Instructions: Same as for problem set 1.

Solve any 4 out of the 5 problems. Note that just because a problem statement is long, that doesn't mean it is hard or has a long solution; in fact often it is the contrary. *If you turn in solutions to more than 4 problems, we will take your top scoring 4 problems.*

1. (Why we didn't prove a lower bound for F_2) For a data stream a_1, a_2, \ldots, a_m , with $a_i \in \{1, \ldots, n\}$ for all i, let f_j be the number of times that j appears in the stream. Define the k'th frequency moment by

$$F_k = \sum_{j=1}^n f_j^k,$$

with $F_{\infty} := \max_j f_j$ and $F_0 = |\{j : f_j > 0\}|$. In class, we saw that F_{∞} required $\Omega(n)$ space to approximate using a randomized streaming algorithm. In this exercise, we'll show how to use $O(\log(n))$ space to approximate F_2 using a randomized streaming algorithm.¹

For this exercise, you may assume the following fact:

Fact. There is a family \mathcal{H} of 4-wise independent hash functions $h:[n] \to \{\pm 1\}$ of size poly(n). Here, 4-wise independent means that for any distinct $x_1, x_2, x_3, x_4 \in [n]$ and any sign pattern $(s_1, s_2, s_3, s_4) \in \{\pm 1\}^4$,

$$\mathbb{P}_{h \sim \mathcal{H}}[h(x_i) = s_i \forall i] = \frac{1}{16},$$

where the probability is over h drawn uniformly at random from \mathcal{H} . (Notice that this is the natural extension of our definition of pairwise independent hash families).

Let \mathcal{H} be as in the fact above, and let $b \in \mathbb{N}$ be a parameter. Consider the following randomized streaming algorithm, which runs on a stream a_1, a_2, \ldots

Choose $h^{(1)}, \ldots, h^{(b)}$ independently, uniformly at random from \mathcal{H} .

Initialize $Z^{(i)} = 0$ for $i = 1, \ldots, b$.

For j = 1, 2, ...

$$Z^{(i)} = Z^{(i)} + h^{(i)}(a_i)$$

Return $Y = \frac{1}{b} \sum_{i=1}^{b} (Z^{(i)})^2$

- (a) Argue that the algorithm above requires space $O(b \cdot (\log(m) + \log(n)))$.
- (b) For each i, show that $\mathbb{E}_h[(Z^{(i)})^2] = F_2$, and hence $\mathbb{E}[Y] = F_2$.

¹In fact, F_k can be computed with small space for $k \leq 2$, and for k > 2 it requires $\Omega(n)$; the algorithm for F_1 is easy—can you come up with an algorithm for F_0 ?

- (c) For each i, show that $Var[Y] \leq \frac{2F_2^2}{b}$. (Hint: use 4-wise independence)
- (d) Show that taking $b = 2/(\epsilon^2 \delta)$,

$$\mathbb{P}_h\left[(1-\epsilon)F_2 \le Y \le (1+\epsilon)F_2\right] \ge 1-\delta.$$

2. (Public coins vs. private coins) Recall that $R_{\epsilon}^{(private)}(f)$ denotes the randomized many-round communication complexity of $f: \{0,1\}^n \to \{0,1\}$, with error probability ϵ , where Alice and Bob have private randomness; $R_{\epsilon}^{(public)}(f)$ is the same with public randomness. Prove

$$R_{\epsilon+\delta}^{(private)}(f) \le R_{\epsilon}^{(public)}(f) + O(\log(n/\delta)).$$

(Hint: Given a public coin protocol for f, suppose that there were strings r_1, \ldots, r_t , for $t = \text{poly}(n/\delta)$ so that the protocol worked when it's random seed were drawn uniformly from $\{r_1, \ldots, r_t\}$; how could you turn this into a low-complexity private coin protocol? Now, use Chernoff bounds to show that there exist such strings r_1, \ldots, r_t .)

3. (Low rank functions with a large monochromatic rectangle.) Let $g: \mathbb{N} \to \mathbb{N}$ be a function so that the following holds: suppose that for any $f: X \times Y \to \{0,1\}$ with $\operatorname{rank}(f) = r$, there is a monochromatic rectangle in $M_f \subset \{-1,1\}^{X \times Y}$ of size $|R| \geq 2^{-g(r)}|X \times Y|$. As in class, $\operatorname{rank}(f)$ is the rank of M_f over \mathbb{R} , and M_f is the matrix with $(M_f)_{x,y} = (-1)^{f(x,y)}$.

Show that any function $f: X \times Y \to \{0,1\}$ with $\operatorname{rank}(f) \leq r$ is computable by a deterministic many-round communication protocol with communication cost $O(\log^2(r) + \sum_{i=0}^{\log(r)} g(r/2^i))$.

(Hint: Define a protocol that reduces the rank of f from r to r/2, and bound the number of leaves of this protocol. You may use the fact that any protocol with T leaves may be balanced to run with $O(\log(T))$ communication cost.)

Notice that if the hypothesis holds with g(r) = polylog(r), this would imply the log rank conjecture.

4. (To prove the log-rank conjecture, it suffices to show that low-rank functions have low randomized communication complexity) In this exercise you will prove the following theorem.

Theorem. Let $f: X \times Y \to \{0,1\}$. Suppose that $R^{(pub)}(f) = c$ is the randomized (public coin) communication cost of f. Then the deterministic communication cost of f is

$$D(f) = O(c \log^2(\operatorname{rank}(f))),$$

where as in class rank(f) is the rank (over \mathbb{R}) of the matrix $M_f \in \{-1, +1\}^{|X| \times |Y|}$ which has $(M_f)_{x,y} = (-1)^{f(x,y)}$.

(a) Suppose that there is a randomized protocol for f with communication complexity c. For any $\epsilon > 0$, show that there's a deterministic protocol Π that partitions M_f into $N = 2^{O(\log(1/\epsilon)c)}$ rectangles R_1, \ldots, R_N , so that there is some rectangle R_i with

$$|\{(x,y) \in R_i : f(x,y) = 1\}| \ge (1-2\epsilon)|R_i|,$$

and $|R| \ge \frac{|X \times Y|}{2N}$. That is, there is some reasonably large rectangle on which the value of f is nearly constant.

(Hint: Use a deterministic protocol which is correct with probability at least $1 - \epsilon$ when x, y are drawn uniformly at random.)

(b) Prove the following claim:

Claim. Suppose that f has rank(f) = r, and that there is some rectangle $R \subset X \times Y$ so that

$$|\{(x,y) \in R : f(x,y) = 1\}| \ge \left(1 - \frac{1}{4r}\right)|R|.$$

Then there is a sub-rectangle $R' \subseteq R$ with $|R'| \ge |R|/8$, so that f(x,y) = 1 for all $(x,y) \in R'$.

- (c) Use parts (a) and (b) to prove the theorem. (Hint: Use the previous problem)
- 5. (Log-rank conjecture for XOR function and parity decision tree.) We call a function $F: \{0,1\}^n \times \{0,1\}^n \to \{-1,+1\}$ an XOR function if for some Boolean function $f: \{0,1\}^n \to \{-1,+1\}$, we have $F(x,y) = f(x \oplus y)$ for all $x,y \in \{0,1\}^n$. (As in class, rank(F) is the rank of the matrix M_F over \mathbb{R} , and M_F is the matrix with $(M_F)_{x,y} = F(x,y)$). Recall that $\widehat{f}(\alpha)$ is a Fourier coefficient of f, and sparsity(f) be the number of nonzero $\widehat{f}(\alpha)$ among $\alpha \in \{0,1\}^n$ (See Homework 4).
 - (a) Show that rank(F) = sparsity(f).
 - (b) A parity decision tree is a variant of a decision tree in which the nodes are allowed to query arbitrary parities of the input variables. We denote by $DT^{\oplus}(f)$ the depth of the shortest parity decision tree that computes f. Show that

$$\frac{1}{2}\log \operatorname{sparsity}(f) \leq \operatorname{DT}^{\oplus}(f) \leq \operatorname{sparsity}(f).$$

(You only need to show the second inequality. The first inequality is similar to Problem 5 in Homework 4.)

(c) Show that the deterministic communication cost of F satisfies

$$D(F) \le 2 \operatorname{DT}^{\oplus}(f).$$

Conclude that if $\mathrm{DT}^{\oplus}(f) = O(\log^c(\mathrm{sparsity}(f)))$ (though this is still open), then the log-rank conjecture holds for the XOR function.