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Block diagram of Atom dev board
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Outline

• Interfacing basics
• Microprocessor interfacing

– I/O Addressing
– Interrupts
– Direct memory access

• Arbitration
• Hierarchical buses
• Protocols

– Serial
– Parallel
– Wireless
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• Embedded system functionality aspects
– Processing

• Transformation of data
• Implemented using processors

– Storage 
• Retention of data
• Implemented using memory

– Communication
• Transfer of data between processors and memories
• Implemented using buses
• Called interfacing

Introduction
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A simple bus

bus structure

Processor Memory
rd'/wr

enable

addr[0-11]

data[0-7]

bus

• Wires:
– Uni-directional or bi-directional
– One line may represent multiple wires

• Bus
– Set of wires with a single function

• Address bus, data bus

– Or, entire collection of wires
• Address, data and control
• Associated protocol: rules for 

communication
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Ports

• Conducting device on periphery
• Connects bus to processor or memory
• Often referred to as a pin

– Actual pins on periphery of IC package that plug into socket on printed-circuit board
– Sometimes metallic balls instead of pins
– Today, metal “pads” connecting processors and memories within single IC

• Single wire or set of wires with single function
– E.g., 12-wire address port

bus

Processor Memoryrd'/wr

enable

addr[0-11]

data[0-7]

port
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Timing Diagrams

write protocol

rd'/wr

enable

addr

data

tsetup twrite

• Most common method for describing a 
communication protocol

• Time proceeds to the right on x-axis
• Control signal: low or high

– May be active low (e.g., go’, /go, or go_L)
– Use terms assert (active) and deassert
– Asserting go’ means go=0

• Data signal: not valid or valid
• Protocol may have subprotocols

– Called bus cycle, e.g., read and write
– Each may be several clock cycles

• Read example
– rd’/wr set low,address placed on addr for at 

least tsetup time before enable asserted, enable 
triggers memory to place data on data wires 
by time tread

read protocol

rd'/wr

enable

addr

data

tsetup tread
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Basic protocol concepts

• Actor: master initiates, servant (slave) respond
• Direction: sender, receiver
• Addresses: special kind of data

– Specifies a location in memory, a peripheral, or a register within a peripheral
• Time multiplexing

– Share a single set of wires for multiple pieces of data
– Saves wires at expense of time

data serializing address/data muxing

Master Servantreq

data(8)

data(15:0) data(15:0)

mux demux

Master Servantreq

addr/data

req

addr/data

addr data

mux demux

addr data

req

data 15:8 7:0 addr data

Time-multiplexed data transfer
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Basic protocol concepts: control methods

Strobe protocol Handshake protocol

Master Servantreq

ack

req

data

Master Servant

data

req

data

taccess

req

data

ack

1. Master asserts req to receive data
2. Servant puts data on bus within time taccess

1

2

3

4

3. Master receives data and deasserts req
4. Servant ready for next request

1

2

3

4

1. Master asserts req to receive data
2. Servant puts data on bus and asserts ack
3. Master receives data and deasserts req
4. Servant ready for next request
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A strobe/handshake compromise

Fast-response case

req

data

wait

1 3

4

1. Master asserts req to receive data
2. Servant puts data on bus within time taccess

3. Master receives data and deasserts req
4. Servant ready for next request

2

Slow-response case

Master Servantreq

wait

data

req

data

wait

1

3

4

1. Master asserts req to receive data
2. Servant can't put data within taccess, asserts wait ack
3. Servant puts data on bus and deasserts wait
4. Master receives data and deasserts req

2

taccess taccess

5. Servant ready for next request

5

(wait line is unused)
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Microprocessor interfacing: I/O addressing

• A microprocessor communicates with other devices 
using some of its pins
– Port-based I/O (parallel I/O)

• Processor has one or more N-bit ports
• Processor’s software reads and writes a port just like a register
• E.g., P0 = 0xFF;  v = P1.2;  -- P0 and P1 are 8-bit ports

– Bus-based I/O
• Processor has address, data and control ports that form a single bus
• Communication protocol is built into the processor
• A single instruction carries out the read or write protocol on the bus
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Compromises/extensions

• Parallel I/O peripheral
– When processor only supports bus-based I/O but 

parallel I/O needed
– Each port on peripheral connected to a register 

within peripheral that is read/written by the 
processor

• Extended parallel I/O
– When processor supports port-based I/O but 

more ports needed
– One or more processor ports interface with 

parallel I/O peripheral extending total number of 
ports available for I/O

– e.g., extending 4 ports to 6 ports in figure

Processor Memory

Parallel I/O peripheral

Port A

System bus

Port CPort B

Adding parallel I/O to a bus-
based I/O processor

Processor

Parallel I/O peripheral

Port A Port B Port C

Port 0
Port 1
Port 2
Port 3

Extended parallel I/O
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Types of bus-based I/O: 
memory-mapped I/O and standard I/O

• Processor talks to both memory and peripherals using 
same bus – two ways to talk to peripherals
– Memory-mapped I/O

• Peripheral registers occupy addresses in same address space as memory
• e.g., Bus has 16-bit address

– lower 32K addresses may correspond to memory
– upper 32k addresses may correspond to peripherals

– Standard I/O (I/O-mapped I/O)
• Additional pin (M/IO) on bus indicates whether a memory or peripheral 

access
• e.g., Bus has 16-bit address

– all 64K addresses correspond to memory when M/IO set to 0
– all 64K addresses correspond to peripherals when M/IO set to 1
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Memory-mapped I/O vs. Standard I/O

• Memory-mapped I/O
– Requires no special instructions

• Assembly instructions involving memory like MOV and ADD work 
with peripherals as well

• Standard I/O requires special instructions (e.g., IN, OUT) to move 
data between peripheral registers and memory

• Standard I/O
– No loss of memory addresses to peripherals
– Simpler address decoding logic in peripherals possible

• When number of peripherals much smaller than address space then 
high-order address bits can be ignored

– smaller and/or faster comparators
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A basic memory protocol

• Interfacing an 8051 to external memory
– Ports P0 and P2 support port-based I/O when 8051 internal memory 

being used
– Those ports serve as data/address buses when external memory is being 

used
– 16-bit address and 8-bit data are time multiplexed; low 8-bits of address 

must therefore be latched with aid of ALE signal

P0

P2

Q

ALE

/RD

Adr. 7..0

Adr. 15…8

Adr. 7…0

Data

8051

74373

P0

HM6264

D Q

8
P2

ALE G

A<0...15>
D<0...7>

/OE
/WE

/CS

/WR
/RD

/CS1

/PSEN

CS2

27C256

/CS

A<0...14>

D<0...7>

/OE
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A more complex memory protocol

• Generates control signals to drive the TC55V2325FF memory chip in burst mode
– Addr0 is the starting address input to device
– GO is enable/disable input to device

Specification for a single 
read operation

CLK

/ADSP

/ADSC

/ADV

addr <15…0>
/WE

/OE

/CS1 and /CS2

CS3

data<31…0>

ADSP=1,
ADSC=1

ADV=1, OE=1, 
Addr = ‘Z’

ADSP=1,
ADSC=0

ADV=1, OE=1, 
Addr = ‘Z’

ADSP=1,
ADSC=1

ADV=0, OE=0, 
Addr = ‘Z’

GO=1

GO=0 

Data is 
ready 
here!

GO=1

GO=1

GO=0 

GO=0 

S0 S1

S2 S3

ADSP=0,
ADSC=0

ADV=0, OE=1, 
Addr = Addr0

GO=0
GO=1

FSM description
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Microprocessor interfacing: interrupts

• Suppose a peripheral intermittently receives data, 
which must be serviced by the processor
– The processor can poll the peripheral regularly to see if data 

has arrived – wasteful
– The peripheral can interrupt the processor when it has data

• Requires an extra pin or pins: Int
– If Int is 1, processor suspends current program, jumps to an 

Interrupt Service Routine, or ISR
– Known as interrupt-driven I/O
– Essentially, “polling” of the interrupt pin is built-into the 

hardware, so no extra time!
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Microprocessor interfacing: interrupts

• What is the address (interrupt address vector) of the 
ISR?
– Fixed interrupt

• Address built into microprocessor, cannot be changed
• Either ISR stored at address or a jump to actual ISR stored if not 

enough bytes available

– Vectored interrupt
• Peripheral must provide the address
• Common when microprocessor has multiple peripherals connected 

by a system bus

– Compromise: interrupt address table
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Interrupt-driven I/O using fixed ISR location

1(a): µP is executing its main program. 1(b): P1 receives input data in a 
register with address 0x8000.

2: P1 asserts Int to request 
servicing by the 
microprocessor.3: After completing instruction at 100, µP 

sees Int asserted, saves the PC’s value of 
100, and sets PC to the ISR fixed location 
of 16. 

4(a): The ISR reads data from 0x8000, 
modifies the data, and writes the resulting 
data to 0x8001. 

5: The ISR returns, thus restoring PC to 
100+1=101, where µP resumes executing.

4(b): After being read, P1 de-
asserts Int.

Tim
e
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Interrupt-driven I/O using fixed ISR location 

1(a): µP is executing its main program

1(b): P1 receives input data in a register 
with address 0x8000.

µP

P1 P2

System bus

Int

Data memory

0x8000 0x8001

16: MOV R0, 0x8000 
17: # modifies R0 
18: MOV 0x8001, R0 
19: RETI  # ISR return

ISR 

100:
101:

instruction 
instruction 

...
Main program

...

Program memory

PC
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Interrupt-driven I/O using fixed ISR location 

2: P1 asserts Int to request servicing by 
the microprocessor

µP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000 
17: # modifies R0 
18: MOV 0x8001, R0 
19: RETI  # ISR return

ISR 

100:
101:

instruction 
instruction 

...
Main program

...

Program memory

PC

IntInt
1
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Interrupt-driven I/O using fixed ISR location 

3: After completing instruction at 100, 
µP sees Int asserted, saves the PC’s 
value of 100, and sets PC to the ISR 
fixed location of 16.

µP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000 
17: # modifies R0 
18: MOV 0x8001, R0 
19: RETI  # ISR return

ISR 

100:
101:

instruction 
instruction 

...
Main program

...

Program memory

PC

Int

100100
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µP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0
19: RETI  # ISR return

ISR 

100:
101:

instruction
instruction 

...
Main program

...

Program memory

PC

Int

Interrupt-driven I/O using fixed ISR location 

4(a): The ISR reads data from 0x8000, 
modifies the data, and writes the 
resulting data to 0x8001.

4(b): After being read, P1 deasserts Int.

100

Int
0

P1

System bus

P1

0x8000

P2

0x8001
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Interrupt-driven I/O using fixed ISR location 

5: The ISR returns, thus restoring PC to 
100+1=101, where µP resumes 
executing.

µP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0
19: RETI  # ISR return

ISR 

100:
101:

instruction
instruction 

...
Main program

...

Program memory

PC

Int

100100
+1

16: MOV R0, 0x8000 
17: # modifies R0 
18: MOV 0x8001, R0 
19: RETI  # ISR return

ISR 

100:
101:

instruction 
instruction 

...
Main program

...

100
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Interrupt-driven I/O using vectored interrupt

1(a): µP is executing its main program. 1(b): P1 receives input data in a 
register with address 0x8000.

2: P1 asserts Int to request servicing 
by the microprocessor.3: After completing instruction at 100, µP sees Int

asserted, saves the PC’s value of 100, and asserts 
Inta.

5(a): µP jumps to the address on the bus (16). 
The ISR there reads data from 0x8000, modifies 
the data, and writes the resulting data to 0x8001. 

6: The ISR returns, thus restoring PC to 
100+1=101, where µP resumes executing.

5(b): After being read, P1 deasserts 
Int.

Tim
e

4: P1 detects Inta and puts interrupt 
address vector 16 on the data bus.
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Interrupt-driven I/O using vectored interrupt 

µP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000 
17: # modifies R0 
18: MOV 0x8001, R0 
19: RETI  # ISR return

ISR 

100:
101:

instruction 
instruction 

...
Main program

...

Program memory

PC

100

Int
Inta

16

1(a): P is executing its main program

1(b): P1 receives input data in a register 
with address 0x8000.
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Interrupt-driven I/O using vectored interrupt 

µP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000 
17: # modifies R0 
18: MOV 0x8001, R0 
19: RETI  # ISR return

ISR 

100:
101:

instruction 
instruction 

...
Main program

...

Program memory

PC

100

Inta

16

2: P1 asserts Int to request servicing by the 
microprocessor

Int
1

Int
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Interrupt-driven I/O using vectored interrupt 

3: After completing instruction at 100, µP 
sees Int asserted, saves the PC’s value of 
100, and asserts Inta

µP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000 
17: # modifies R0 
18: MOV 0x8001, R0 
19: RETI  # ISR return

ISR 

100:
101:

instruction 
instruction 

...
Main program

...

Program memory

PC
Int

Inta

16

100100

1
Inta
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µP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000 
17: # modifies R0 
18: MOV 0x8001, R0 
19: RETI  # ISR return

ISR 

100:
101:

instruction 
instruction 

...
Main program

...

Program memory

PC
Int

Inta

16

Interrupt-driven I/O using vectored interrupt 

100

4: P1 detects Inta and puts interrupt 
address vector 16 on the data bus

16

16

System bus
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Interrupt-driven I/O using vectored interrupt 

5(a): PC jumps to the address on the bus 
(16).  The ISR there reads data from 
0x8000, modifies the data, and writes the 
resulting data to 0x8001.

5(b): After being read, P1 deasserts Int.

µP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0 
18: MOV 0x8001, R0
19: RETI  # ISR return

ISR 

100:
101:

instruction 
instruction 

...
Main program

...

Program memory

PC
Int

Inta

16

100

16: MOV R0, 0x8000 
17: # modifies R0 
18: MOV 0x8001, R0 
19: RETI  # ISR return

ISR 

100:
101:

instruction 
instruction 

...
Main program

...
P1 P2

0x8000 0x8001

System bus

0
Int
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Interrupt-driven I/O using vectored interrupt 

6: The ISR returns, thus restoring the PC to 
100+1=101, where the µP resumes

µP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0
19: RETI  # ISR return

ISR 

100:
101:

instruction
instruction 

...
Main program

...

Program memory

PC

Int

100100
+1

16: MOV R0, 0x8000 
17: # modifies R0 
18: MOV 0x8001, R0 
19: RETI  # ISR return

ISR 

100:
101:

instruction 
instruction 

...
Main program

...

100
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Interrupt address table

• Compromise between fixed and vectored interrupts
– One interrupt pin
– Table in memory holding ISR addresses (maybe 256 words)
– Peripheral doesn’t provide ISR address, but rather index into 

table
• Fewer bits are sent by the peripheral
• Can move ISR location without changing peripheral
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Additional interrupt issues

• Maskable vs. non-maskable interrupts
– Maskable: programmer can set bit that causes processor to ignore 

interrupt
• Important when in the middle of time-critical code

– Non-maskable: a separate interrupt pin that can’t be masked
• Typically reserved for drastic situations, like power failure requiring 

immediate backup of data to non-volatile memory

• Jump to ISR
– Some microprocessors treat jump same as call of any subroutine

• Complete state saved (PC, registers) – may take hundreds of cycles
– Others only save partial state, like PC only

• Thus, ISR must not modify registers, or else must save them first
• Assembly-language programmer must be aware of which registers stored
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Direct memory access

• Buffering
– Temporarily storing data in memory before processing
– Data accumulated in peripherals commonly buffered

• Microprocessor could handle this with ISR
– Storing and restoring microprocessor state inefficient
– Regular program must wait

• DMA controller more efficient
– Separate single-purpose processor
– Microprocessor relinquishes control of system bus to DMA controller
– Microprocessor can meanwhile execute its regular program

• No inefficient storing and restoring state due to ISR call
• Regular program need not wait unless it requires the system bus

– Harvard archictecture – processor can fetch and execute instructions as long as 
they don’t access data memory – if they do, processor stalls
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Peripheral to memory transfer without DMA, 
using vectored interrupt

1(a): µP is executing its main program. 1(b): P1 receives input data in a register 
with address 0x8000.

2: P1 asserts Int to request servicing by 
the microprocessor.3: After completing instruction at 100, µP sees Int

asserted, saves the PC’s value of 100, and asserts Inta.

5(a): µP jumps to the address on the bus (16). The ISR 
there reads data from 0x8000 and then writes it to 
0x0001, which is in memory. 

6: The ISR returns, thus restoring PC to 100+1=101, 
where µP resumes executing.

5(b): After being read, P1 deasserts Int.

Tim
e

4: P1 detects Inta and puts interrupt 
address vector 16 on the data bus.
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Peripheral to memory transfer without DMA, 
using vectored interrupt

1(a): µP is executing its main program

1(b): P1 receives input data in a register 
with address 0x8000.

µP

P1

System bus

0x8000

16: MOV R0, 0x8000 
17: # modifies R0 
18: MOV 0x0001, R0 
19: RETI  # ISR return

ISR 

100:
101: instruction 

...
Main program

...

Program memory

PC

Data memory
0x0000 0x0001

16Int
Inta

instruction 
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Peripheral to memory transfer without DMA, 
using vectored interrupt 

2: P1 asserts Int to request servicing by the 
microprocessor

µP

P1

System bus

0x8000

16: MOV R0, 0x8000 
17: # modifies R0 
18: MOV 0x0001, R0 
19: RETI  # ISR return

ISR 

100:
101: instruction 

...
Main program

...

Program memory

PC

Data memory
0x0000 0x0001

16Int
Inta

instruction 
1

Int

100
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Peripheral to memory transfer without DMA, 
using vectored interrupt 

3: After completing instruction at 100, µP 
sees Int asserted, saves the PC’s value of 
100, and asserts Inta.

µP

P1

System bus

0x8000

16: MOV R0, 0x8000 
17: # modifies R0 
18: MOV 0x0001, R0 
19: RETI  # ISR return

ISR 

100:
101: instruction 

...
Main program

...

Program memory

PC

Data memory
0x0000 0x0001

16Int
Inta

instruction 

100

Inta
1

100
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Peripheral to memory transfer without DMA, 
using vectored interrupt (cont’)

4: P1 detects Inta and puts interrupt address 
vector 16 on the data bus.

µP

P1

System bus

0x8000

16: MOV R0, 0x8000 
17: # modifies R0 
18: MOV 0x0001, R0 
19: RETI  # ISR return

ISR 

100:
101: instruction 

...
Main program

...

Program memory

PC

Data memory
0x0000 0x0001

16Int
Inta

instruction 

100

16

16 System bus
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µP

P1

System bus

0x8000

16: MOV R0, 0x8000 
17: # modifies R0 
18: MOV 0x8001, R0 
19: RETI  # ISR return

ISR 

100:
101: instruction 

...
Main program

...

Program memory

PC

Data memory
0x0000 0x0001

16Int
instruction 

Inta

Peripheral to memory transfer without DMA, 
using vectored interrupt (cont’)

5(a): µP jumps to the address on the bus (16).  
The ISR there reads data from 0x8000 and 
then writes it to 0x0001, which is in memory.

5(b): After being read, P1 de-asserts Int.

100

16: MOV R0, 0x8000 
17: # modifies R0
18: MOV 0x8001, R0
19:

ISR 

100:
101: instruction 

...
Main program

...
instruction 

RETI  # ISR return
System bus

16: MOV R0, 0x8000 
17: # modifies R0
18: MOV 0x0001, R0
19:

ISR 

100:
101: instruction 

...
Main program

...
instruction 

RETI  # ISR return

0x8000

P1

Data memory
0x0001

Int
0
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µP

P1

System bus

0x8000

16: MOV R0, 0x8000 
17: # modifies R0 
18: MOV 0x8001, R0 
19: RETI  # ISR return

ISR 

100:
101: instruction 

...
Main program

...

Program memory

PC

Data memory
0x0000 0x0001

16Int
instruction 

Inta

Peripheral to memory transfer without DMA, 
using vectored interrupt (cont’)

6: The ISR returns, thus restoring PC to 
100+1=101, where µP resumes executing.

100100
+1

16: MOV R0, 0x8000 
17: # modifies R0 
18: MOV 0x0001, R0 
19:

ISR 

100:
101: instruction 

...
Main program

...
instruction 

RETI  # ISR return
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Peripheral to memory transfer with DMA

1(a): µP is executing its main program. 
It has already configured the DMA ctrl
registers.

1(b): P1 receives input 
data in a register with 
address 0x8000.

2: P1 asserts req to request 
servicing by DMA ctrl.

7(b): P1 de-asserts req.

Tim
e

3: DMA ctrl asserts Dreq
to request control of 
system bus.

4: After executing instruction 100, µP 
sees Dreq asserted, releases the system 
bus, asserts Dack, and resumes 
execution. µP stalls only if it needs the 
system bus to continue executing.

5: (a) DMA ctrl asserts 
ack (b) reads data from 
0x8000 and (b) writes that 
data to 0x0001. 

6:. DMA de-asserts Dreq
and ack completing 
handshake with P1. 

7(a): µP de-asserts Dack and resumes 
control of the bus.
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Peripheral to memory transfer with DMA 
(cont’)

1(a): µP is executing its main program. It has 
already configured the DMA ctrl registers

1(b): P1 receives input data in a register with 
address 0x8000.

Data memoryµP

DMA ctrl P1

System bus

0x8000101:
instruction 
instruction 

...
Main program

...

Program memory

PC

100

Dreq
Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack
req
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Peripheral to memory transfer with DMA 
(cont’)

2: P1 asserts req to request servicing
by DMA ctrl.

3: DMA ctrl asserts Dreq to request control of 
system bus

Data memoryµP

DMA ctrl P1

System bus

0x8000101:
instruction 
instruction 

...
Main program

...

Program memory

PC

100

Dreq
Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack
reqreq

1

P1
Dreq

1

DMA ctrl P1
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Peripheral to memory transfer with DMA 
(cont’)

4: After executing instruction 100, µP sees 
Dreq asserted, releases the system bus, asserts 
Dack, and resumes execution, µP stalls only if 
it needs the system bus to continue executing.

Data memoryµP

DMA ctrl P1

System bus

0x8000101:
instruction 
instruction 

...
Main program

...

Program memory

PC

100

Dreq
Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack
req

Dack
1
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Data memoryµP

DMA ctrl P1

System bus

0x8000101:
instruction 
instruction 

...
Main program

...

Program memory

PC

100

Dreq
Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack
req

Data memory

DMA ctrl P1

System bus

0x8000

0x0000 0x0001

0x0001

0x8000

ack
req

Peripheral to memory transfer with DMA 
(cont’)

5: DMA ctrl (a) asserts ack, (b) reads data 
from 0x8000, and (c) writes that data to 
0x0001.

(Meanwhile, processor still executing if not 
stalled!)

ack
1
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Peripheral to memory transfer with DMA 
(cont’)

6: DMA de-asserts Dreq and ack completing 
the handshake with P1.

Data memoryµP

DMA ctrl P1

System bus

0x8000101:
instruction 
instruction 

...
Main program

...

Program memory

PC

100

Dreq
Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack
req
ack

0Dreq
0
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Arbitration: Priority arbiter

• Consider the situation where multiple peripherals request service from single 
resource (e.g., microprocessor, DMA controller) simultaneously - which gets 
serviced first?

• Priority arbiter
– Single-purpose processor
– Peripherals make requests to arbiter, arbiter makes requests to resource
– Arbiter connected to system bus for configuration only

Micro-
processor

Priority 
arbiter

Peripheral1

System bus

Int
3

5
7

Inta
Peripheral2

Ireq1

Iack2

Iack1
Ireq2

2 2

6



49

Arbitration using a priority arbiter

1. 1. Microprocessor is executing its program.
2. 2. Peripheral1 needs servicing so asserts Ireq1. Peripheral2 also needs servicing so asserts Ireq2. 
3. 3. Priority arbiter sees at least one Ireq input asserted, so asserts Int.
4. 4. Microprocessor stops executing its program and stores its state.
5. 5. Microprocessor asserts Inta.
6. 6. Priority arbiter asserts Iack1 to acknowledge Peripheral1.
7. 7. Peripheral1 puts its interrupt address vector on the system bus
8. 8. Microprocessor jumps to the address of ISR read from data bus, ISR executes and returns
9. (and completes handshake with arbiter).
10. 9. Microprocessor resumes executing its program. 

Micro-
processor

Priority 
arbiter

Peripheral1

System bus

Int
3

5
7

Inta
Peripheral2

Ireq1

Iack2

Iack1
Ireq2

2 2

6
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Arbitration: Priority arbiter

• Types of priority
• Fixed priority

– each peripheral has unique rank
– highest rank chosen first with simultaneous requests
– preferred when clear difference in rank between peripherals

• Rotating priority (round-robin)
– priority changed based on history of servicing
– better distribution of servicing especially among peripherals with 

similar priority demands
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Arbitration: Daisy-chain arbitration

• Arbitration done by peripherals
– Built into peripheral or external logic added

• req input and ack output added to each peripheral

• Peripherals connected to each other in daisy-chain manner
– One peripheral connected to resource, all others connected “upstream”
– Peripheral’s req flows “downstream” to resource, resource’s ack flows 

“upstream” to requesting peripheral
– Closest peripheral has highest priority

µP
System bus

Int

Inta
Peripheral1

Ack_in Ack_out
Req_out Req_in

Peripheral2

Ack_in Ack_out
Req_out Req_in

Daisy-chain aware peripherals

0
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Arbitration: Daisy-chain arbitration

• Pros/cons
– Easy to add/remove peripheral - no system redesign needed
– Does not support rotating priority
– One broken peripheral can cause loss of access to other 

peripherals

µP
System bus

Int

Inta
Peripheral1

Ack_in Ack_out
Req_out Req_in

Peripheral2

Ack_in Ack_out
Req_out Req_in

Daisy-chain aware peripherals

0

Micro-
processor

Priority 
arbiter

Peripheral
1

System bus

Int

Inta
Peripheral

2
Ireq1

Iack2

Iack1
Ireq2
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Network-oriented arbitration

• When multiple microprocessors share a bus 
(sometimes called a network)
– Arbitration typically built into bus protocol
– Separate processors may try to write simultaneously causing 

collisions
• Data must be resent
• Don’t want to start sending again at same time

– statistical methods can be used to reduce chances

• Typically used for connecting multiple distant chips
– Trend – use to connect multiple on-chip processors
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Jump Table

M
em

or
y 

B
us

Processor

Peripheral 1 Peripheral 2

Priority Arbiter

MASK
IDX0
IDX1

ENABLE

DATA

MEMORY

void main() {
InitializePeripherals();
for(;;) {} // main program goes here

}

unsigned char ARBITER_MASK_REG _at_ 0xfff0;
unsigned char ARBITER_CH0_INDEX_REG _at_ 0xfff1;
unsigned char ARBITER_CH1_INDEX_REG _at_ 0xfff2;
unsigned char ARBITER_ENABLE_REG _at_ 0xfff3;
unsigned char PERIPHERAL1_DATA_REG _at_ 0xffe0;
unsigned char PERIPHERAL2_DATA_REG _at_ 0xffe1;
unsigned void* INTERRUPT_LOOKUP_TABLE[256] _at_ 0x0100;

void Peripheral1_ISR(void) {
unsigned char data;
data = PERIPHERAL1_DATA_REG;
// do something with the data

}
void Peripheral2_ISR(void) {

unsigned char data;
data = PERIPHERAL2_DATA_REG;
// do something with the data

}
void InitializePeripherals(void) {

ARBITER_MASK_REG = 0x03; // enable both channels
ARBITER_CH0_INDEX_REG = 13;
ARBITER_CH1_INDEX_REG = 17;
INTERRUPT_LOOKUP_TABLE[13] = (void*)Peripheral1_ISR;
INTERRUPT_LOOKUP_TABLE[17] = (void*)Peripheral2_ISR;
ARBITER_ENABLE_REG = 1;

}

Example: Vectored interrupt using
an interrupt table

• Fixed priority: i.e., Peripheral1 has highest priority
• Keyword “_at_” followed by memory address forces 

compiler to place variables in specific memory 
locations

– e.g., memory-mapped registers in arbiter, peripherals

• A peripheral’s index into interrupt table is sent to 
memory-mapped register in arbiter

• Peripherals receive external data and raise interrupt
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Intel 8237 DMA controller

Intel 8237D[7..0]
A[19..0]

ALE
MEMR
MEMW

IOR
IOW

HLDA
HRQ

REQ 0
ACK 0

REQ 1
ACK 1

REQ 2
ACK 2

REQ 3
ACK 3

Signal Description

D[7..0] These wires are connected to the system bus (ISA) and are used by the 
microprocessor to write to the internal registers of the 8237.

A[19..0] These wires are connected to the system bus (ISA) and are used by the DMA to 
issue the memory location where the transferred data is to be written to.  The 8237 is 
also addressed by the micro-processor through the lower bits of these address lines.ALE* This is the address latch enable signal.  The 8237 use this signal when driving the 
system bus (ISA).

MEMR* This is the memory write signal issued by the 8237 when driving the system bus 
(ISA). 

MEMW* This is the memory read signal issued by the 8237 when driving the system bus (ISA). 

IOR* This is the I/O device read signal issued by the 8237 when driving the system bus 
(ISA) in order to read a byte from an I/O device

IOW* This is the I/O device write signal issued by the 8237 when driving the system bus 
(ISA) in order to write a byte to an I/O device. 

HLDA This signal (hold acknowledge) is asserted by the microprocessor to signal that it has 
relinquished the system bus (ISA).

HRQ This signal (hold request) is asserted by the 8237 to signal to the microprocessor a 
request to relinquish the system bus (ISA).

REQ 0,1,2,3 An attached device to one of these channels asserts this signal to request a DMA 
transfer.

ACK 0,1,2,3 The 8237 asserts this signal to grant a DMA transfer to an attached device to one of 
these channels.

*See the ISA bus description in this chapter for complete details.
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Intel 8259 programmable priority controller

Intel 8259D[7..0]
A[0..0]

RD
WR
INT

INTA

CAS[2..0]
SP/EN

IR0
IR1
IR2
IR3
IR4
IR5
IR6
IR7

Signal Description
D[7..0] These wires are connected to the system bus and are used by the microprocessor to 

write or read the internal registers of the 8259.
A[0..0] This pin actis in cunjunction with WR/RD signals.  It is used by the 8259 to decipher 

various command words the microprocessor writes and status the microprocessor 
wishes to read.

WR When this write signal is asserted, the 8259 accepts the command on the data line, i.e., 
the microprocessor writes to the 8259 by placing a command on the data lines and 
asserting this signal.

RD When this read signal is asserted, the 8259 provides on the data lines its status, i.e., the 
microprocessor reads the status of the 8259 by asserting this signal and reading the data 
lines. 

INT This signal is asserted whenever a valid interrupt request is received by the 8259, i.e., it 
is used to interrupt the microprocessor.

INTA This signal, is used to enable 8259 interrupt-vector data onto the data bus by a sequence 
of interrupt acknowledge pulses issued by the microprocessor.

IR 
0,1,2,3,4,5,6,7

An interrupt request is executed by a peripheral device when one of these signals is 
asserted.

CAS[2..0] These are cascade signals to enable multiple 8259 chips to be chained together.

SP/EN This function is used in conjunction with the CAS signals for cascading purposes.



57

Multilevel bus architectures

• Processor-local bus
– High speed, wide, most frequent 

communication
– Connects microprocessor, cache, memory 

controllers, etc.
• Peripheral bus

– Lower speed, narrower, less frequent 
communication

– Typically industry standard bus (e.g., PCI) 
for portability

Processor-local bus

Micro-
processor

Cache Memory
controller

DMA
controller

BridgePeripheralPeripheralPeripheral

Peripheral bus

• Don’t want one bus for all communication
– Peripherals would need high-speed, processor-specific bus interface

• excess gates, power consumption, and cost; less portable
– Too many peripherals slows down bus

• Bridge
– Single-purpose processor converts communication between busses
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Advanced communication principles

• Layering
– Break complexity of communication protocol into pieces easier to design and 

understand
– Lower levels provide services to higher level

• Lower level might work with bits while higher level might work with packets of data
– Physical layer

• Lowest level in hierarchy
• Medium to carry data from one actor (device or node) to another

• Parallel communication
– Physical layer capable of transporting multiple bits of data

• Serial communication
– Physical layer transports one bit of data at a time

• Wireless communication
– No physical connection needed for transport at physical layer
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Parallel communication

• Multiple data, control, and possibly power wires
– One bit per wire

• High data throughput with short distances
• Typically used when connecting devices on same IC or same 

circuit board
– Bus must be kept short

• long parallel wires result in high capacitance values which requires more 
time to charge/discharge

• Data misalignment between wires increases as length increases

• Higher cost, bulky
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Serial communication

• Single data wire, possibly also control and power wires
• Words transmitted one bit at a time
• Higher data throughput with long distances

– Less average capacitance, so more bits per unit of time

• Cheaper, less bulky
• More complex interfacing logic and communication protocol

– Sender needs to decompose word into bits
– Receiver needs to recompose bits into word
– Control signals often sent on same wire as data increasing protocol 

complexity
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Wireless communication

• Infrared (IR)
– Electronic wave frequencies just below visible light spectrum
– Diode emits infrared light to generate signal
– Infrared transistor detects signal, conducts when exposed to infrared light
– Cheap to build

– Need line of sight, limited range

• Radio frequency (RF)
– Electromagnetic wave frequencies in radio spectrum
– Analog circuitry and antenna needed on both sides of transmission
– Line of sight not needed, transmitter power determines range
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Error detection and correction

• Often part of bus protocol
• Error detection: ability of receiver to detect errors during transmission
• Error correction: ability of receiver and transmitter to cooperate to correct 

problem
– Typically done by acknowledgement/retransmission protocol

• Bit error: single bit is inverted
• Burst of bit error: consecutive bits received incorrectly
• Parity: extra bit sent with word used for error detection

– Odd parity: data word plus parity bit contains odd number of 1’s
– Even parity: data word plus parity bit contains even number of 1’s
– Always detects single bit errors, but not all burst bit errors

• Checksum: extra word sent with data packet of multiple words
– e.g., extra word contains XOR sum of all data words in packet
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Serial protocols: I2C

• I2C (Inter-IC)
– Two-wire serial bus protocol developed by Philips Semiconductors nearly 

20 years ago
– Enables peripheral ICs to communicate using simple communication 

hardware
– Data transfer rates up to 100 kbits/s and 7-bit addressing possible in 

normal mode
– 3.4 Mbits/s and 10-bit addressing in fast-mode
– Common devices capable of interfacing to I2C bus:

• EPROMS, Flash, and some RAM memory, real-time clocks, watchdog 
timers, and microcontrollers
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I2C bus structure

SCL
SDA

Micro-
controller
(master)

EEPROM
(servant)

Temp. 
Sensor
(servant)

LCD-
controller
(servant) < 400 pF

Addr=0x01     Addr=0x02        Addr=0x03

D
C

S
T

A
R
T

A
6

A
5

A
0

R
/
w

A
C
K

D
8

D
7

D
0

A
C
K

S
T

O
P

From 
Servant

From 
receiver

Typical read/write cycle

SDA

SCL

SDA

SCL

SDA

SCL

SDA

SCL

Start condition Sending 0 Sending 1 Stop condition
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Serial protocols: CAN

• CAN (Controller area network)
– Protocol for real-time applications 
– Developed by Robert Bosch GmbH
– Originally for communication among components of cars
– Applications now using CAN include:

• elevator controllers, copiers, telescopes, production-line control systems, and 
medical instruments

– Data transfer rates up to 1 Mbit/s and 11-bit addressing
– Common devices interfacing with CAN:

• 8051-compatible 8592 processor and standalone CAN controllers
– Actual physical design of CAN bus not specified in protocol

• Requires devices to transmit/detect dominant and recessive signals to/from bus
• e.g., ‘1’ = dominant, ‘0’ = recessive if single data wire used
• Bus guarantees dominant signal prevails over recessive signal if asserted simultaneously
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Serial protocols: FireWire

• FireWire (a.k.a. I-Link, Lynx, IEEE 1394)
– High-performance serial bus developed by Apple Computer Inc.
– Designed for interfacing independent electronic components

• e.g., Desktop, scanner
– Data transfer rates from 12.5 to 400 Mbits/s, 64-bit addressing
– Plug-and-play capabilities
– Packet-based layered design structure
– Applications using FireWire include:

• disk drives, printers, scanners, cameras
– Capable of supporting a LAN similar to Ethernet

• 64-bit address: 
– 10 bits for network ids,  1023 subnetworks
– 6 bits for node ids, each subnetwork can have 63 nodes
– 48 bits for memory address, each node can have 281 terabytes of distinct locations
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Serial protocols: USB

• USB (Universal Serial Bus)
– Easier connection between PC and monitors, printers, digital speakers, modems, 

scanners, digital cameras, joysticks, multimedia game equipment
– 2 data rates:

• 12 Mbps for increased bandwidth devices
• 1.5 Mbps for lower-speed devices (joysticks, game pads)

– Tiered star topology can be used
• One USB device (hub) connected to PC

– hub can be embedded in devices like monitor, printer, or keyboard or can be standalone

• Multiple USB devices can be connected to hub
• Up to 127 devices can be connected like this

– USB host controller 
• Manages and controls bandwidth and driver software required by each peripheral
• Dynamically allocates power downstream according to devices 

connected/disconnected
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Parallel protocols: PCI Bus

• PCI Bus (Peripheral Component Interconnect)
– High performance bus originated at Intel in the early 1990’s
– Standard adopted by industry and administered by PCISIG (PCI Special Interest 

Group)
– Interconnects chips, expansion boards, processor memory subsystems
– Data transfer rates of 127.2 to 508.6 Mbits/s and 32-bit addressing

• Later extended to 64-bit while maintaining compatibility with 32-bit schemes
– Synchronous bus architecture
– Multiplexed data/address lines
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Parallel protocols: ARM Bus

• ARM Bus
– Designed and used internally by ARM Corporation
– Interfaces with ARM line of processors
– Many IC design companies have own bus protocol
– Data transfer rate is a function of clock speed

• If clock speed of bus is X, transfer rate = 16 x X bits/s 
– 32-bit addressing
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Wireless protocols: IrDA

• IrDA
– Protocol suite that supports short-range point-to-point infrared data 

transmission
– Created and promoted by the Infrared Data Association (IrDA)
– Data transfer rate of 9.6 kbps and 4 Mbps
– IrDA hardware deployed in notebook computers, printers, PDAs, digital 

cameras, public phones, cell phones
– Lack of suitable drivers has slowed use by applications
– Windows 2000/98 now include support
– Becoming available on popular embedded OS’s
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Wireless protocols: Bluetooth

• Bluetooth
– New, global standard for wireless connectivity
– Based on low-cost, short-range radio link
– Connection established when within 10 meters of each other
– No line-of-sight required

• e.g., Connect to printer in another room
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Wireless Protocols: IEEE 802.11

• IEEE 802.11
– Proposed standard for wireless LANs
– Specifies parameters for PHY and MAC layers of network

• PHY layer
– physical layer
– handles transmission of data between nodes
– provisions for data transfer rates of 1 or 2 Mbps
– operates in 2.4 to 2.4835 GHz frequency band (RF)
– or 300 to 428,000 GHz (IR)

• MAC layer
– medium access control layer
– protocol responsible for maintaining order in shared medium
– collision avoidance/detection
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Chapter Summary

• Basic protocol concepts
– Actors, direction, time multiplexing, control methods

• General-purpose processors
– Port-based or bus-based I/O
– I/O addressing: Memory mapped I/O or Standard I/O
– Interrupt handling: fixed or vectored
– Direct memory access

• Arbitration
– Priority arbiter (fixed/rotating) or daisy chain

• Bus hierarchy
• Advanced communication

– Parallel vs. serial, wires vs. wireless, error detection/correction, layering
– Serial protocols: I2C, CAN, FireWire, and USB; Parallel: PCI and ARM. 
– Serial wireless protocols: IrDA, Bluetooth, and IEEE 802.11.


