15-855: An Introduction to Computational Complexity Theory V. Guruswami & M. Wootters
Problem Set #6 Fall 2015
Due by 5 pm, Thursday, December 10, 2015 (in person or by email to yuzhaol@cs.cmu.edu).

Instructions: Same as for problem set 1.

Solve any 4 out of the 5 problems. Note that just because a problem statement is long, that
doesn’t mean it is hard or has a long solution; in fact often it is the contrary. If you turn in
solutions to more than 4 problems, we will take your top scoring 4 problems.

1. (Why we didn’t prove a lower bound for F,) For a data stream aq,as, ..., Gy, with
a; € {1,...,n} for all 4, let f; be the number of times that j appears in the stream. Define
the k’'th frequency moment by

n
Fi = Z 13
j=1

with Fio := max; f; and Fy = |[{j : f; > 0}|. In class, we saw that F, required §2(n) space
to approximate using a randomized streaming algorithm. In this exercise, we’ll show how to
use O(log(n)) space to approximate Fy using a randomized streaming algorithmE]

For this exercise, you may assume the following fact:

Fact. There is a family #H of 4-wise independent hash functions h : [n] — {£1} of
size poly(n). Here, 4-wise independent means that for any distinct 1, x2, x3, x4 €
[n] and any sign pattern (si, so, 53, 54) € {£1}4,

Proy|h(z;) = s;Vi| = —,
where the probability is over h drawn uniformly at random from H. (Notice that
this is the natural extension of our definition of pairwise independent hash families).

Let H be as in the fact above, and let b € N be a parameter. Consider the following randomized
streaming algorithm, which runs on a stream a1, as, ...

Choose hM), ... h®) independently, uniformly at random from .
Initialize Z® =0 fori=1,...,b.
For j =1,2,.
()_ Z(Z + h(a)
Return Y = 3 LS~ (202

(a) Argue that the algorithm above requires space O (b - (log(m) + log(n))).
(b) For each 4, show that Ej,[(Z(*)?] = F,, and hence E[Y] = Fy.

'In fact, Fy can be computed with small space for k < 2, and for k > 2 it requires Q(n); the algorithm for F is
easy—can you come up with an algorithm for Fy?

mailto:yuzhao1@cs.cmu.edu

(c) For each i, show that Var[Y] < %. (Hint: use 4-wise independence)
(d) Show that taking b = 2/(e24),

Ph[(l—ﬁ)FQSYS(l—‘FG)FQ]21—(5.

(private)

2. (Public coins vs. private coins) Recall that Re (f) denotes the randomized many-

round communication complexity of f : {0,1}" — {0, 1}, with error probability €, where Alice

and Bob have private randomness; REP Ublic)(f) is the same with public randomness. Prove

RET(f) < RO (f) + O(log(n/6)).

(Hint: Given a public coin protocol for f, suppose that there were strings ri,...,r¢, for
t = poly(n/d) so that the protocol worked when it’s random seed were drawn uniformly from
{r1,...,m}; how could you turn this into a low-complexity private coin protocol? Now, use
Chernoff bounds to show that there exist such strings r1,...,7¢.)

. (Low rank functions with a large monochromatic rectangle.) Let g : N — N be a
function so that the following holds: suppose that for any f : X xY — {0, 1} with rank(f) = r,
there is a monochromatic rectangle in My C {—1,1}X*Y of size |R| > 2790 |X x Y|. Asin
class, rank(f) is the rank of M, over R, and M is the matrix with (M), , = (—1)7@v).

Show that any function f : X xY — {0, 1} with rank(f) < r is computable by a deterministic
many-round communication protocol with communication cost O(log?(r) + Ziozgom g(r/2Y).
(Hint: Define a protocol that reduces the rank of f from r to r/2, and bound the number of

leaves of this protocol. You may use the fact that any protocol with T leaves may be balanced
to run with O(log(T")) communication cost.)

Notice that if the hypothesis holds with g(r) = polylog(r), this would imply the log rank
conjecture.

. (To prove the log-rank conjecture, it suffices to show that low-rank functions
have low randomized communication complexity) In this exercise you will prove the
following theorem.

Theorem. Let f: X x Y — {0,1}. Suppose that RP“)(f) = ¢ is the randomized
(public coin) communication cost of f. Then the deterministic communication cost
of fis

D(f) = O(clog?(rank(f))),
where as in class rank(f) is the rank (over R) of the matrix My € {1, +1}XIxIV
which has (M), = (—1)7@v).

(a) Suppose that there is a randomized protocol for f with communication complexity c.
For any € > 0, show that there’s a deterministic protocol II that partitions M; into
N = 20(log(1/€)e) rectangles Ry,..., Ry, so that there is some rectangle R; with

{(z,y) € Ri: f(z,y) =1} > (1 — 2¢)| Ry,

and |R| > |XQ?VY|. That is, there is some reasonably large rectangle on which the value
of f is nearly constant.
(Hint: Use a deterministic protocol which is correct with probability at least 1 — e when

x,y are drawn uniformly at random.)
(b) Prove the following claim:

Claim. Suppose that f has rank(f) = r, and that there is some rectangle
R C X xY so that

() € R fo) =1 = (1=) IR

Then there is a sub-rectangle R’ C R with |R'| > |R|/8, so that f(z,y) =1 for
all (z,y) € R'.
(c) Use parts (a) and (b) to prove the theorem. (Hint: Use the previous problem)

5. (Log-rank conjecture for XOR function and parity decision tree.) We call a function
F:{0,1}" x{0,1}" — {—1,+1} an XOR function if for some Boolean function f : {0,1}" —
{=1,+1}, we have F(z,y) = f(z ®y) for all z,y € {0,1}". (As in class, rank(F) is the rank
of the matrix Mp over R, and My is the matrix with (Mp),, = F(x,y)). Recall that f(«a) is
a Fourier coefficient of f, and sparsity(f) be the number of nonzero f(a) among a € {0,1}"

(See Homework 4).

(a) Show that rank(F') = sparsity(f).

(b) A parity decision tree is a variant of a decision tree in which the nodes are allowed to
query arbitrary parities of the input variables. We denote by DT®(f) the depth of the
shortest parity decision tree that computes f. Show that

%log sparsity(f) < DT®(f) < sparsity(f).

(You only need to show the second inequality. The first inequality is similar to Problem 5
in Homework 4.)

(c) Show that the deterministic communication cost of F satisfies
D(F) < 2DT®(f).

Conclude that if DT®(f) = O(log®(sparsity(f))) (though this is still open), then the
log-rank conjecture holds for the XOR function.

