CS 161 Tygar Fall 2015

CS 161 Project 3: Hidden Service Chat

Due on November 20 at 5:00 PM.

Introduction

In this project you will use a Tor hidden service to run an anonymous chat room. You will be able
to chat without revealing your IP address and without knowing the IP address of the server. You
will also perform the role of a TLS certificate authority, generating a root certificate and signing a
leaf certificate to authenticate your chat service.

This time around, the project programs are in Python 3. As before, the parts you have to write
are marked with TODO comments.

Step 0. Try the chat program and compile Tor

First extract the project source code.

cd

tar xzvf cslé6lproj3.tar.gz

cd cslé6lproj3
The chat system consists of two files, client and server. The programs run, but they are missing
certain features that you will add in this project. You will need at least two terminal windows, one
for the server and one for a client. Run the server like this:

./server --disable-tls 127.0.0.1 5280
Run the client like this:

./client --disable-tls 127.0.0.1 5280
Try typing a message into the client. You should see:

connecting

connected

*** yser 4 entered the room.

hello

<user 4> hello

If you connect another client, you will be able to chat. Type Ctrl-C or Ctrl-D to exit.

By default, the programs try to use TLS—but you haven't implemented that yet. The --disable-tls
option makes the programs run in an inscure plaintext mode.

The number 5280 is just the port number. You may have to change it on Hive if there are other
people running the program at the same time. You will know you have to change the port
number if you see the error message:

socket.error: [Errno 98] Address already in use

Page 1 of 7

CS 161 Tygar Fall 2015

Next you need a copy of Tor that you can configure to run a hidden service. We will compile and
install a copy of Tor on Hive. (Tor Browser comes with a copy of Tor. You could conceivably
configure that copy of Tor to run a hidden service, but it would only be running while the browser
was running. So we will run a separate standalone copy of Tor.)

These instructions are a short version of the instructions at
https://www.torproject.org/docs/tor-doc-unix
They are also modified slightly to install under your home directory so you don't need root
privileges.
cd

wget https://sourceforge.net/projects/levent/files/libevent/libevent-2.0/libevent-2.0.22-stable.tar.gz
wget https://www.torproject.org/dist/tor-0.2.6.10.tar.gz
tar xzvf libevent-2.0.22-stable.tar.gz
cd libevent-2.0.22-stable
./configure --prefix=$HOME/usr --disable-shared --enable-static --with-pic
make
make install
cd
tar xzvf tor-0.2.6.10.tar.gz
cd tor-0.2.6.10
./configure --prefix=$HOME/usr --enable-static-libevent
make
make install
At this point you should be able to bootstrap Tor by running
~/usr/bin/tor
Press Ctrl-C to exit.

Step 1. Configure a hidden service

Begin by setting up a hidden service to run the chat server. You need to do this first, because
the process of setting up a hidden service generates the service's hostname, and you need to
know the hostname to create the TLS certificate in the next step. In order to connect to your
hidden service as a client, you need to add proxy support to the client program, because Tor
acts as a local proxy server.

How a hidden service works is you start a server listening on the localhost address 127.0.0.1:
./server --disable-tls 127.0.0.1 5280
(You might have to choose a different port number if the port is already in use.) Then you
configure Tor to create a “virtual port” for the onion service that will be forwarded to the listening
localhost server. The important configuration options you need are HiddenServiceDir and
HiddenServicePort:
https://www.torproject.org/docs/tor-manual#HiddenServiceDir
https://www.torproject.org/docs/tor-manual#HiddenServicePort
The file server-torrc in the project source code shows how to use these options.

Page 2 of 7

CS 161 Tygar Fall 2015

To run Tor using the hidden service configuration, do:
~/usr/bin/tor -f server-torrc
Running this command will create a directory called hs-chat-dir that contains two files:
hostname: the automatically generated onion domain name.
private_key: the hidden service's private key.
You will submit these two files. You need to know the hostname to connect to the hidden
service. We will call it yoursite.onion in all the examples below.

Tor is a SOCKS proxy. To connect to the hidden service, you need to be running Tor locally. If
you are using Tor Browser, the Tor proxy port is 9150; and if you installed Tor from apt-get or
similar, the Tor proxy port is 9050. If you are running on Hive, you need to edit server-torrc and
set SocksPort to a port number that doesn't conflict with other users. Once Tor is running, the
command to connect the client is:

./client --disable-tls --socks-port 9150 yoursite.onion 5280
However, if you try that command you will see that proxy support is not implemented. Implement
the connect _with_ socks function. The easiest way to do this is to implement SOCKS4a:

https://en.wikipedia.org/wiki/SOCKS#SOCKS4a
The connect _with socks function should create a socket, send the destination hostname
and port number according to the SOCKS4a protocol, read the 8-byte response, and, if
successful, return the socket object. If unsuccessful, raise a socket.error exception. The
Python struct module can help with packing the request and unpacking the response. Make
sure you send the port number using big-endian byte order: if you get it wrong, instead of
connecting to port 5280 (0x14a0 hex), you'll try to connect to port 40980 (0xa014 hex).

If Tor says:
[notice] Closing stream for '[scrubbed].onion': hidden service is
unavailable (try again later).

wait a minute and try again.

After you've implemented SOCKS support in the client, you and anyone else who knows the
hostname will be able to connect to the server and chat. The server doesn't have to be running
on a traditional “server” computer; it can even just be running on an Internet-connected laptop.

Step 2. Enable TLS

In this step you will add TLS support to the client and server. You will act as your own certificate
authority (CA) and generate a signing key and root certificate. On the server, you will generate a
private key and get a certificate signed by the CA. On the client side, you will trust the CA
certificate.

Page 3 of 7

CS 161 Tygar Fall 2015

OpenSSL has command line programs that are cumbersome to use but do everything you need
to simulate the certificate authority ecosystem. The main command line program is called
openssl. We'll be using several subcommands:
openssl genrsa: generate a private RSA key
https://www.openssl.org/docs/manmaster/apps/genrsa.html
openssl req: create a certificate signing request (CSR)
https://www.openssl.org/docs/manmaster/apps/req.html
openssl x509: sign a CSR or display a certificate
https://www.openssl.org/docs/manmaster/apps/x509.html

You will be generating five files total:
ca.key: the CA's private TLS key
ca.crt: the CA's public TLS certificate
my.key: the hidden service's private TLS key (not the same as Tor's private_key)
my.csr: a certificate signing request containing the service hostname and public key
my.crt: a certificate for the hidden service signed by ca.key

First, set up the CA. You will generate a private key file, ca.key, and a self-signed certificate file,
ca.crt. The details you fill in here (e.g. Organizational Name) don't matter; try not to make them
sound too sketchy. You are a trustworthy certificate authority now.

openssl genrsa -out ca.key 4096

Generating RSA private key, 4096 bit long modulus

e is 65537 (0x10001)
openssl req -x509 -new -nodes -key ca.key -days 365 -out ca.crt
Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:California
Locality Name (eg, city) []:Berkeley
Organization Name (eg, company) [Internet Widgits Pty Ltd] :TrustCo
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQODN or YOUR name) []:
Email Address []:
You can examing the certificate you just generated in text form:
openssl x509 -noout -text -in ca.crt
Certificate:
Data:
Version: 3 (0x2)
Serial Number: 10217653990368449391 (0x8dcc662b35c3936f)
Signature Algorithm: sha256WithRSAEncryption
Issuer: C=US, ST=California, L=Berkeley, O=TrustCo
Validity
Not Before: Nov 2 05:31:48 2015 GMT
Not After : Nov 1 05:31:48 2016 GMT
Subject: C=US, ST=California, L=Berkeley, O=TrustCo

Page 4 of 7

CS 161 Tygar Fall 2015

Notice that the Issuer and Subject are the same. That's what makes the certificate “self-signed”.
There is no higher authority certifying the validity of this certificate; it becomes trusted by being
installed on client systems, just like the self-signed trusted root certificates in your browser.

Next, generate a private key for the hidden service, my.key, and a certificate signing request,
my.csr. The only part that is critical is the Common Name field: this must be equal to
yoursite.onion (i.e., your own generated onion hostname), because it is the hostname that the
client will authenticate against.

openssl genrsa -out my.key 4096

Generating RSA private key, 4096 bit long modulus

..... ++

.. ++

e is 65537 (0x10001)

openssl req -new -key my.key -out my.csr

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:California

Locality Name (eg, city) []:Berkeley

Organization Name (eg, company) [Internet Widgits Pty Ltd]:cslé6l
Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) []:yoursite.onion
Email Address []:

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
Finally, sign the CSR using the CA's certificate.
openssl x509 -req -in my.csr -CA ca.crt -CAkey ca.key \
-CAcreateserial -out my.crt -days 365
This time, the Issuer and Subject are not the same:
openssl x509 -noout -text -in my.crt
Certificate:
Data:
Version: 1 (0x0)
Serial Number: 11050466707567830388 (0x995b24ec32dc6574)
Signature Algorithm: sha256WithRSAEncryption
Issuer: C=US, ST=California, L=Berkeley, O=TrustCo
Validity
Not Before: Nov 3 02:39:19 2015 GMT
Not After : Nov 2 02:39:19 2016 GMT
Subject: C=US, ST=California, L=Berkeley, O=csl6l,
CN=yoursite.onion

Page 5 of 7

CS 161 Tygar Fall 2015

Now you need to add TLS support to the chat programs to make use of your certificate. These

are the commands to run, though you still have to implement them:
./server --tls-cert my.crt --tls-key my.key 127.0.0.1 5280
./client --tls-trustfile ca.crt --socks-port 9150 yoursite.onion 5280

Implement the options.use_ tls code blocks in client and server. You have to wrap a socket
object in a TLS layer so that it becomes a TLS socket. Use the Python ssl module:
https://docs.python.org/3/library/ssl.html
You can assume that the SSLContext type and the SSLContext.wrap socket method are
available. On the client side, you need to enable certificate verification (CERT REQUIRED),
enable checking of hostnames, load the trusted verification certificates from
options.tls_trust_filename, and pass server_hostname=remote_ hostname to the
wrap_ socket call. On the server side, you need to disable certificate verification (CERT NONE;
the server does not authenticate clients) and load the certificate chain consisting of my.crt and
my.key.

Make sure that you can connect a client to a server using TLS and your certificate. When we
test your code, we will also check that trying to connect to a server with a different hostname
does not succeed. (You can test this yourself by running another instance of the hidden service
using a separate HiddenServiceDir.)

Concluding Questions

In a separate file called answers.txt, please put down the answers to the following questions:

1. Despite being encapsulated in TLS, the chat protocol itself has flaws. How could one
user impersonate another user? (Imagine that you are user 7, and user 5 is also in the
room. How could you cause others to see a message on their screen that makes it look
as though user 5 sent a message?)

2. Anyone who knows the onion domain of your hidden service can connect to it. Maybe
you don't want that. Read the hidden service configuration options at

https://www.torproject.org/docs/tor-manual# hidden service options
Which option allows you to restrict service to only authorized clients?

3. The chat server assigns names to connected users according to the file descriptor
number of their connected socket (see the socket_to_username function). Why is the
first connected user called “user 4”; i.e., what are file descriptors 0, 1, 2, and 37?

4. Ignoring performance issues, what were the greatest limitations of Tor you faced in this
assignment? If you could make a recommendation to the Tor developers, what would it
be?

Page 6 of 7

CS 161 Tygar Fall 2015

Submission instructions

Submit your files using the glookup system on a Hive machine. Enter your source code directory
and run the command:
submit proj3
The files you should submit are:
ca.crt
ca.key
client
hostname
my.crt
my.key
private_key
server
answers.txt
Only one member per group needs to submit.

Submissions are due on November 20 at 5:00 PM.

Page 7 of 7

