Interfaces and Buses

For UMass Lowell 16.480/552

Prof. Yan Luo

Revised based on “Embedded Systems Design: A Unified Hardware/Sofiware” by Vahid/Givargis

Block diagram of Atom dev board

Block Diagram
(N450/D510 + ICH8M)

VGA

LVDS

50-Pin LVDS
Connector

LPC

N450 / D510

HD Audio

Serial

VGA PS2
Keyboard

Mouse

SPI1

SATA
SATA 0
SATA 1
SATA 2

SATA 3 (NC)
= <

82567V

SATA 4 NC)
[—

SATA 5 (NC)

=
=
Headers

2 x Dual USB & R145
Connector Stack

NANNANNNAN

Il et Bt
BrTalDT w1
BDOTaldl i
i ™ e

82574

|
Board supports N450 and D510 CPUs using |
MVP6 or VRD11 Controllers |

VR11
Populate Board <fmum
With For D510

VR11 on D510

or
IMVPG 0N NASO gy IMVP6
For N450

-

have 0.89V & 1.05V¢_

Add capability to

outputs.
t- m
=
. PCIe x16
Connector
Mome 176 i) EC Console
CPU-DIMM
Module
(PCIe Mini-Card Slot)
@mrcie(3]mp
=USB [5]mip-
“[=SATA [2]+

To slot 5 Multiplexers Enable Configurable
Mini PCIe PCIe, USB and SATA Signal
pciefalnp Mapping to PCIe Mini-Card and

Proprietary Flash DIMM Connector

Outline

Interfacing basics
Microprocessor interfacing
— /O Addressing
— Interrupts
— Direct memory access
Arbitration
Hierarchical buses

Protocols

— Serial
— Parallel
— Wireless

Introduction

 Embedded system functionality aspects

— Processing
 Transformation of data

* Implemented using processors

— Storage
» Retention of data

* Implemented using memory

— Communication

» Transfer of data between processors and memories
* Implemented using buses

 Called interfacing

A simple bus

e Wires:
— Uni-directional or bi-directional
— One line may represent multiple wires

* Bus

— Set of wires with a single function
* Address bus, data bus

Processor

rd'/wr

\ 4

enable

A 4

addr[0-11]

\ 4

daté[/o-ﬂ

V4

— Or, entire collection of wires
» Address, data and control

 Associated protocol: rules for
communication

A

\ 4

/

Memory

H_/

bus

bus structure

Ports

rd'/wr

Processor Memory

\ 4

enable

\<\addr[9-1 1]
>

) data[/0-7]
h /
H_/

bus

A 4

port —

\ 4

[
L

Conducting device on periphery
Connects bus to processor or memory
Often referred to as a pin
— Actual pins on periphery of IC package that plug into socket on printed-circuit board

— Sometimes metallic balls instead of pins

— Today, metal “pads” connecting processors and memories within single IC
Single wire or set of wires with single function
— E.g., 12-wire address port

Timing Diagrams

Most common method for describing a
communication protocol

Time proceeds to the right on x-axis
Control signal: low or high S

May be active low (e.g., go’, /go, or go L)
Use terms assert (active) and deassert
Asserting go’ means go=0

Data signal: not valid or valid —

Protocol may have subprotocols

Called bus cycle, e.g., read and write
Each may be several clock cycles

Read example

rd’/wr set low,address placed on addr for at
least ty,, time before enable asserted, enable
triggers memory to place data on data wires
by time t,qq

rd'/wr
enable / 1
addr < \
y
data
ts etup tread
read protocol
rd'/wr /
enable N
addr
data
t t

setup write

write protocol

Basic protocol concepts

Actor: master initiates, servant (slave) respond
Direction: sender, receiver
Addresses: special kind of data

— Specifies a location in memory, a peripheral, or a register within a peripheral

Time multiplexing

— Share a single set of wires for multiple pieces of data

— Saves wires at expense of time

Time-multiplexed data transfer

Master

req Servant

data(15:0)

v

data(15:0)

mux

demux

data serializing

Master

mux

req Servant

demux

\4

addr/data |

»

req _ I [I

address/data muxing

Basic protocol concepts: control methods

Master req Servant Master req Servant
g ack
data data

t21CC€SS
1. Master asserts reg to receive data 1. Master asserts req to receive data
2. Servant puts data on bus within time t,. . 2. Servant puts data on bus and asserts ack
3. Master receives data and deasserts req 3. Master receives data and deasserts req
4. Servant ready for next request 4. Servant ready for next request

Strobe protocol Handshake protocol

A strobe/handshake compromise

Master req Servant
wait
data
req 1 3 req [4
wait wait 2
e Nt - d
taccess taccess

1. Master asserts req to receive data

2. Servant puts data on bus within time t,. .
(wait line is unused)

3. Master receives data and deasserts req

4. Servant ready for next request

Fast-response case

1. Master asserts req to receive data

2. Servant can't put data within t,.c., asserts wait ack
3. Servant puts data on bus and deasserts wait

4. Master receives data and deasserts req

5. Servant ready for next request

Slow-response case

10

Microprocessor interfacing: I/0 addressing

* A microprocessor communicates with other devices
using some of 1ts pins
— Port-based I/O (parallel 1I/0)

* Processor has one or more N-bit ports
» Processor’s software reads and writes a port just like a register
 E.g., PO=0xFF; v=P1.2; -- PO and P1 are 8-bit ports

— Bus-based I/O

* Processor has address, data and control ports that form a single bus
e Communication protocol is built into the processor
A single instruction carries out the read or write protocol on the bus

11

Compromises/extensions

 Parallel I/O peripheral B
— When processor only supports bus-based I/O but —y Syembn
parallel I/O needed Paralle 10 peripheral
— Each port on peripheral connected to a register I I I
within peripheral that is read/written by the PoA PortB PortC
processor Adding parallel 1O to a bus-
based /O processor
« Extended parallel I/O
Processor |¢— Port 0
— When processor supports port-based I/O but DG
more ports needed «—Port?
— One or more processor ports interface with Faralll TOparpher
parallel I/O peripheral extending total number of I I I
ports available for I/O PortA PortB Port C

1 ‘£ Extended parallel 1/O
— e.g., extending 4 ports to 6 ports in figure Xtended paralle

12

Types of bus-based 1/O:
memory-mapped I/0O and standard I/O

* Processor talks to both memory and peripherals using
same bus — two ways to talk to peripherals

— Memory-mapped I/0
» Peripheral registers occupy addresses in same address space as memory
e e.g., Bus has 16-bit address

— lower 32K addresses may correspond to memory
— upper 32k addresses may correspond to peripherals

— Standard I/0 (I/O-mapped 1/0)

* Additional pin (M/IO) on bus indicates whether a memory or peripheral
access

e ¢.g., Bus has 16-bit address
— all 64K addresses correspond to memory when M/I0 set to 0
— all 64K addresses correspond to peripherals when M/IO set to 1

13

Memory-mapped 1/0 vs. Standard I/0

 Memory-mapped /O

— Requires no special instructions

« Assembly instructions involving memory like MOV and ADD work
with peripherals as well

 Standard I/O requires special instructions (e.g., IN, OUT) to move
data between peripheral registers and memory

e Standard I/O

— No loss of memory addresses to peripherals

— Simpler address decoding logic in peripherals possible

* When number of peripherals much smaller than address space then
high-order address bits can be 1gnored

— smaller and/or faster comparators

14

A basic memory protocol

PO —| Adr. 7..0 |_| Data | PO |le l D Q ‘ D<0...7 _l
el o » A<(...15>
P2 e » /OE
_| /AM...S . ' . |08
Q 74373 —» 3o | |
4| (Adr. 7...0 | . CcSs2 /CS |
A é \ }_; ‘ HM6264 —_
LE P2 V4
/WR
/cs
/RD \ / /RD
sl D<0...7
! ! /PSEN
| »| A<0..14>
/OE
8051 27C256

* Interfacing an 8051 to external memory

— Ports PO and P2 support port-based I/O when 8051 internal memory
being used

— Those ports serve as data/address buses when external memory is being
used

— 16-bit address and 8-bit data are time multiplexed; low 8-bits of address
must therefore be latched with aid of ALE signal

15

A more complex memory protocol

CLK

/ADSP

/ADSC

/ADV

addr<15...0>
/WE

/OE

/CS1 and /CS2

CS3

data<31...0>

Specification for a single
read operation

S R O T A
- I
—
]
|
~
J \ [
|

FSM description
GO=0

GO=1

ADSP=0,
ADSC=0
ADV=0, OE=1,
Addr = Addr0

S1

S0

S3

ADV=0, OE=0,
Addr=2’

GO=0

Generates control signals to drive the TC55V2325FF memory chip in burst mode

— Addr0 is the starting address input to device
— GO is enable/disable input to device

16

Microprocessor interfacing: interrupts

* Suppose a peripheral intermittently receives data,
which must be serviced by the processor

— The processor can poll the peripheral regularly to see if data
has arrived — wasteful

— The peripheral can interrupt the processor when it has data

* Requires an extra pin or pins: Int

— If Int 1s 1, processor suspends current program, jumps to an
Interrupt Service Routine, or ISR

— Known as interrupt-driven I/0O

— Essentially, “polling” of the interrupt pin 1s built-into the
hardware, so no extra time!

17

Microprocessor interfacing: interrupts

* What is the address (interrupt address vector) of the
ISR?

— Fixed interrupt
» Address built into microprocessor, cannot be changed

 Either ISR stored at address or a jump to actual ISR stored if not
enough bytes available

— Vectored interrupt
 Peripheral must provide the address

* Common when microprocessor has multiple peripherals connected
by a system bus

— Compromise: interrupt address table

18

Interrupt-driven I/O using fixed ISR location

s,

I(a): pP is executing its main program.

1(b): P1 receives input data in a
register with address 0x8000.

I

3: After completing instruction at 100, pP
sees Int asserted, saves the PC’s value of
100, and sets PC to the ISR fixed location

2: P1 asserts Int to request
servicing by the
MIiCroprocessor.

of 16.

4(a): The ISR reads data from 0x8000,
modifies the data, and writes the resulting

4(b): After being read, P1 de-
asserts Int.

data to 0x8001.

5: The ISR returns, thus restoring PC to
100+1=101, where pP resumes executing.

19

Interrupt-driven I/O using fixed ISR location

1(a): uP is executing its main program Program memory uP Data memory

ISR
1(b): P1 receives input data in a register 16: MOV RO, 0x8000 System bus
with address 0x8000. 17: # modifies RO

18: MOV 0x8001, RO
19: RETI # ISR return

Int P1 P2
Main program
ApC
100: instruction 0x8000 | |0x8001
101: instruction ®
o

20

Interrupt-driven I/O using fixed ISR location

2: P1 asserts Int to request servicing by
the microprocessor

Program memory
ISR
16: MOV RO, 0x8000
17: # modifies RO

18: MOV 0x8001, RO
19: RETI #ISR return

Main program

100: instruction
101: 1instruction

Int

A

PC

Data memory

System bus

P1 P2

0x8000 0x8001

21

Interrupt-driven I/O using fixed ISR location

3: After completing instruction at 100, Program memory | uP Data memory

uP sees Int asserted, saves the PC’s ISR b

value of 100, and sets PC to the ISR 16: MOV RO, 0x8000 Svstern bus

fixed location of 16. 17: # modifies RO Y N
18: MOV 0x8001, RO

P2

19: RETI #ISR return
Int Pl

1
1
1
1
]
1
I
1
I
1
1
I
I
I
I
}
\

Main program
' PC [~ [0x8000 | |0x8001

100: 1instruction b,
101: instruction 100

A

7/

Interrupt-driven I/O using fixed ISR location

4(a): The ISR reads data from 0x8000,

Program memory uP Data memory
modifies the data, and writes the ISR
resulting data to 0x8001. 16: MOV RO, 0x8000
17: # modifies RO J C:> DO O System bus
4(b): After being read, P1 deasserts Int. 18: MOV 0x8001, RO SIS - T
19: RETI # ISR return v\ oy
e Int |« Pl ! P2
Main program 0 K
<« PC K
100: instruction 0x8000 i 0x8001
101: instruction 100 o '®

23

Interrupt-driven I/O using fixed ISR location

5: The ISR returns, thus restoring PC to
100+1=101, where uP resumes
executing.

Program memory
ISR

16: MOV RO, 0x8000
17: # modifies RO

18: MOV 0x8001, RO
19: RETI #ISR return

-

Main program £

100: instruction
101: 1instruction

Int

(T ~a -
\

A

PC

100 |-

AN

Data memory

A

A

System bus

A

A

\ 4

A

A 4

»

+1

P P2
0x8000 | |0x8001
®

24

Interrupt-driven I/0O using vectored interrupt

I(a): PP is executing its main program. 1(b): P1 receives input data in a
register with address 0x8000.

owr

2: P1 asserts Int to request servicing
by the microprocessor.

3: After completing instruction at 100, puP sees Int
asserted, saves the PC’s value of 100, and asserts
Inta.

4: P1 detects Inta and puts interrupt
address vector 16 on the data bus.

5(a): pP jumps to the address on the bus (16).
The ISR there reads data from 0x8000, modifies
the data, and writes the resulting data to 0x8001.

LN N

5(b): After being read, P1 deasserts
Int.

6: The ISR returns, thus restoring PC to
100+1=101, where pP resumes executing.

Interrupt-driven I/0O using vectored interrupt

1(a): P is executing its main program Program memory uP Data memory
ISR
1(b): P1 receives input data in a register 16: MOV R0, 0x8000
with address 0x8000. 17: # modifies RO System bus

18: MOV 0x8001, RO
19: RETI #ISR return

Main program Int 7
AP 16
100: 1nstruction 0x8000 0x8001
101: instruction 100
o
o

26

Interrupt-driven I/0O using vectored interrupt

2: P1 asserts Int to request servicing by the Program memory uP Data memory
Mmicroprocessor ISR
16: MOV RO, 0x8000 z : .
17: # modifies RO) ! ystem U‘S
18: MOV 0x8001, RO B 4 . S
19: RETI #ISR return 4 v
Inta 5 > P1 P2
Main program Int [«
P PC 1 16
100: %nstruct%on 0x8000 0x8001
101: instruction 100 ®

Interrupt-driven I/0O using vectored interrupt

3: After completing instruction at 100, uP
sees Int asserted, saves the PC’s value of

100, and asserts Inta

Program memory upP Data memory
ISR
16: MOV RO, 0x8000 X < X
17: # modifies RO) ! ystem U‘S
18: MOV 0x8001, RO h 4 r Y
19: RETI #ISR return v v
Inta - > P1 P2
Main program Int [«
| PC |~ 16
100: instruction ," 0x8000 0x8001
101: instruction 100 (v °

28

Interrupt-driven I/0O using vectored interrupt

4: P1 detects Inta and puts interrupt
address vector 16 on the data bus

Program memory
ISR

16: MOV RO, 0x8000
17: # modifies RO
18: MOV 0x8001, RO

19: RETI # ISR return
Main program

100: instruction
101: instruction

A

16

Inta
Int

PC

100

Data memory

<. . System bus
< — >
v
P1! P2
16 |,
0x8000 0x8001

29

Interrupt-driven I/0O using vectored interrupt

5(a): PC jumps to the address on the bus Program memory puP Data memory
(16). The ISR there reads data from ISR <77
OXSOQO, modifies the data, and writes the 12 1#\/IOVd}}O, O}){((?OOO ':] @ ___________ System bus
resulting data to 0x8001. - 7 MOod1iles) ‘ < N ,
18: MOV 0x8001, RO | @, . v I
19: RETI #ISRreturn / : v
5(b): After being read, P1 deasserts Int. Mam oram 'I,’ ?rtl? . Pl 'E '||P2
et [olle] 4L
100: %nstruct%on = 0x8000 E 0x8001
101: instruction e - @

30

Interrupt-driven I/0O using vectored interrupt

6: The ISR returns, thus restoring the PC to
100+1=101, where the puP resumes

Program memory
ISR

16: MOV RO, 0x8000
17: # modifies RO

18: MOV 0x8001, RO
19: RETI #ISR return

Main program £

100: instruction
101: 1instruction

Int

A

PC

-

100 |-

A

Data memory

A

A 4

System bus

+1

Pl P2
0x8000 | |0x8001
@

31

Interrupt address table

* Compromise between fixed and vectored interrupts
— One interrupt pin
— Table in memory holding ISR addresses (maybe 256 words)

— Peripheral doesn’t provide ISR address, but rather index 1nto
table

» Fewer bits are sent by the peripheral
* Can move ISR location without changing peripheral

32

Additional interrupt 1ssues

« Maskable vs. non-maskable interrupts

— Maskable: programmer can set bit that causes processor to ignore
interrupt
» Important when in the middle of time-critical code
— Non-maskable: a separate interrupt pin that can’t be masked

» Typically reserved for drastic situations, like power failure requiring
immediate backup of data to non-volatile memory

e Jump to ISR

— Some microprocessorstreat jump same as call of any subroutine
» Complete state saved (PC, registers) — may take hundreds of cycles
— Others only save partial state, like PC only
* Thus, ISR must not modify registers, or else must save them first
» Assembly-language programmer must be aware of which registers stored

33

Direct memory access

« Buffering

— Temporarily storing data in memory before processing
— Data accumulated in peripherals commonly buffered

* Microprocessor could handle this with ISR
— Storing and restoring microprocessor state inefficient
— Regular program must wait

e DMA controller more efficient

— Separate single-purpose processor
— Microprocessor relinquishes control of system bus to DMA controller
— Microprocessor can meanwhile execute its regular program

» No inefficient storing and restoring state due to ISR call
* Regular program need not wait unless it requires the system bus

— Harvard archictecture — processor can fetch and execute instructions as long as
they don’t access data memory — if they do, processor stalls

34

Peripheral to memory transfer without DMA,
using vectored interrupt

s,

/(a): P is executing its main program.

[(b): P1 receives input data in a register
with address 0x8000.

v

A 4

3 After completing instruction at 100, puP sees Int
asserted, saves the PC’s value of 100, and asserts /nta.

2: P1 asserts Int to request servicing by
the microprocessor.

W

\J4: P1 detects Inta and puts interrupt

5(a): UP jumps to the address on the bus (16). The ISR
there reads data from 0x8000 and then writes it to
0x0001, which is in memory.

address vector 16 on the data bus.

y

5(b): After being read, P1 deasserts /nt.

6: The ISR returns, thus restoring PC to 100+1=101,
where PP resumes executing.

35

Peripheral to memory transfer without DMA,
using vectored interrupt

1(a): uP is executing its main program

1(b): P1 receives input data in a register
with address 0x8000.

Data memory

System bus

Program memory uP
ISR 0x0000 0x0001
16: MOV RO, 0x8000
17: # modifies RO
18: MOV 0x0001, RO
19: RETI # ISR return
Main program Inta P1
ces Int -
100: instruction 16
101: instruction PC 0x8000
LJ
o

36

Peripheral to memory transfer without DMA,

using vectored interrupt

2: P1 asserts Int to request servicing by the
MmiCroprocessor

Program memory
ISR
16: MOV RO, 0x8000
17: # modifies RO
18: MOV 0x0001, RO
19: RETI # ISR return

Main program

100: instruction
101: instruction

uP

Inta
Int

A

PC

100

Data memory
0x0000 0x0001

| 16

System bus

Pl

0x8000

37

Peripheral to memory transfer without DMA,
using vectored interrupt

puP Data memory

3: After completing instruction at 100, uP Program memory
0x0000 0x0001

sees Int asserted, saves the PC’s value of ISR
100, and asserts Inta. 16: MOV RO, 0x8000

17: # modifies RO
18: MOV 0x0001, RO System bus
19: RETI # ISR return

Main program Inta|— Ppj
100: instruction 16
101: instruction 0x8000

100 (&

38

Peripheral to memory transfer without DMA,

using vectored interrupt (cont’)

4: P1 detects Inta and puts interrupt address
vector 16 on the data bus.

Program memory upP Data memory
ISR 0x0000 0x0001
16: MOV R0, 0x8000
17: # modifies RO
18: MOV 0x0001, RO 16 <----s \ System bus
19: RETI # ISR return) o >
‘.
Main program Inta P1 .
Int '
100: instruction 16 |-
101: instruction PC 0x8000
100

39

Peripheral to memory transfer without DMA,
using vectored interrupt (cont’)

5(a): uP jumps to the address on the bus (16). Program memory up Data memory
The ISR there reads data from 0x8000 and ISR 3 0x0000 0x0001
then writes it to 0x0001, which is in memory. 16: MOV RO, 0x8000 !
Y 17: # modifies RO ! |7“t|
)
. . MOVO0x8001,RO | | o | cceeo-] Systemb
5(b): After being read, P1 de-asserts /Int. 18: MOV 0x8001, RO ," o . ystem us=
19: RETI #ISRreturn | <. __1*
1 -~
, T
Main program ! Inta Pl :
eos 1 I P :
100: instruction | nt 16 :
. . 1 PC 0 !
101: instruction Nl 0x8000 |
100 ®

40

Peripheral to memory transfer without DMA,

using vectored interrupt (cont’)

6: The ISR returns, thus restoring PC to
100+1=101, where uP resumes executing.

Program memory
ISR
16: MOV RO, 0x8000
17: # modifies RO

18: MOV 0x8001, RO
19: RETI # ISR return

Main program

100: instruction &~
101: instruction

uP

Inta

PC |

Data memory
0x0000 0x0001

System bus

Pl
16
L1/ 0x8000

41

Peripheral to memory transfer with DMA

s,

/(a): PP is executing its main program.
[t has already configured the DMA ctrl
registers.

K- After executing instruction 100, uP
sees Dreq asserted, releases the system
bus, asserts Dack, and resumes
execution. pP stalls only if it needs the
system bus to continue executing.

/

3: DMA ctrl asserts Dreg
to request control of
system bus.

1(b): P1 receives input
data in a register with
address 0x8000.

\4

2: P1 asserts req to request
servicing by DMA ctrl.

\I5: (a) DMA ctrl asserts

ack (b) reads data from
0x8000 and (b) writes that
data to 0x0001.

v

7(a): WP de-asserts Dack and resumes
control of the bus.

6:. DMA de-asserts Dreq
and ack completing
handshake with P1.

7(b): P1 de-asserts req.

42

Peripheral to memory transfer with DMA

I(a): uP is executing its main program. It has
already configured the DMA ctrl registers

1(b): P1 receives input data in a register with
address 0x8000.

(cont’)

Frogram memory o 00000 00001
No ISR needed!
System bus
Dack o
Main program Dreq 5 [())(I:/([)? anlmk Pl
< o
100: instruction
< PC req
101: instruction [PC] 0x8000 0x8000
e [@ |
f
o

43

Peripheral to memory transfer with DMA
(cont’)

2: P1 asserts req to request servicing Program memory ppP Data memory
by DMA ctrl. 0x0000 0x0001
No ISR needed!
3: DMA ctrl asserts Dreg to request control of System bus
system bus
Dack
Main program Dreq |+— DMA ctrl Pl
1 [9x0001 ack
100: instruction :l
< PC re <
101: instruction 0 0x8000 | =4 1 | 9x8000

Peripheral to memory transfer with DMA
(cont’)

4: After executing instruction 100, uP sees Program memory uP Data memory
Dreq asserted, releases the system bus, asserts 0x0000 0x0001
Pack, and resumes execution, %LP stalls on'ly if No ISR needed!
it needs the system bus to continue executing. System bus
Dack :
ack |—» —
Main program Dreq DMA ctrl Pl
0x0001 | ack
100: instruction
101: instruction %l 0x8000 0x8000

45

Peripheral to memory transfer with DMA

5: DMA ctrl (a) asserts ack, (b) reads data
from 0x8000, and (c) writes that data to
0x0001.

(Meanwhile, processor still executing if not
stalled!)

(cont’)

Program memory

No ISR needed!

Main program

100: instruction
101: instruction

Dack
Dreq

[7C]

100

Data memory
0x0000 0x0001

A
P / System bus
< "/ 7y ‘—__ >
J ST T T T EREN
1 \ 4 I \ 4 \
:' DMA qtrl . Pl |
1 1
} 0x0001 | ack |—» !
I 1 |
: OXSOOO l’ 1Acq OX8000 :

46

Peripheral to memory transfer with DMA

6: DMA de-asserts Dreq and ack completing
the handshake with P1.

(cont’)

Program memory

No ISR needed!

Main program

100: instruction
101: instruction

Dack

Dreq |e—

100

0

Data memory
0x0000 0x0001

System bus

DMA ctrl 0 P1
0x0001 | ack |—p
0x8000 | Tcq 0x8000

47

Arbitration: Priority arbiter

Consider the situation where multiple peripherals request service from single
resource (e.g., microprocessor, DMA controller) simultaneously - which gets
serviced first?

Priority arbiter
— Single-purpose processor

— Peripherals make requests to arbiter, arbiter makes requests to resource
— Arbiter connected to system bus for configuration only

Micro-
processor | >
1 System bus 7 * *
Inta 5 \ 4 \ 4 \ 4
> Priority Peripherall | |Peripheral2
Int |« 3 arbiter
A A
Ireql 4—2, 2
lackl [
Ireq2 |,
Tack2

48

20 0Nk WD =

Arbitration using a priority arbiter

Micro-
processor | >
T Systembus 7 * *
Inta 5 A 4 \ 4 A 4
> Priority Peripherall | |Peripheral2
Int |< 3 arbiter
A A
Ireql 4—2| 2
lackl [
Ireq2 |,
lack2

. Microprocessor is executing its program.

. Peripherall needs servicing so asserts Ireq 1. Peripheral2 also needs servicing so asserts Ireg?2.
. Priority arbiter sees at least one /req input asserted, so asserts /nt.

. Microprocessor stops executing its program and stores its state.

. Microprocessor asserts /nta.

. Priority arbiter asserts lackl to acknowledge Peripherall.

. Peripherall puts its interrupt address vector on the system bus

. Microprocessor jumps to the address of ISR read from data bus, ISR executes and returns
(and completes handshake with arbiter).

9. Microprocessor resumes executing its program.

01N Lt A W N —

49

Arbitration: Priority arbiter

« Types of priority
 Fixed priority
— each peripheral has unique rank
— highest rank chosen first with simultaneous requests
— preferred when clear difference in rank between peripherals
« Rotating priority (round-robin)
— priority changed based on history of servicing

— better distribution of servicing especially among peripherals with
similar priority demands

50

Arbitration: Daisy-chain arbitration

» Arbitration done by peripherals

— Built into peripheral or external logic added
» req input and ack output added to each peripheral

 Peripherals connected to each other in daisy-chain manner
— One peripheral connected to resource, all others connected “upstream”

— Peripheral’s req flows “downstream” to resource, resource’s ack flows
“upstream’ to requesting peripheral

— Closest peripheral has highest priority

upP

Inta

Int

System bus

v

&
«

A

A 4

\4

A

Peripheral 1

Ack in Ack out
Req out Req in

A

Y

Peripheral2

»Ack in Ack out

<« Req out Req in [¢—— 0

Daisy-chain aware peripherals

51

 Pros/cons

Micro-
processor

Inta

Int

A

[

A 4

" System bus

A

A 4

A 4

Priority
arbiter

Ireql
Tack1

Ireq2
lack2

Peripheral

2

A

uP

Inta

— Does not support rotating priority

Arbitration: Daisy-chain arbitration

— Easy to add/remove peripheral - no system redesign needed

— One broken peripheral can cause loss of access to other
peripherals

System bus

v

A

A

A 4

Peripheral 1

Ack in Ack out
Req out Req in

A

A 4
Peripheral2

Ack in Ack out ——>

<« Req out Req in [¢—— 0

Daisy-chain aware peripherals

52

Network-oriented arbitration

* When multiple microprocessors share a bus
(sometimes called a network)
— Arbitration typically built into bus protocol

— Separate processors may try to write simultaneously causing
collisions

 Data must be resent

* Don’t want to start sending again at same time
— statistical methods can be used to reduce chances

» Typically used for connecting multiple distant chips

— Trend — use to connect multiple on-chip processors

53

Example: Vectored interrupt using
an interrupt table

* Fixed priority: i.e., Peripherall has highest priority
+ Keyword “ at ” followed by memory address forces

compiler to place variables in specific memory
locations

— e.g., memory-mapped registers in arbiter, peripherals

* A peripheral’s index into interrupt table is sent to

memory-mapped register in arbiter

* Peripherals receive external data and raise interrupt

Processor
MEMORY
MASK A Ar
IDX0 \ y - {
IDX1 s:g’riority Arbiter _ N -
1 .
ENABLE — T— 2 T
)) M
A E [
DATA Peripheral 1 Peripheral 2 [*™] £ Jump Table
B———— 8
\J
unsigned char ARBITER MASK REG _at Oxfff0;
unsigned char ARBITER CHO INDEX REG at Oxfffl;
unsigned char ARBITER CH1 INDEX REG _at_ Oxfff2;
unsigned char ARBITER ENABLE REG _at Oxfff3;
unsigned char PERIPHERALlI DATA REG ~at 0xffel;
unsigned char PERIPHERAL2 DATA REG _at Oxffel;
unsigned void* INTERRUPTiLOOKUPiTABLE[256] _at 0x0100;
void main () |
InitializePeripherals();
for (;;) {} // main program goes here

void Peripherall ISR(void) {
unsigned char data;
data = PERIPHERALI_DATA_REG;
// do something with the data
}
void Peripheral2 ISR(void) {
unsigned char data;
data = PERIPHERALZ_DATA_REG;
// do something with the data
}
volid InitializePeripherals(void) {
ARBITER MASK REG = 0x03; // enable both channels
ARBITER CHO INDEX REG = 13;
ARBITER CH1 INDEX REG = 17;
INTERRUPT LOOKUP TABLE [13] = (void*)Peripherall ISR;
INTERRUPT LOOKUP TABLE [17] = (void*)Peripheral2 ISR;
ARBITER ENABLE REG = 1;

=

54

Intel 8237 DMA controller

D[7..0] +—
A[19..0] <—>
ALE +—
MEMR <+——]
MEMW €—
[OR +—>
[OW >

HLDA

HRQ

Intel 8237

REQ 0
ACK 0

REQ 1
ACK 1

REQ?2
ACK 2

REQ 3
ACK 3

Signal Description

D[7..0] These wires are connected to the system bus (ISA) and are used by the
microprocessor to write to the internal registers of the 8237.

AJ19..0] These wires are connected to the system bus (ISA) and are used by the DMA to
issue the memory location where the transferred data is to be written to. The 8237 is

ALE* This is the address latch enable signal. The 8237 use this signal when driving the
system bus (ISA).

MEMR* This is the memory write signal issued by the 8237 when driving the system bus
(ISA).

MEMW#* This is the memory read signal issued by the 8237 when driving the system bus (ISA).

IOR* This is the I/O device read signal issued by the 8237 when driving the system bus
(ISA) in order to read a byte from an I/O device

IOwW* This is the /O device write signal issued by the 8237 when driving the system bus
(ISA) in order to write a byte to an I/O device.

HLDA This signal (hold acknowledge) is asserted by the microprocessor to signal that it has
relinquished the system bus (ISA).

HRQ This signal (hold request) is asserted by the 8237 to signal to the microprocessor a
request to relinquish the system bus (ISA).

REQ 0,1,2,3 |An attached device to one of these channels asserts this signal to request a DMA
transfer.

ACK 0,1,2,3 |The 8237 asserts this signal to grant a DMA transfer to an attached device to one of

these channels.

*See the ISA bus description in this chapter for complete details.

55

Intel 8259 programmable priority controller

D[7.0] €— Intel 8259 <+— IR0

A[0.0] ——» <+— [R]

RD —> <+«—— [R2

WR ———> <+«—— [R3

INT — +— [R4

INTA —P] < RS

<+— |R6

CAS[2.0] € < Ir7
SP/EN >

Signal Description

D[7..0] These wires are connected to the system bus and are used by the microprocessor to
write or read the internal registers of the 8259.

AJ0..0] This pin actis in cunjunction with WR/RD signals. It is used by the 8259 to decipher
various command words the microprocessor writes and status the microprocessor
wishes to read.

WR When this write signal is asserted, the 8259 accepts the command on the data line, i.e.,
the microprocessor writes to the 8259 by placing a command on the data lines and
asserting this signal.

RD When this read signal is asserted, the 8259 provides on the data lines its status, i.e., the
microprocessor reads the status of the 8259 by asserting this signal and reading the data
lines.

INT This signal is asserted whenever a valid interrupt request is received by the 8259, i.e., it
is used to interrupt the microprocessor.

INTA This signal, is used to enable 8259 interrupt-vector data onto the data bus by a sequence
of interrupt acknowledge pulses issued by the microprocessor.

IR An interrupt request is executed by a peripheral device when one of these signals is

0,1,2,3,4,5,6,7 |asserted.

CAS[2..0] These are cascade signals to enable multiple 8259 chips to be chained together.

SP/EN This function is used in conjunction with the CAS signals for cascading purposes.

56

Multilevel bus architectures

Don’t want one bus for all communication

— Peripherals would need high-speed, processor-specific bus interface

* excess gates, power consumption, and cost; less portable

— Too many peripherals slows down bus
Processor-local bus

— High speed, wide, most frequent
communication

Micro-
processor

Cache

Memory
controller

DMA
controller

A

A 4

A

A 4

A

Y

A

A 4

— Connects microprocessor, cache, memory
controllers, etc.

Peripheral bus

— Lower speed, narrower, less frequent
communication

Processor-local bus

Peripheral

Peripheral

Peripheral

A

Y

v

— Typically industry standard bus (e.g., PCIS
_for portability
Bridge

Peripheral bus

— Single-purpose processor converts communication between busses

57

v

Advanced communication principles

« Layering
— Break complexity of communication protocol into pieces easier to design and
understand

— Lower levels provide services to higher level

* Lower level might work with bits while higher level might work with packets of data
— Physical layer

* Lowest level in hierarchy

* Medium to carry data from one actor (device or node) to another

e Parallel communication

— Physical layer capable of transporting multiple bits of data
* Serial communication

— Physical layer transports one bit of data at a time

e Wireless communication

— No physical connection needed for transport at physical layer

58

Parallel communication

Multiple data, control, and possibly power wires

— One bit per wire
High data throughput with short distances

Typically used when connecting devices on same IC or same
circuit board
— Bus must be kept short

 long parallel wires result in high capacitance values which requires more
time to charge/discharge

» Data misalignment between wires increases as length increases

Higher cost, bulky

59

Serial communication

Single data wire, possibly also control and power wires
Words transmitted one bit at a time
Higher data throughput with long distances

— Less average capacitance, so more bits per unit of time
Cheaper, less bulky
More complex interfacing logic and communication protocol

— Sender needs to decompose word into bits
— Receiver needs to recompose bits into word

— Control signals often sent on same wire as data increasing protocol
complexity

60

Wireless communication

 Infrared (IR)

— Electronic wave frequencies just below visible light spectrum

— Diode emits infrared light to generate signal

— Infrared transistor detects signal, conducts when exposed to infrared light

— Cheap to build

— Need line of sight, limited range
« Radio frequency (RF)

— Electromagnetic wave frequencies in radio spectrum
— Analog circuitry and antenna needed on both sides of transmission

— Line of sight not needed, transmitter power determines range

61

Error detection and correction

Often part of bus protocol
Error detection: ability of receiver to detect errors during transmission

Error correction: ability of receiver and transmitterto cooperate to correct
problem

— Typically done by acknowledgement/retransmission protocol

Bit error: single bit 1s inverted

Burst of bit error: consecutive bits received incorrectly

Parity: extra bit sent with word used for error detection
— Odd parity: data word plus parity bit contains odd number of 1°’s
— Even parity: data word plus parity bit contains even number of 1’s
— Always detects single bit errors, but not all burst bit errors

Checksum: extra word sent with data packet of multiple words
— e.g., extra word contains XOR sum of all data words in packet

62

Serial protocols: I°C

* I°C (Inter-1C)

Two-wire serial bus protocol developed by Philips Semiconductors nearly
20 years ago

Enables peripheral ICs to communicate using simple communication
hardware

Data transfer rates up to 100 kbits/s and 7-bit addressing possible in
normal mode

3.4 Mbits/s and 10-bit addressing in fast-mode

Common devices capable of interfacing to I>C bus:

« EPROMS, Flash, and some RAM memory, real-time clocks, watchdog
timers, and microcontrollers

63

12C bus structure

SCL <« x >
SDA * 3 2 >
Micro- EEPROM Temp. LCD-
controller (servant) Sensor controller | i
(master) (servant) (servant) <400 pF
Addr=0x01 Addr=0x02 Addr=0x03
SDA SDA SDA SDA
SCL SCL SCL SCL
Start condition Sending 0 Sending 1 Stop condition
From From
Servant receiver
I
D / JAIIANRY \ [V
C
S |A A A A R A D D D A|S |O
T | R 6 5 0 / C 8 7 0 C|T|P
T w K K

Typical read/write cycle

64

Serial protocols: CAN

CAN (Controller area network)

Protocol for real-time applications

Developed by Robert Bosch GmbH

Originally for communication among components of cars
Applications now using CAN include:

« elevator controllers, copiers, telescopes, production-line control systems, and
medical instruments

Data transfer rates up to 1 Mbit/s and 11-bit addressing

Common devices interfacing with CAN:
« 8051-compatible 8592 processor and standalone CAN controllers

Actual physical design of CAN bus not specified in protocol
* Requires devices to transmit/detect dominant and recessive signals to/from bus
* e.g., ‘1’ =dominant, ‘0’ = recessive if single data wire used

» Bus guarantees dominant signal prevails over recessive signal if asserted simultaneously

65

Serial protocols: FireWire

FireWire (a.k.a. I-Link, Lynx, IEEE 1394)

High-performance serial bus developed by Apple Computer Inc.
Designed for interfacing independent electronic components

* e.g., Desktop, scanner
Data transfer rates from 12.5 to 400 Mbits/s, 64-bit addressing
Plug-and-play capabilities
Packet-based layered design structure
Applications using FireWire include:

» disk drives, printers, scanners, cameras
Capable of supporting a LAN similar to Ethernet

* 64-bit address:

— 10 bits for network 1ds, 1023 subnetworks

— 6 bits for node 1ds, each subnetwork can have 63 nodes
— 48 bits for memory address, each node can have 281 terabytes of distinct locations

66

Serial protocols: USB

USB (Universal Serial Bus)

— Easier connection between PC and monitors, printers, digital speakers, modems,
scanners, digital cameras, joysticks, multimedia game equipment
— 2 datarates:
* 12 Mbps for increased bandwidth devices
» 1.5 Mbps for lower-speed devices (joysticks, game pads)
— Tiered star topology can be used
* One USB device (hub) connected to PC

— hub can be embedded in devices like monitor, printer, or keyboard or can be standalone
» Multiple USB devices can be connected to hub
» Up to 127 devices can be connected like this

— USB host controller

« Manages and controls bandwidth and driver software required by each peripheral

* Dynamically allocates power downstream according to devices
connected/disconnected

67

Parallel protocols: PCI Bus

« PCI Bus (Peripheral Component Interconnect)

High performance bus originated at Intel in the early 1990’s

Standard adopted by industry and administered by PCISIG (PCI Special Interest
Group)

Interconnects chips, expansion boards, processor memory subsystems

Data transfer rates of 127.2 to 508.6 Mbits/s and 32-bit addressing
» Later extended to 64-bit while maintaining compatibility with 32-bit schemes
Synchronous bus architecture

Multiplexed data/address lines

68

Parallel protocols: ARM Bus

e ARM Bus

Designed and used internally by ARM Corporation
Interfaces with ARM line of processors
Many IC design companies have own bus protocol
Data transfer rate is a function of clock speed

» If clock speed of bus is X, transfer rate = 16 x X bits/s
32-bit addressing

69

Wireless protocols: IrDA

e IrDA

Protocol suite that supports short-range point-to-pointinfrared data
transmission

Created and promoted by the Infrared Data Association (IrDA)
Data transfer rate of 9.6 kbps and 4 Mbps

IrDA hardware deployed in notebook computers, printers, PDAs, digital
cameras, public phones, cell phones

Lack of suitable drivers has slowed use by applications
Windows 2000/98 now include support
Becoming available on popular embedded OS’s

70

Wireless protocols: Bluetooth

Bluetooth

— New, global standard for wireless connectivity

— Based on low-cost, short-range radio link

— Connection established when within 10 meters of each other
— No line-of-sightrequired

» e.g., Connect to printer in another room

71

Wireless Protocols: IEEE 802.11

IEEE 802.11
— Proposed standard for wireless LANs

— Specifies parameters for PHY and MAC layers of network
 PHY layer

physical layer

handles transmission of data between nodes
provisions for data transfer rates of 1 or 2 Mbps
operates in 2.4 to 2.4835 GHz frequency band (RF)
or 300 to 428,000 GHz (IR)

« MAC layer

medium access control layer
protocol responsible for maintaining order in shared medium

collision avoidance/detection

72

Chapter Summary

Basic protocol concepts
— Actors, direction, time multiplexing, control methods
General-purpose processors
— Port-based or bus-based /O
— I/0O addressing: Memory mapped I/O or Standard 1/0
— Interrupt handling: fixed or vectored
— Direct memory access
Arbitration
— Priority arbiter (fixed/rotating) or daisy chain
Bus hierarchy
Advanced communication
— Parallel vs. serial, wires vs. wireless, error detection/correction, layering
— Serial protocols: I?C, CAN, FireWire, and USB; Parallel: PCI and ARM.
— Serial wireless protocols: IrDA, Bluetooth, and IEEE 802.11.

73

