#### The Intel Microprocessors

8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, Pentium Pro Processor, Pentium II, Pentium 4, and Core2 with 64-bit Extensions

Architecture, Programming, and Interfacing



EIGHTH EDITION

Barry B. Brey



Chapter 2: The Microprocessor and its Architecture

#### The Intel Microprocessors

8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, Pentium Pro Processor, Pentium II, Pentium 4, and Core2 with 64-bit Extensions

Architecture, Programming, and Interfacing



EIGHTH EDITION

Barry B. Brey



Chapter 2: The Microprocessor and its Architecture

#### The Intel Microprocessors

8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, Pentium Pro Processor, Pentium II, Pentium 4, and Core2 with 64-bit Extensions

Architecture, Programming, and Interfacing



EIGHTH EDITION

Barry B. Brey



Chapter 2: The Microprocessor and its Architecture

#### Introduction

- This chapter presents the microprocessor as a programmable device by first looking at its internal programming model and then how its memory space is addressed.
- The architecture of Intel microprocessors is presented, as are the ways that the family members address the memory system.
- Addressing modes for this powerful family of microprocessors are described for the real, protected, and flat modes of operation.



#### **Chapter Objectives**

Upon completion of this chapter, you will be able to:

- Describe function and purpose of each program-visible register in the 8086-Core2 microprocessors, including 64-bit extensions.
- Detail the flag register and the purpose of each flag bit.
- Describe how memory is accessed using real mode memory-addressing techniques.



#### **Chapter Objectives**

(cont.)

Upon completion of this chapter, you will be able to:

- Describe how memory is accessed using protected mode memory-addressing techniques.
- Describe how memory is accessed using the 64-bit flat memory model.
- Describe program-invisible registers found in the 80286 through Core2 microprocessors.
- Detail the operation of the memory-paging mechanism.



# 2–1 INTERNAL MICROPROCESSOR ARCHITECTURE

- Before a program is written or instruction investigated, internal configuration of the microprocessor must be known.
- In a multiple core microprocessor each core contains the same programming model.
- Each core runs a separate task or thread simultaneously.

## The Programming Model

- 8086 through Core2 considered program visible.
  - registers are used during programming and are specified by the instructions
- Other registers considered to be program invisible.
  - not addressable directly during applications programming



- 80286 and above contain program-invisible registers to control and operate protected memory.
  - and other features of the microprocessor
- 80386 through Core2 microprocessors contain full 32-bit internal architectures.
- 8086 through the 80286 are fully upwardcompatible to the 80386 through Core2.
- Figure 2–1 illustrates the programming model 8086 through Core2 microprocessor.
  - including the 64-bit extensions



**Figure 2–1** The programming model of the 8086 through the Core2 microprocessor including the 64-bit extensions.



#### Multipurpose Registers

- RAX a 64-bit register (RAX), a 32-bit register (accumulator) (EAX), a 16-bit register (AX), or as either of two 8-bit registers (AH and AL).
- The accumulator is used for instructions such as multiplication, division, and some of the adjustment instructions.
- Intel plans to expand the address bus to 52 bits to address 4P (peta) bytes of memory.



- RBX, addressable as RBX, EBX, BX, BH, BL.
  - BX register (base index) sometimes holds offset address of a location in the memory system in all versions of the microprocessor
- RCX, as RCX, ECX, CX, CH, or CL.
  - a (count) general-purpose register that also holds the count for various instructions
- RDX, as RDX, EDX, DX, DH, or DL.
  - a (data) general-purpose register
  - holds a part of the result from a multiplication or part of dividend before a division



- RBP, as RBP, EBP, or BP.
  - points to a memory (base pointer) location for memory data transfers
- RDI addressable as RDI, EDI, or DI.
  - often addresses (destination index) string destination data for the string instructions
- RSI used as RSI, ESI, or SI.
  - the (source index) register addresses source string data for the string instructions
  - like RDI, RSI also functions as a generalpurpose register



- R8 R15 found in the Pentium 4 and Core2 if 64-bit extensions are enabled.
  - data are addressed as 64-, 32-, 16-, or 8-bit sizes and are of general purpose
- Most applications will not use these registers until 64-bit processors are common.
  - the 8-bit portion is the rightmost 8-bit only
  - bits 8 to 15 are not directly addressable as a byte



### Special-Purpose Registers

- Include RIP, RSP, and RFLAGS
  - segment registers include CS, DS, ES, SS, FS, and GS
- RIP addresses the next instruction in a section of memory.
  - defined as (instruction pointer) a code segment
- RSP addresses an area of memory called the stack.
  - the (stack pointer) stores data through this pointer



- RFLAGS indicate the condition of the microprocessor and control its operation.
- Figure 2–2 shows the flag registers of all versions of the microprocessor.
- Flags are upward-compatible from the 8086/8088 through Core2.
- The rightmost five and the overflow flag are changed by most arithmetic and logic operations.
  - although data transfers do not affect them



**Figure 2–2** The EFLAG and FLAG register counts for the entire 8086 and Pentium microprocessor family.



- Flags never change for any data transfer or program control operation.
- Some of the flags are also used to control features found in the microprocessor.

- Flag bits, with a brief description of function.
- C (carry) holds the carry after addition or borrow after subtraction.
  - also indicates error conditions
- **P** (parity) is the count of ones in a number expressed as even or odd. Logic 0 for odd parity; logic 1 for even parity.
  - if a number contains three binary one bits, it has odd parity
  - if a number contains no one bits, it has even parity



# List of Each Flag bit, with a brief description of function.

- C (carry) holds the carry after addition or borrow after subtraction.
  - also indicates error conditions
- **P** (parity) is the count of ones in a number expressed as even or odd. Logic 0 for odd parity; logic 1 for even parity.
  - if a number contains three binary one bits, it has odd parity; If a number contains no one bits, it has even parity



- A (auxiliary carry) holds the carry (half-carry)
  after addition or the borrow after subtraction
  between bit positions 3 and 4 of the result.
- Z (zero) shows that the result of an arithmetic or logic operation is zero.
- **S** (**sign**) flag holds the arithmetic sign of the result after an arithmetic or logic instruction executes.
- T (trap) The trap flag enables trapping through an on-chip debugging feature.



- I (interrupt) controls operation of the INTR (interrupt request) input pin.
- D (direction) selects increment or decrement mode for the DI and/or SI registers.
- O (overflow) occurs when signed numbers are added or subtracted.
  - an overflow indicates the result has exceeded the capacity of the machine



- IOPL used in protected mode operation to select the privilege level for I/O devices.
- NT (nested task) flag indicates the current task is nested within another task in protected mode operation.
- RF (resume) used with debugging to control resumption of execution after the next instruction.
- VM (virtual mode) flag bit selects virtual mode operation in a protected mode system.



- AC, (alignment check) flag bit activates if a word or doubleword is addressed on a nonword or non-doubleword boundary.
- VIF is a copy of the interrupt flag bit available to the Pentium 4–(virtual interrupt)
- VIP (virtual) provides information about a virtual mode interrupt for (interrupt pending) Pentium.
  - used in multitasking environments to provide virtual interrupt flags



- ID (identification) flag indicates that the Pentium microprocessors support the CPUID instruction.
  - CPUID instruction provides the system with information about the Pentium microprocessor

### Segment Registers

- Generate memory addresses when combined with other registers in the microprocessor.
- Four or six segment registers in various versions of the microprocessor.
- A segment register functions differently in real mode than in protected mode.
- Following is a list of each segment register, along with its function in the system.



- CS (code) segment holds code (programs and procedures) used by the microprocessor.
- DS (data) contains most data used by a program.
  - Data are accessed by an offset address or contents of other registers that hold the offset address
- **ES** (extra) an additional data segment used by some instructions to hold destination data.



- SS (stack) defines the area of memory used for the stack.
  - stack entry point is determined by the stack segment and stack pointer registers
  - the BP register also addresses data within the stack segment



- FS and GS segments are supplemental segment registers available in 80386—Core2 microprocessors.
  - allow two additional memory segments for access by programs
- Windows uses these segments for internal operations, but no definition of their usage is available.

# 2–2 REAL MODE MEMORY ADDRESSING

- 80286 and above operate in either the real or protected mode.
- Real mode operation allows addressing of only the first 1M byte of memory space—even in Pentium 4 or Core2 microprocessor.
  - the first 1M byte of memory is called the real memory, conventional memory, or DOS memory system



### **Segments and Offsets**

- All real mode memory addresses must consist of a segment address plus an offset address.
  - segment address defines the beginning address of any 64K-byte memory segment
  - offset address selects any location within the 64K byte memory segment
- Figure 2–3 shows how the segment plus offset addressing scheme selects a memory location.



**Figure 2–3** The real mode memory-addressing scheme, using a segment address plus an offset.



- this shows a memory segment beginning at 10000H, ending at location IFFFFH
  - 64K bytes in length
- also shows how an offset address, called a displacement, of F000H selects location 1F000H in the memory

- Once the beginning address is known, the ending address is found by adding FFFFH.
  - because a real mode segment of memory is64K in length
- The offset address is always added to the segment starting address to locate the data.
- Segment and offset address is sometimes written as 1000:2000.
  - a segment address of 1000H; an offset of 2000H



# Default Segment and Offset Registers

- The microprocessor has rules that apply to segments whenever memory is addressed.
  - these define the segment and offset register combination
- The code segment register defines the start of the code segment.
- The instruction pointer locates the next instruction within the code segment.



- Another of the default combinations is the stack.
  - stack data are referenced through the stack segment at the memory location addressed by either the stack pointer (SP/ESP) or the pointer (BP/EBP)
- Figure 2–4 shows a system that contains four memory segments.
  - a memory segment can touch or overlap if 64K
     bytes of memory are not required for a segment



Figure 2–4 A memory system showing the placement of four memory segments.



- think of segments as windows that can be moved over any area of memory to access data or code
- a program can have more than four or six segments,
  - but only access four or six segments at a time

**Figure 2–5** An application program containing a code, data, and stack segment loaded into a DOS system memory.



- a program placed in memory by DOS is loaded in the TPA at the first available area of memory above drivers and other TPA programs
- area is indicated by a freepointer maintained by DOS
- program loading is handled automatically by the program loader within DOS

# Segment and Offset Addressing Scheme Allows Relocation

- Segment plus offset addressing allows DOS programs to be relocated in memory.
- A relocatable program is one that can be placed into any area of memory and executed without change.
- Relocatable data are data that can be placed in any area of memory and used without any change to the program.



- Because memory is addressed within a segment by an offset address, the memory segment can be moved to any place in the memory system without changing any of the offset addresses.
- Only the contents of the segment register must be changed to address the program in the new area of memory.
- Windows programs are written assuming that the first 2G of memory are available for code and data.



# 2–3 INTRO TO PROTECTED MODE MEMORY ADDRESSING

- Allows access to data and programs located within & above the first 1M byte of memory.
- Protected mode is where Windows operates.
- In place of a segment address, the segment register contains a selector that selects a descriptor from a descriptor table.
- The descriptor describes the memory segment's location, length, and access rights.



# **Selectors and Descriptors**

- The descriptor is located in the segment register & describes the location, length, and access rights of the segment of memory.
  - it selects one of 8192 descriptors from one of two tables of descriptors
- In protected mode, this segment number can address any memory location in the system for the code segment.
- Indirectly, the register still selects a memory segment, but not directly as in real mode.



- Global descriptors contain segment definitions that apply to all programs.
- Local descriptors are usually unique to an application.
  - a global descriptor might be called a system descriptor, and local descriptor an application descriptor
- Figure 2–6 shows the format of a descriptor for the 80286 through the Core2.
  - each descriptor is 8 bytes in length
  - global and local descriptor tables are a maximum of 64K bytes in length



Figure 2–6 The 80286 through Core2 64-bit descriptors.





- The base address of the descriptor indicates the starting location of the memory segment.
  - the paragraph boundary limitation is removed in protected mode
  - segments may begin at any address
- The G, or granularity bit allows a segment length of 4K to 4G bytes in steps of 4K bytes.
  - 32-bit offset address allows segment lengths of 4G bytes
  - 16-bit offset address allows segment lengths of 64K bytes.



- Operating systems operate in a 16- or 32-bit environment.
- DOS uses a 16-bit environment.
- Most Windows applications use a 32-bit environment called WIN32.
- MSDOS/PCDOS & Windows 3.1 operating systems require 16-bit instruction mode.
- Instruction mode is accessible only in a protected mode system such as Windows Vista.



- The access rights byte controls access to the protected mode segment.
  - describes segment function in the system and allows complete control over the segment
  - if the segment is a data segment, the direction of growth is specified
- If the segment grows beyond its limit, the operating system is interrupted, indicating a general protection fault.
- You can specify whether a data segment can be written or is write-protected.



**Figure 2–7** The access rights byte for the 80286 through Core2 descriptor.



Note: Some of the letters used to describe the bits in the access rights bytes vary in Intel documentation.



- Descriptors are chosen from the descriptor table by the segment register.
  - register contains a 13-bit selector field, a table selector bit, and requested privilege level field
- The TI bit selects either the global or the local descriptor table.
- Requested Privilege Level (RPL) requests the access privilege level of a memory segment.
  - If privilege levels are violated, system normally indicates an application or privilege level violation



**Figure 2–8** The contents of a segment register during protected mode operation of the 80286 through Core2 microprocessors.



- Figure 2–9 shows how the segment register, containing a selector, chooses a descriptor from the global descriptor table.
- The entry in the global descriptor table selects a segment in the memory system.
- Descriptor zero is called the null descriptor, must contain all zeros, and may not be used for accessing memory.



**Figure 2–9** Using the DS register to select a description from the global descriptor table. In this example, the DS register accesses memory locations 0010000H–001000FFH as a data segment.





# Program-Invisible Registers

- Global and local descriptor tables are found in the memory system.
- To access & specify the table addresses, 80286–Core2 contain program-invisible registers.
  - not directly addressed by software
- Each segment register contains a programinvisible portion used in the protected mode.
  - often called cache memory because cache is any memory that stores information



**Figure 2–10** The program-invisible register within the 80286–Core2 microprocessors.



#### Notes:

- The 80286 does not contain FS and GS nor the program-invisible portions of these registers.
- 2. The 80286 contains a base address that is 24-bits and a limit that is 16-bits.
- 3. The 80386/80486/Pentium/Pentium Pro contain a base address that is 32-bits and a limit that is 20-bits.
- 4. The access rights are 8-bits in the 80286 and 12-bits in the 80386/80486/Pentium-Core2.



- When a new segment number is placed in a segment register, the microprocessor accesses a descriptor table and loads the descriptor into the program-invisible portion of the segment register.
  - held there and used to access the memory segment until the segment number is changed
- This allows the microprocessor to repeatedly access a memory segment without referring to the descriptor table.
  - hence the term cache



- The GDTR (global descriptor table register) and IDTR (interrupt descriptor table register) contain the base address of the descriptor table and its limit.
  - when protected mode operation desired, address of the global descriptor table and its limit are loaded into the GDTR
- The location of the local descriptor table is selected from the global descriptor table.
  - one of the global descriptors is set up to address the local descriptor table



- To access the local descriptor table, the LDTR (local descriptor table register) is loaded with a selector.
  - selector accesses global descriptor table, & loads local descriptor table address, limit, & access rights into the cache portion of the LDTR
- The TR (task register) holds a selector, which accesses a descriptor that defines a task.
  - a task is most often a procedure or application
- Allows multitasking systems to switch tasks to another in a simple and orderly fashion.



#### 2-4 MEMORY PAGING

- The memory paging mechanism allows any physical memory location to be assigned to any linear address.
- linear address is defined as the address generated by a program.
- Physical address is the actual memory location accessed by a program.
- With memory paging, the linear address is invisibly translated to any physical address.



# **Paging Registers**

- The paging unit is controlled by the contents of the microprocessor's control registers.
- Beginning with Pentium, an additional control register labeled CR4 controls extensions to the basic architecture.
- See Figure 2–11 for the contents of control registers CR0 through CR4.



Figure 2–11 The control register structure of the microprocessor.





- The linear address, as generated by software, is broken into three sections that are used to access the page directory entry, page table entry, and memory page offset address.
- Figure 2–12 shows the linear address and its makeup for paging.
- When the program accesses a location between 00000000H and 00000FFFH, the microprocessor physically addresses location 00100000H–00100FFFH.

**Figure 2–12** The format for the linear address (a) and a page directory or page table entry (b).







- Intel has incorporated a special type of cache called TLB (translation look-aside buffer).
  - because repaging a 4K-byte section of memory requires access to the page directory and a page table, both located in memory
- The 80486 cache holds the 32 most recent page translation addresses.
  - if the same area of memory is accessed, the address is already present in the TLB
  - This speeds program execution
- Pentium contains separate TLBs for each of their instruction and data caches.



# The Page Directory and Page Table

- Only one page directory in the system.
- The page directory contains 1024 doubleword addresses that locate up to 1024 page tables.
- Page directory and each page table are 4K bytes in length.
- Figure 2–13 shows the page directory, a few page tables, and some memory pages.



**Figure 2–13** The paging mechanism in the 80386 through Core2 microprocessors.





- DOS and EMM386.EXE use page tables to redefine memory between locations C8000H— EFFFH as upper memory blocks.
  - done by repaging extended memory to backfill conventional memory system to allow DOS access to additional memory
- Each entry in the page directory corresponds to 4M bytes of physical memory.
- Each entry in the page table repages 4K bytes of physical memory.
- Windows also repages the memory system.



**Figure 2–14** The page directory, page table 0, and two memory pages. Note how the address of page 000C8000–000C9000 has been moved to 00110000–00110FFF.





# 2–5 Flat Mode Memory

- A flat mode memory system is one in which there is no segmentation.
  - does not use a segment register to address a location in the memory
- First byte address is at 00 0000 0000H; the last location is at FF FFFF FFFH.
  - address is 40-bits
- The segment register still selects the privilege level of the software.



- Real mode system is not available if the processor operates in the 64-bit mode.
- Protection and paging are allowed in the 64bit mode.
- The CS register is still used in the protected mode operation in the 64-bit mode.
- Most programs today are operated in the IA32 compatible mode.
  - current software operates properly, but this will change in a few years as memory becomes larger and most people have 64-bit computers



**Figure 2–15** The 64-bit flat mode memory model.





- The programming model of the 8086 through 80286 contains 8- and 16-bit registers.
- The programming model of the 80386 and above contains 8-, 16-, and 32-bit extended registers as well as two additional 16-bit segment registers: FS and GS.

- 8-bit registers are AH, AL, BH, BL, CH, CL, DH, and DL.
- 16-bit registers are AX, BX, CX, DX, SP, BP, DI, and SI.
- The segment registers are CS, DS, ES, SS, FS, and GS.
- 32-bit extended registers are EAX, EBX, ECX, EDX, ESP, EBP, EDI, and ESI.

- The 64-bit registers in a Pentium 4 with 64bit extensions are RAX, RBX, RCX, RDX, RSP, RBP, RDI, RSI, and R8 through R15.
- In addition, the microprocessor contains an instruction pointer (IP/EIP/RIP) and flag register (FLAGS, EFLAGS, or RFLAGS).
- All real mode memory addresses are a combination of a segment address plus an offset address.

- The starting location of a segment is defined by the 16-bit number in the segment register that is appended with a hexadecimal zero at its rightmost end.
- The offset address is a 16-bit number added to the 20-bit seg-ment address to form the real mode memory address.
- All instructions (code) are accessed by the combination of CS (segment ad-dress) plus IP or EIP (offset address).

- Data are normally referenced through a combination of the DS (data segment) and either an offset address or the contents of a register that contains the offset address.
- The 8086-Core2 use BX, DI, and SI as default offset registers for data if 16-bit registers are selected.
- The 80386 and above can use the 32-bit registers EAX, EBX, ECX, EDX, EDI, and ESI as default offset registers for data.

- Protected mode operation allows memory above the first 1M byte to be accessed by the 80286 through the Core2 microprocessors.
- This extended memory system (XMS) is accessed via a segment address plus an offset address, just as in the real mode.
- In the protected mode, the segment starting address is stored in a descriptor that is selected by the segment register.

- A protected mode descriptor contains a base address, limit, and access rights byte.
- The base address locates the starting address of the memory segment; the limit defines the last location of the segment.
- The access rights byte defines how the memory segment is accessed via a program.

- The 80286 microprocessor allows a memory segment to start at any of its 16M bytes of memory using a 24-bit base address.
- The 80386 and above allow a memory segment to begin at any of its 4G bytes of memory using a 32-bit base address.
- This allows an 80286 memory segment limit of 64K bytes, and an 80386 and above mem-ory segment limit of either 1M bytes.

- The segment register contains three fields of information in the protected mode.
- The leftmost 13 bits of the segment register address one of 8192 descriptors from a descriptor table.
- The program-invisible registers are used by the 80286 and above to access the descriptor tables.

- Each segment register contains a cache portion that is used in protected mode to hold the base address, limit, and access rights acquired from a descriptor.
- The cache allows the microprocessor to access the memory segment without again referring to the descriptor table until the segment register's contents are changed.

- A memory page is 4K bytes in length. The linear address, as generated by a program, can be mapped to any physical address through the paging mechanism found within the 80386 through the Pentium 4.
- Memory paging is accomplished through control registers CR0 and CR3.
- The PG bit of CR0 enables paging, and the contents of CR3 addresses the page directory.

- The page directory contains up to 1024 page table addresses that are used to access paging tables.
- The page table contains 1024 entries that locate the physical address of a 4K-byte memory page.
- The TLB (translation look-aside buffer) caches the 32 most recent page table translations.

- The flat mode memory contains 1T byte of memory using a 40-bit address.
- In the future, Intel plans to increase the address width to 52 bits to access 4P bytes of memory.
- The flat mode is only available in the Pentium 4 and Core2 that have their 64-bit extensions enabled.