1 for
all (x, y) ∈ R′.

(c) Use parts (a) and (b) to prove the theorem. (Hint: Use the previous problem)

5. (Log-rank conjecture for XOR function and parity decision tree.) We call a function
F : {0, 1}n×{0, 1}n → {−1,+1} an XOR function if for some Boolean function f : {0, 1}n →
{−1,+1}, we have F (x, y) = f(x⊕ y) for all x, y ∈ {0, 1}n. (As in class, rank(F ) is the rank
of the matrix MF over R, and MF is the matrix with (MF )x,y = F (x, y)). Recall that f̂(α) is

a Fourier coefficient of f , and sparsity(f) be the number of nonzero f̂(α) among α ∈ {0, 1}n
(See Homework 4).

(a) Show that rank(F ) = sparsity(f).

(b) A parity decision tree is a variant of a decision tree in which the nodes are allowed to
query arbitrary parities of the input variables. We denote by DT⊕(f) the depth of the
shortest parity decision tree that computes f . Show that

1

2
log sparsity(f) ≤ DT⊕(f) ≤ sparsity(f).

(You only need to show the second inequality. The first inequality is similar to Problem 5
in Homework 4.)

(c) Show that the deterministic communication cost of F satisfies

D(F ) ≤ 2 DT⊕(f).

Conclude that if DT⊕(f) = O(logc(sparsity(f))) (though this is still open), then the
log-rank conjecture holds for the XOR function.
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