What is a predicate?

A "predicate" is a statement involving variables over a specified "domain" (set).

Example	
Domain (set)	Predicate
Integers (\mathbb{Z})	S(x): x is a perfect square
Reals (\mathbb{R})	G(x,y): $x>y$
Computers	A(c): c is under attack
Computers; People	B(c,p): c is under attack by p

Quantification

- Existential quantifier: ∃ (exists)
- Universal quantifier: $\forall x$ (for all)

Domain D, Subdomain D' subset of D

- $(\exists x)[P(x)]$: Exists x in D such that P(x) is true.
- $(\exists x \in D')[P(x)]$: Exists x in D' such that P(x) is true.
- $(\forall x)[P(x)]$: For all x in D, P(x) is true.
- $(\forall x \in D')[P(x)]$: For all x in D', P(x) is true.

Establishing Truth and Falsity

- To show ∃ statement is true:
 Find an example in the domain where it is true.
- To show ∃ statement is false:
 Show false for every member of the domain.
- To show ∀ statement is true:
 Show true for every member of the domain.
- To show ∀ statement is false:
 Find an example in the domain where it is false.

There are other methods!!!

Negation of Quantified Statements

Example

It is not the case that there is some cat that can fly:

- Some cats cannot fly.
- Only some cats can fly.
- Cats can only fly sometimes.
- All cats cannot fly.
- Watch me throw this cat out the window.

Predicate F(x): x can fly.

$$\neg(\exists x \in \mathsf{cats})[F(x)] \equiv (\forall x \in \mathsf{cats})[\neg F(x)]$$

Negation of Quantified Statements

Example

Not everybody likes me:

- Nobody likes me.
- Everybody doesn't like me.
- Somebody doesn't like me.

Predicate L(x): person x likes me.

```
\neg(\forall x \in \text{people})[L(x)] \equiv (\exists x \in \text{people})[\neg L(x)]
```

Vacuous cases for universally quantified statements

- All prime numbers that are greater than 10 are the sum of two squares.
- All students in this class who are more than ten feet tall have green hair.

Are these statements True or False? How do we show it?

Quantified conditional statements

Universal conditional statement:

$$(\forall x \in D)[P(x) \to Q(x)]$$

- ▶ Contrapositive: $(\forall x \in D)[\neg Q(x) \rightarrow \neg P(x)]$
- ▶ Converse: $(\forall x \in D)[Q(x) \to P(x)]$
- ▶ Inverse: $(\forall x \in D)[\neg P(x) \rightarrow \neg Q(x)]$
- Existential conditional statement: $(\exists x \in D)[P(x) \rightarrow Q(x)]$
 - Contrapositive: $(\exists x \in D)[\neg Q(x) \rightarrow \neg P(x)]$
 - Converse: $(\exists x \in D)[Q(x) \rightarrow P(x)]$
 - ▶ Inverse: $(\exists x \in D)[\neg P(x) \rightarrow \neg Q(x)]$

Multiple Quantifiers (Same Type)

Domains: set of all chairs (C); set of all people (P).

Predicate S(p, c): Person p is sitting on chair c.

- Existential
 - ▶ $(\exists p, \exists c)[S(p, c)]$ There is a person sitting on a chair.
 - ▶ $(\exists c, \exists p)[S(p, c)]$ There is a chair with someone sitting on it.
 - ▶ Alternatively: $(\exists c, p)[S(p, c)]$ or $(\exists p, c)[S(p, c)]$
- Universal
 - $(\forall p, \forall c)[S(p, c)]$ All people are sitting on all chairs.
 - ▶ $(\forall c, \forall p)[S(p, c)]$ All chairs have all people sitting on them.
 - ▶ Alternatively: $(\forall c, p)[S(p, c)]$ or $(\forall p, c)[S(p, c)]$

Multiple Quantifiers II

Example

The order of \forall and \exists matters!

- $(\forall p, \exists c)[S(p, c)]$ Everybody is sitting on a chair.
- $(\exists c, \forall p)[S(p, c)]$ There is some chair that everybody is sitting on.
- $(\forall c, \exists p)[S(p, c)]$ Every chair has somebody sitting on it.
- $(\exists p, \forall c)[S(p, c)]$ There is some person sitting on all of the chairs.

Multiple Quantifiers III

Example

Domain: Set of integers (\mathbb{Z})

- $(\forall m, \exists n)[n > m]$ True Every number has some other number larger that it.
- $(\exists n, \ \forall m)[n > m]$ False There exists a number larger than all other numbers.

Meanings and Negations of Multiply Quantified Statements

English: All people like some cat.

Predicate L(p, c): Person p likes cat c. Do we mean:

$$(\forall p, \exists c)[L(p, c)]$$
 or $(\exists c, \forall p)[L(p, c)]$?

Take the negation:

$$\neg(\forall p, \exists c) L(p, c) \equiv (\exists p, \forall c) \neg L(p, c)$$
$$\neg(\exists c, \forall p) L(p, c) \equiv (\forall c, \exists p) \neg L(p, c)$$

Quantified Cardinality

Example

Domains: set of all students (S); set of all colleges (C). Predicate A(s,c): Student s attends college c.

Exactly one student attends college.

$$(\exists s \in S, \exists c \in C)[A(s,c) \land (\forall t \in S, \forall d \in C) \neg [(t \neq s) \land A(t,d)]]$$

$$(\exists s, \exists c \in C)[A(s,c) \land (\forall t \in S, \forall d \in C)[(t = s) \land \neg A(t,d)]]$$

$$(\exists s \in S, \exists c \in C)[A(s,c) \land (\forall t \in S, \forall d \in C)[A(t,d) \rightarrow (t = s)]]$$

 $(\exists s \in S, \exists c \in C)[A(s,c) \land \neg(\exists t \in S, \exists d \in C)[(t \neq s) \land A(t,d)]]$

• At most one student attends college.

$$(\forall s, t \in S, \forall c, d \in C)[(A(s, c) \land A(t, d)) \rightarrow (s = t)]$$

At least two students attend college.

$$(\exists s, t \in S, \exists c, d \in C)[A(s, c) \land A(t, d) \land (s \neq t)]$$