CS 161 Tygar Fall 2015

CS 161 Project 1: RSA

Due on September 29 at 3:00 PM.

Introduction

In this project you will write a C program that implements textbook RSA encryption and
decryption. You will also write code to generate RSA keys.

Why do we say "textbook" RSA? The RSA function alone is not enough to make a secure
cryptosystem. For instance, it needs padding to prevent it from being malleable, and it needs
randomization so that two encryptions of the same message are not identical. We will not be
implementing these other parts of a cryptosystem, only the basic RSA function.

We've provided you with a source code outline and test cases. Your job is to fill in the missing
functions to make the tests pass, and answer some written questions. There are three source
files: main.c, rsa.c, and rsa.h. You do not have to modify rsa.h. The places in the other two files
where you have to write code are marked with /* TODO */ comments.

The program you will write is called "rsa". It has a command line interface with three modes of
execution:

./rsa encrypt key.pub message
Reads a public key K from the file key.pub, converts the string message to an integer m,
and outputs the integer representation of E,(m).

./rsa decrypt key.priv c
Reads a private key K from the file key.priv and outputs a string representation of the
decryption D,(c).

./rsa genkey numbits
Outputs a private key (d, e, n), where n is approximately numbits bits long. You can store
the key to a file using Unix shell redirection: . /rsa genkey 1024 > key.priv

Sample outputs:

$./rsa encrypt testkey.pub "hello"
238301160525192269566546305624948574103

$./rsa decrypt testkey.priv 238301160525192269566546305624948574103
hello

$./rsa genkey 128

d 278503228302265047040587529645952279677

e 65537

n 288614444320069960785732511900748000413

Page 1 of 6

CS 161 Tygar Fall 2015

Step 0. Get things compiling with GMP

We'll need a way to manipulate large integers. In this project, we'll use the GMP library
(https://gmplib.org/). There is documentation for the library online. Start by reading at least the
"Basics" section.

https://gmplib.org/manual/

https://gmplib.org/manual/GMP-Basics.html

To install GMP in your home directory on a Hive machine, run these commands:
wget https://gmplib.org/download/gmp/gmp-6.0.0a.tar.bz2
tar xvf gmp-6.0.0a.tar.bz?2
cd gmp-6.0.0
./configure --prefix=$HOME/gmp
make
make install

Copy the file cs161-proj1.tar.gz to a Hive machine. Log in to Hive and extract the files:
tar xvf cslél-projl.tar.gz

This will create a directory called cs161-proj1. Enter the directory:
cd cslél-projl

To compile the project code:
make

Any time you change a file, run make again. It will notice what has changed and run the
appropriate commands to bring everything up to date.

To run the test script:

./test.sh
You'll notice that even though the program runs, most of the tests fail. You can track your
progress by watching the tests begin to pass.

Page 2 of 6

https://gmplib.org/
https://gmplib.org/manual/
https://gmplib.org/manual/GMP-Basics.html

CS 161 Tygar Fall 2015

Edit the main function in main. c and experiment a bit with GMP.
mpz t a, b, c;

mpz_ init(a);
mpz init(b);
mpz_ init (c);

mpz_ set str(a, "112233445566778899", 10);
mpz set str(b, "998877665544332211", 10);
/*C:a*b*/

mpz mul (¢, a, b);

gmp printf ("%zd = %$zd * %$zd\n", c, a, b);

mpz_ clear (a);
mpz clear (b);
mpz_ clear(c);

The above code should print:
112107482103740987777903741240815689 = 112233445566778899 *
998877665544332211

If you're having trouble with GMP, you can check your results using Python, which has built-in
large integers (the "L" suffix on the result indicates a large integer):
>>> 112233445566778899 * 998877665544332211
112107482103740987777903741240815689L

Other GMP functions you may find useful:
https://gmplib.org/manual/Integer-Comparisons.html
mpz cmp: comparison

https://amplib.org/manual/Integer-Exponentiation.html
mpz_powm: modular exponentiation

https://gmplib.org/manual/Number-Theoretic-Functions.html
mpz probab prime p: test for primality

mpz_gcdext: extended GCD

mpz_invert: modularinverse

https://gmplib.org/manual/Integer-Import-and-Export.html
mpz_ import:convert a byte array to an integer

Page 3 of 6

https://gmplib.org/manual/Integer-Comparisons.html
https://gmplib.org/manual/Integer-Exponentiation.html
https://gmplib.org/manual/Number-Theoretic-Functions.html
https://gmplib.org/manual/Integer-Import-and-Export.html

CS 161 Tygar Fall 2015

Step 1. Implement the encrypt and decrypt modes

You will implement the encrypt mode and decrypt mode functions (main.c), and the
rsa_encrypt and rsa_decrypt functions (rsa. c) they depend on.

The input and output of the RSA function are integers mod n. But we would like to be able to
encrypt strings to get integer ciphertexts and decrypt integer ciphertexts to get strings. The
functions message encode and message decode handle these conversions.

In encrypt mode, you should follow this rough outline:

Call rsa_key init toinitialize a key structure.

Call rsa_key load public to load the key from a file.
Convert message to an integer m using the encode function.
Call rsa_encrypt and output the result.

Call rsa_key clear to free the public key.

In decrypt mode, you should follow this rough outline:

Call rsa key init toinitialize a key structure.

Call rsa_key load private toload the key from a file.
Parse the ciphertext string into an integer c.

Call rsa decrypt and store the result in m.

Convert m to a string and output it.

Call rsa_key clear to free the private key.

Run . /test.sh each time you have implemented new functions.

While you are debugging, it's likely that your decryptions will be incorrect and the decrypt
subcommand will output binary gibberish (possibly messing up your terminal state). To prevent
this, and make the output easier to read, you can pipe the output into hexdump:

$./rsa decrypt testkey.priv 238301160525192269566546305624948574103 | hexdump -C

00000000 68 65 6¢c 6C 6f lhello|

00000005

$./rsa decrypt testkey.priv 238301160525192269566546305624948574104 | hexdump -C
00000000 ac 15 34 £f5 b6 51 c2 75 71 f6 f1 £3 3d ff dl 8a |..4..Q0.ug...=...|
00000010

Page 4 of 6

CS 161 Tygar Fall 2015

Step 2. Implement the genkey mode

So far we have been using the pre-generated keys that came with the source code. Now we will
generate our own keys. The functions you need to implement are genkey mode,
rsa genkey, and generate prime.

For RSA, we need to generate two prime numbers. How do we generate prime numbers? We
just generate random integers and test them for primality. The prime numbers are dense
enough among integers that you can just repeat the process until you get a prime.

Where do we get random numbers from? You may have noticed that GMP has functions such
as gmp randinit default and mpz urandomb. We will not use these functions, as they
are not random number generators that are suitable for cryptography. Instead, we will ask for

randomness straight from the operating system, using the Unix /dev/urandom interface.

You have to write the generate prime function. A rough outline is provided:
e Allocate an array of numbits/8 bytes using malloc. (You can assume that numbits is a
multiple of 8.)
Open a file handle on /dev/urandom.
Read numbits/8 bytes from the file handle into the array.
Set the top two bits of the first byte in the array, to ensure the integer is large enough. In
C, you can set the top two bits of a byte variable b with: b = b | 0xcO0.
Call the mpz import function to convert the byte array to an integer.
Test the integer using mpz_ probab prime p.
If it is not prime, go back to the "Read numbits/8 bytes" step and try again.
Free the byte array using free.
Close the /dev/urandomn file handle.

Read about the possible return values of fopen and fread. If an error occurs while reading
from /dev/urandom, do not continue processing. It is better to crash the program (by calling
abort, for example) than to continue with possibly bad randomness.

Generate p and g with half your desired number of bits, so that their product will have the
desired number of bits. You can assume that the numbits argument to rsa_ genkeyisa
multiple of 16 (so that the arguments to generate prime are a multiple of 8). That is, it's fine
to abort the program if that precondition does not hold.

Page 5 of 6

CS 161 Tygar Fall 2015

With the primes p and g in hand, you need to derive d and e. We know that e has to be coprime
to (p—1)(g—1) because it has to have a multiplicative inverse in a group of that order. So we can
actually just take e to be a fixed prime number (because a prime number is coprime to all
integers that are not a multiple of it). Taking e=65537 is a traditional choice. Now all that
remains is to compute d=e™' mod (p-1)(g—1). You can do that with the mpz_invert function.

In genkey mode, you should follow this rough outline:
e Call rsa key init toinitialize a key.
e Call rsa genkey
e Callrsa write(stdout, &key) to outputthe key.

Run . /test.sh again and make sure everything passes.

Concluding Questions

In a separate file called answers.txt, please put down the answers to the following questions:

1. What happens when you try to encrypt a very long message (one that is longer than n
bits after calling message encode)? Why does that happen? How do cryptosystems
that use RSA encrypt inputs of arbitrary length in practice?

2. Encrypt a message with the test public key. Now encrypt the exact same message
again. What do you notice? Is there a way that an attacker could take advantage of this
and reduce security? Think about the special case where you only want to encrypt one
of two messages: "0" or "1".

Submission instructions

Submit your files using the glookup system on a Hive machine. Enter your source code directory
and run the command:

submit projl
The files you should submit are: main.c, rsa.c, and answers.txt. Only one member per group
needs to submit.

Submissions are due on September 29 at 3:00 PM.

Page 6 of 6

