What is Logic?

Definition

Logic is the study of valid reasoning.

- Philosophy
- Mathematics
- Computer science

Definition

Mathematical Logic is the mathematical study of the methods, structure, and validity of mathematical deduction and proof. [Wolfram Mathworld]

Propositions

Definition

A *proposition* is a declaritive sentence that is either true or false.

- Today is Tuesday.
- Today is Wednesday.
- 5 + 2 = 7
- $3 \cdot 6 > 18$
- The sky is blue.
- Why is the sky blue?
- Barack Obama.
- Two students in the class have a GPA of 3.275.
- The current king of France is bald.

Conjunction

Definition

The *conjunction* of two propostions, p and q, is the proposition "p and q". It is true when both p and q are true.

Example

s: The sky is blue.

g: The grass is green.

m: The moon is made of cheese.

 $s \wedge g$: The sky is blue and the grass is green.

 $s \wedge m$: The sky is blue and the moon is made of cheese.

Disjunction

Definition

The *disjunction* of two propostions, p and q, is the proposition "p or q". It is true when either p or q is true.

Example

s: The sky is blue.

g: The grass is red.

m: The moon is made of cheese.

 $s \lor g$: The sky is blue or the grass is red.

 $g \vee m$: The grass is red or the moon is made of cheese.

Truth tables . . .

The meaning of a logical operation can be expressed as its "truth table."

- Construct the truth-table for conjunction.
- Construct the truth-table for disjunction.
- Construct the truth-table for negation.

Do in class.

A worked example

Example

Let s be "The sun is shining" and t be "It is raining." Join these into the compound statement:

$$(\neg s \wedge t) \vee \neg t$$
.

- Phrase the compound statement in English.
- Construct the truth table.

Do in class.

Exclusive or

The word "or" is often used to mean "one or the other," but this is *not* the same meaning of "or" in logic!

Definition

The *exclusive-or* of two statements p and q (written $p \oplus q$), is true when either p is true or q is true, but not both.

p	q	$p \oplus q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Logical equivalences

How do we know if two logical statements are equivalent?

Logical equivalences

How do we know if two logical statements are equivalent?

- Construct truth tables for each.
- Check if final columns match.

Logical equivalences

How do we know if two logical statements are equivalent?

- Construct truth tables for each.
- Check if final columns match.

Theorem

Let p and q be statement variables. Then

$$(p\lor q)\land \lnot(p\land q) \equiv p\oplus q$$
 and $(p\land \lnot q)\lor (q\land \lnot p) \equiv p\oplus q$.

Prove in class (using Truth Tables).

Conditional Statements

Hypothesis → Conclusion

Example

- If it is raining, I will carry my umbrella.
- If you don't eat your dinner, you will not get dessert.

$p \rightarrow q$	q	p
Т	Т	Т
F	F	Т
Т	Τ	F
Т	F	F
	T	T F

Expressing Conditionals

Conditional can be expressed in many ways:

- if p then q
- p implies q
- q if p
- \bullet p only if q
- a sufficient condition for q is p
- ullet a necessary condition for p is q

More on Conditional

In logic the hypothesis and conclusion need not relate to each other.

Example

- If Joe likes cats, then the sky is blue.
- If Joe likes cats, then the moon is made of cheese.

In programming languages "if-then" is a command.

Example

- If it rains today, then buy an umbrella.
- If x > y then z := x + y

Four important variations of implication

- Contrapositive
- Converse
- Inverse
- Negation

Contrapositive

Definition

The *contrapositive* of a conditional statement is obtained by transposing its conclusion with its premise and inverting. So,

Contrapositive of $p \rightarrow q$ is $\neg q \rightarrow \neg p$.

Example

Original statement: If I live in College Park, then I live in Maryland.

Contrapositive: If I don't live in Maryland, then I don't live in College Park.

Theorem

The contrapositive of an implication is equivalent to the original statement.

Prove in class.

Converse

Definition

The *converse* of a conditional statement is obtained by transposing its conclusion with its premise.

Converse of $p \rightarrow q$ is $q \rightarrow p$.

Example

Original statement: If I live in College Park, then I live in Maryland.

Converse: If I live in Maryland, then I live in College Park.

Inverse

Definition

The *inverse* of a conditional statement is obtained by negating both its premise and its conclusion.

Inverse of $p \to q$ is $(\neg p) \to (\neg q)$.

(Parentheses added for emphasis.)

Example

Original statement: If I live in College Park, then I live in Maryland.

Inverse: If I don't live in College Park, then I don't live in Maryland.

The inverse of an implication is equivalent to the converse! Why?

Negation

Definition

The *negation* of a conditional statement is obtained by negating it. Negation of $p \to q$ is $\neg (p \to q)$ (which is equivalent to $p \land \neg q$).

Example

Original statement: If I live in College Park, then I live in Maryland.

Negation: I live in College Park, and I don't live in Maryland.

The negation of a conditional statement is not a conditional statement!

Biconditional Statements

Example

- I will carry my umbrella, if and only if it is raining.
- You will get dessert, if and only if you eat your dinner.

p	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Τ	F
F	F	Т

Expressing Biconditionals

Biconditional can be expressed in many ways:

- p iff q
- p is necessary and sufficient for q
- p is a necessary and sufficient condition for q

Experimenting with biconditionals

Questions:

- What do the converse, inverse, and negations of a bi-conditional look like?
- What is the relationship between the exclusive-or (discussed above) and the bi-conditional?

Laws of Propositional Logic . . .

We can do algebra in propositional logic.

Commutative Laws:
$$p \wedge q \equiv q \wedge p$$

 $p \vee q \equiv q \vee p$

Associative Laws: $(p \land q) \land r \equiv p \land (q \land r)$ $(p \lor q) \lor r \equiv p \lor (q \lor r)$

Distributive Laws:
$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

 $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

Laws of Propositional Logic . . .

We can do algebra in propositional logic.

Commutative Laws:
$$p \land q \equiv q \land p$$

 $p \lor q \equiv q \lor p$

Associative Laws:
$$(p \land q) \land r \equiv p \land (q \land r)$$

 $(p \lor q) \lor r \equiv p \lor (q \lor r)$

Distributive Laws:
$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

 $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

How do we know that these laws are *valid*?

Laws of Propositional Logic

We can do algebra in propositional logic.

Commutative Laws:
$$p \wedge q \equiv q \wedge p$$

 $p \vee q \equiv q \vee p$

Associative Laws:
$$(p \land q) \land r \equiv p \land (q \land r)$$

 $(p \lor q) \lor r \equiv p \lor (q \lor r)$

Distributive Laws:
$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

 $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

How do we know that these laws are *valid*?

Construct the truth-tables and verify!

Laws of Propositional Logic . . .

We can do algebra in propositional logic.

Commutative Laws:
$$p \land q \equiv q \land p$$

 $p \lor q \equiv q \lor p$

Associative Laws: $(p \land q) \land r \equiv p \land (q \land r)$ $(p \lor q) \lor r \equiv p \lor (q \lor r)$

Distributive Laws:
$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

 $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

How do we know that these laws are *valid*? Construct the truth-tables and verify!

Prove a Distributive Law in class.

De Morgan's laws . . .

Theorem (De Morgan's laws)

Let p and q be statement variables. Then

$$eg(p\lor q)\equiv \neg p\land \neg q$$
 and $eg(p\land q)\equiv \neg p\lor \neg q$.

Examples in English

Example

It is not the case that Alice or Bob went to the store.

- \equiv Alice did not go to the store and Bob did not go to the store.
 - It is not the case that Alice and Bob went to the store.
- \equiv Alice did not go to the store or Bob did not go to the store.

Prove in class (using Truth Tables).

Laws of Logic

Given any statement variables p , q , and r , a tautology t and a contradiction c ,				
the following logical equivalences hold:				
1. Commutative laws:	$p \wedge q \equiv q \wedge p$	$p \lor q \equiv q \lor p$		
2. Associative laws:	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	$(p \lor q) \lor r \equiv p \lor (q \lor r)$		
3. Distributive laws:	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$		
4. Identity laws:	$p \wedge t \equiv p$	$p \lor c \equiv p$		
5. Negation laws:	$p \lor \neg p \equiv t$	$p \land \neg p \equiv c$		
6. Double Negative law:	$\neg(\neg p) \equiv p$			
7. Idempotent laws:	$p \wedge p \equiv p$	$p \lor p \equiv p$		
8. DeMorgan's laws:	$\neg(p \land q) \equiv \neg p \lor \neg q$	$\neg(p\lor q)\equiv \neg p\land \neg q$		
9. Universal bounds laws:	$p \lor t \equiv t$	$p \wedge c \equiv c$		
10. Absorption laws:	$p \lor (p \land q) \equiv p$	$p \wedge (p \vee q) \equiv p$		
11 Negations of t and c	-t - c	-c - t		

Example of Boolean Algebra

$$\neg(\neg p \land q) \land (p \lor q) \equiv p$$

Prove in class (using Boolean algebra).

Logic and Bit Operations

Do in class.