
Linux Kernel Introduction

Linux Kernel
Introduction
Free Electrons

© Copyright 2004-2014, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 17/472

Linux Kernel Introduction

Linux features

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 18/472

History

I The Linux kernel is one component of a system, which also
requires libraries and applications to provide features to end
users.

I The Linux kernel was created as a hobby in 1991 by a Finnish
student, Linus Torvalds.

I Linux quickly started to be used as the kernel for free software
operating systems

I Linus Torvalds has been able to create a large and dynamic
developer and user community around Linux.

I Nowadays, more than one thousand people contribute to each
kernel release, individuals or companies big and small.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 19/472

Linux kernel key features

I Portability and hardware
support. Runs on most
architectures.

I Scalability. Can run on
super computers as well as
on tiny devices (4 MB of
RAM is enough).

I Compliance to standards
and interoperability.

I Exhaustive networking
support.

I Security. It can’t hide its
flaws. Its code is reviewed
by many experts.

I Stability and reliability.

I Modularity. Can include
only what a system needs
even at run time.

I Easy to program. You can
learn from existing code.
Many useful resources on
the net.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 20/472

Linux kernel in the system

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 21/472

Linux kernel main roles

I Manage all the hardware resources: CPU, memory, I/O.

I Provide a set of portable, architecture and hardware
independent APIs to allow user space applications and
libraries to use the hardware resources.

I Handle concurrent accesses and usage of hardware
resources from different applications.

I Example: a single network interface is used by multiple user
space applications through various network connections. The
kernel is responsible to “multiplex” the hardware resource.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 22/472

System calls

I The main interface between the kernel and user space is the
set of system calls

I About 300 system calls that provide the main kernel services
I File and device operations, networking operations,

inter-process communication, process management, memory
mapping, timers, threads, synchronization primitives, etc.

I This interface is stable over time: only new system calls can
be added by the kernel developers

I This system call interface is wrapped by the C library, and
user space applications usually never make a system call
directly but rather use the corresponding C library function

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 23/472

Pseudo filesystems

I Linux makes system and kernel information available in user
space through pseudo filesystems, sometimes also called
virtual filesystems

I Pseudo filesystems allow applications to see directories and
files that do not exist on any real storage: they are created
and updated on the fly by the kernel

I The two most important pseudo filesystems are
I proc, usually mounted on /proc:

Operating system related information (processes, memory
management parameters...)

I sysfs, usually mounted on /sys:
Representation of the system as a set of devices and buses.
Information about these devices.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 24/472

Inside the Linux kernel

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 25/472

Supported hardware architectures

I See the arch/ directory in the kernel sources

I Minimum: 32 bit processors, with or without MMU, and gcc

support

I 32 bit architectures (arch/ subdirectories)
Examples: arm, avr32, blackfin, c6x, m68k, microblaze,
mips, score, sparc, um

I 64 bit architectures:
Examples: alpha, arm64, ia64, tile

I 32/64 bit architectures
Examples: powerpc, x86, sh, sparc

I Find details in kernel sources: arch/<arch>/Kconfig,
arch/<arch>/README, or Documentation/<arch>/

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 26/472

http://lxr.free-electrons.com/source/arch/
http://lxr.free-electrons.com/source/arch/
http://lxr.free-electrons.com/source/arch/arm
http://lxr.free-electrons.com/source/arch/avr32
http://lxr.free-electrons.com/source/arch/blackfin
http://lxr.free-electrons.com/source/arch/c6x
http://lxr.free-electrons.com/source/arch/m68k
http://lxr.free-electrons.com/source/arch/microblaze
http://lxr.free-electrons.com/source/arch/mips
http://lxr.free-electrons.com/source/arch/score
http://lxr.free-electrons.com/source/arch/sparc
http://lxr.free-electrons.com/source/arch/um
http://lxr.free-electrons.com/source/arch/alpha
http://lxr.free-electrons.com/source/arch/arm64
http://lxr.free-electrons.com/source/arch/ia64
http://lxr.free-electrons.com/source/arch/tile
http://lxr.free-electrons.com/source/arch/powerpc
http://lxr.free-electrons.com/source/arch/x86
http://lxr.free-electrons.com/source/arch/sh
http://lxr.free-electrons.com/source/arch/sparc

Embedded Linux Kernel Usage

Embedded Linux
Kernel Usage
Free Electrons

© Copyright 2004-2014, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 27/472

Embedded Linux Kernel Usage

Linux kernel sources

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 28/472

Location of kernel sources

I The official versions of the Linux kernel, as released by Linus
Torvalds, are available at http://www.kernel.org

I These versions follow the development model of the kernel
I However, they may not contain the latest development from a

specific area yet. Some features in development might not be
ready for mainline inclusion yet.

I Many chip vendors supply their own kernel sources
I Focusing on hardware support first
I Can have a very important delta with mainline Linux
I Useful only when mainline hasn’t caught up yet.

I Many kernel sub-communities maintain their own kernel, with
usually newer but less stable features

I Architecture communities (ARM, MIPS, PowerPC, etc.),
device drivers communities (I2C, SPI, USB, PCI, network,
etc.), other communities (real-time, etc.)

I No official releases, only development trees are available.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 29/472

http://www.kernel.org

Getting Linux sources

I The kernel sources are available from
http://kernel.org/pub/linux/kernel as full tarballs
(complete kernel sources) and patches (differences between
two kernel versions).

I However, more and more people use the git version control
system. Absolutely needed for kernel development!

I Fetch the entire kernel sources and history
git clone git://git.kernel.org/pub/scm/linux/

kernel/git/torvalds/linux.git
I Create a branch that starts at a specific stable version

git checkout -b <name-of-branch> v3.11
I Web interface available at http://git.kernel.org/cgit/

linux/kernel/git/torvalds/linux.git/tree/.
I Read more about Git at http://git-scm.com/

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 30/472

http://kernel.org/pub/linux/kernel
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/
http://git-scm.com/

Linux kernel size (1)

I Linux 3.10 sources:
Raw size: 573 MB (43,000 files, approx 15,800,000 lines)
gzip compressed tar archive: 105 MB
bzip2 compressed tar archive: 83 MB (better)
xz compressed tar archive: 69 MB (best)

I Minimum Linux 3.17 compiled kernel size, booting on the
ARM Versatile board (hard drive on PCI, ext2 filesystem, ELF
executable support, framebuffer console and input devices):
876 KB (compressed), 2.3 MB (raw)

I Why are these sources so big?
Because they include thousands of device drivers, many
network protocols, support many architectures and
filesystems...

I The Linux core (scheduler, memory management...) is pretty
small!

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 31/472

Linux kernel size (2)

As of kernel version 3.10.

I drivers/: 49.4%

I arch/: 21.9%

I fs/: 6.0%

I include/: 4.7%

I sound/: 4.4%

I Documentation/: 4.0%

I net/: 3.9%

I firmware/: 1.0%

I kernel/: 1.0%

I tools/: 0.9%

I scripts/: 0.5%

I mm/: 0.5%

I crypto/: 0.4%

I security/: 0.4%

I lib/: 0.4%

I block/: 0.2%

I ...

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 32/472

http://lxr.free-electrons.com/source/drivers/
http://lxr.free-electrons.com/source/arch/
http://lxr.free-electrons.com/source/fs/
http://lxr.free-electrons.com/source/include/
http://lxr.free-electrons.com/source/sound/
http://lxr.free-electrons.com/source/Documentation/
http://lxr.free-electrons.com/source/net/
http://lxr.free-electrons.com/source/firmware/
http://lxr.free-electrons.com/source/kernel/
http://lxr.free-electrons.com/source/tools/
http://lxr.free-electrons.com/source/scripts/
http://lxr.free-electrons.com/source/mm/
http://lxr.free-electrons.com/source/crypto/
http://lxr.free-electrons.com/source/security/
http://lxr.free-electrons.com/source/lib/
http://lxr.free-electrons.com/source/block/

Practical lab - Get Linux Kernel Source Code

I Clone the mainline Linux source
tree with git

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 33/472

Kernel Source Code

Kernel Source
Code
Free Electrons

© Copyright 2004-2014, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 34/472

Kernel Source Code

Linux Code and Device Drivers

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 35/472

Programming language

I Implemented in C like all Unix systems. (C was created to
implement the first Unix systems)

I A little Assembly is used too:
I CPU and machine initialization, exceptions
I Critical library routines.

I No C++ used, see http://www.tux.org/lkml/#s15-3

I All the code compiled with gcc
I Many gcc specific extensions used in the kernel code, any

ANSI C compiler will not compile the kernel
I A few alternate compilers are supported (Intel and Marvell)
I See http://gcc.gnu.org/onlinedocs/gcc-4.9.0/gcc/C-

Extensions.html

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 36/472

http://www.tux.org/lkml/#s15-3
http://gcc.gnu.org/onlinedocs/gcc-4.9.0/gcc/C-Extensions.html
http://gcc.gnu.org/onlinedocs/gcc-4.9.0/gcc/C-Extensions.html

No C library

I The kernel has to be standalone and can’t use user space
code.

I User space is implemented on top of kernel services, not the
opposite.

I Kernel code has to supply its own library implementations
(string utilities, cryptography, uncompression ...)

I So, you can’t use standard C library functions in kernel code.
(printf(), memset(), malloc(),...).

I Fortunately, the kernel provides similar C functions for your
convenience, like printk(), memset(), kmalloc(), ...

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 37/472

http://lxr.free-electrons.com/ident?i=printk
http://lxr.free-electrons.com/ident?i=memset
http://lxr.free-electrons.com/ident?i=kmalloc

Portability

I The Linux kernel code is designed to be portable

I All code outside arch/ should be portable
I To this aim, the kernel provides macros and functions to

abstract the architecture specific details
I Endianness

I cpu_to_be32()
I cpu_to_le32()
I be32_to_cpu()
I le32_to_cpu()

I I/O memory access
I Memory barriers to provide ordering guarantees if needed
I DMA API to flush and invalidate caches if needed

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 38/472

http://lxr.free-electrons.com/source/arch/
http://lxr.free-electrons.com/ident?i=cpu_to_be32
http://lxr.free-electrons.com/ident?i=cpu_to_le32
http://lxr.free-electrons.com/ident?i=be32_to_cpu
http://lxr.free-electrons.com/ident?i=le32_to_cpu

No floating point computation

I Never use floating point numbers in kernel code. Your code
may be run on a processor without a floating point unit (like
on certain ARM CPUs).

I Don’t be confused with floating point related configuration
options

I They are related to the emulation of floating point operation
performed by the user space applications, triggering an
exception into the kernel.

I Using soft-float, i.e. emulation in user space, is however
recommended for performance reasons.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 39/472

No stable Linux internal API

I The internal kernel API to implement kernel code can undergo
changes between two releases.

I In-tree drivers are updated by the developer proposing the API
change: works great for mainline code.

I An out-of-tree driver compiled for a given version may no
longer compile or work on a more recent one.

I See Documentation/stable_api_nonsense.txt in kernel
sources for reasons why.

I Of course, the kernel to userspace API does not change
(system calls, /proc, /sys), as it would break existing
programs.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 40/472

http://free-electrons.com/kerneldoc/latest/stable_api_nonsense.txt

Kernel memory constraints

I No memory protection

I Accessing illegal memory locations result in (often fatal)
kernel oopses.

I Fixed size stack (8 or 4 KB). Unlike in user space, there’s no
way to make it grow.

I Kernel memory can’t be swapped out (for the same reasons).

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 41/472

Linux kernel licensing constraints

I The Linux kernel is licensed under the GNU General Public
License version 2

I This license gives you the right to use, study, modify and share
the software freely

I However, when the software is redistributed, either modified
or unmodified, the GPL requires that you redistribute the
software under the same license, with the source code

I If modifications are made to the Linux kernel (for example to
adapt it to your hardware), it is a derivative work of the kernel,
and therefore must be released under GPLv2

I The validity of the GPL on this point has already been verified
in courts

I However, you’re only required to do so
I At the time the device starts to be distributed
I To your customers, not to the entire world

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 42/472

Proprietary code and the kernel

I It is illegal to distribute a binary kernel that includes statically
compiled proprietary drivers

I The kernel modules are a gray area: are they derived works of
the kernel or not?

I The general opinion of the kernel community is that
proprietary drivers are bad: http://j.mp/fbyuuH

I From a legal point of view, each driver is probably a different
case

I Is it really useful to keep your drivers secret?

I There are some examples of proprietary drivers, like the Nvidia
graphics drivers

I They use a wrapper between the driver and the kernel
I Unclear whether it makes it legal or not

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 43/472

http://j.mp/fbyuuH

Advantages of GPL drivers

I You don’t have to write your driver from scratch. You can
reuse code from similar free software drivers.

I You could get free community contributions, support, code
review and testing, though this generally only happens with
code submitted for the mainline kernel.

I Your drivers can be freely and easily shipped by others (for
example by Linux distributions or embedded Linux build
systems).

I Pre-compiled drivers work with only one kernel version and
one specific configuration, making life difficult for users who
want to change the kernel version.

I Legal certainty, you are sure that a GPL driver is fine from a
legal point of view.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 44/472

Advantages of in-tree kernel drivers

I Once your sources are accepted in the mainline tree, they are
maintained by people making changes.

I Near cost-free maintenance, security fixes and improvements.

I Easy access to your sources by users.

I Many more people reviewing your code.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 45/472

User space device drivers 1/3

I In some cases, it is possible to implement device drivers in
user space!

I Can be used when
I The kernel provides a mechanism that allows userspace

applications to directly access the hardware.
I There is no need to leverage an existing kernel subsystem such

as the networking stack or filesystems.
I There is no need for the kernel to act as a “multiplexer” for

the device: only one application accesses the device.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 46/472

User space device drivers 2/3

I Possibilities for userspace device drivers:
I USB with libusb, http://www.libusb.org/
I SPI with spidev, Documentation/spi/spidev
I I2C with i2cdev, Documentation/i2c/dev-interface
I Memory-mapped devices with UIO, including interrupt

handling, Documentation/DocBook/uio-howto/

I Certain classes of devices (printers, scanners, 2D/3D graphics
acceleration) are typically handled partly in kernel space,
partly in user space.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 47/472

http://www.libusb.org/
http://free-electrons.com/kerneldoc/latest/spi/spidev
http://free-electrons.com/kerneldoc/latest/i2c/dev-interface
http://free-electrons.com/kerneldoc/latest/DocBook/uio-howto/

User space device drivers 3/3

I Advantages
I No need for kernel coding skills. Easier to reuse code between

devices.
I Drivers can be written in any language, even Perl!
I Drivers can be kept proprietary.
I Driver code can be killed and debugged. Cannot crash the

kernel.
I Can be swapped out (kernel code cannot be).
I Can use floating-point computation.
I Less in-kernel complexity.
I Potentially higher performance, especially for memory-mapped

devices, thanks to the avoidance of system calls.

I Drawbacks
I Less straightforward to handle interrupts.
I Increased interrupt latency vs. kernel code.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 48/472

Kernel Source Code

Linux sources

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 49/472

Linux sources structure 1/5

I arch/<ARCH>
I Architecture specific code
I arch/<ARCH>/mach-<machine>, machine/board specific code
I arch/<ARCH>/include/asm, architecture-specific headers
I arch/<ARCH>/boot/dts, Device Tree source files, for some

architectures

I block/
I Block layer core

I COPYING
I Linux copying conditions (GNU GPL)

I CREDITS
I Linux main contributors

I crypto/
I Cryptographic libraries

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 50/472

http://lxr.free-electrons.com/source/block/
http://lxr.free-electrons.com/source/COPYING
http://lxr.free-electrons.com/source/CREDITS
http://lxr.free-electrons.com/source/crypto/

Linux sources structure 2/5

I Documentation/
I Kernel documentation. Don’t miss it!

I drivers/
I All device drivers except sound ones (usb, pci...)

I firmware/
I Legacy: firmware images extracted from old drivers

I fs/
I Filesystems (fs/ext3/, etc.)

I include/
I Kernel headers

I include/linux/
I Linux kernel core headers

I include/uapi/
I User space API headers

I init/
I Linux initialization (including main.c)

I ipc/
I Code used for process communication

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 51/472

http://lxr.free-electrons.com/source/Documentation/
http://lxr.free-electrons.com/source/drivers/
http://lxr.free-electrons.com/source/firmware/
http://lxr.free-electrons.com/source/fs/
http://lxr.free-electrons.com/source/fs/ext3/
http://lxr.free-electrons.com/source/include/
http://lxr.free-electrons.com/source/include/linux/
http://lxr.free-electrons.com/source/include/uapi/
http://lxr.free-electrons.com/source/init/
http://lxr.free-electrons.com/source/main.c
http://lxr.free-electrons.com/source/ipc/

Linux sources structure 3/5

I Kbuild
I Part of the kernel build system

I Kconfig
I Top level description file for configuration parameters

I kernel/
I Linux kernel core (very small!)

I lib/
I Misc library routines (zlib, crc32...)

I MAINTAINERS
I Maintainers of each kernel part. Very useful!

I Makefile
I Top Linux Makefile (sets arch and version)

I mm/
I Memory management code (small too!)

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 52/472

http://lxr.free-electrons.com/source/Kbuild
http://lxr.free-electrons.com/source/Kconfig
http://lxr.free-electrons.com/source/kernel/
http://lxr.free-electrons.com/source/lib/
http://lxr.free-electrons.com/source/MAINTAINERS
http://lxr.free-electrons.com/source/Makefile
http://lxr.free-electrons.com/source/mm/

Linux sources structure 4/5

I net/
I Network support code (not drivers)

I README
I Overview and building instructions

I REPORTING-BUGS
I Bug report instructions

I samples/
I Sample code (markers, kprobes, kobjects...)

I scripts/
I Scripts for internal or external use

I security/
I Security model implementations (SELinux...)

I sound/
I Sound support code and drivers

I tools/
I Code for various user space tools (mostly C)

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 53/472

http://lxr.free-electrons.com/source/net/
http://lxr.free-electrons.com/source/README
http://lxr.free-electrons.com/source/REPORTING-BUGS
http://lxr.free-electrons.com/source/samples/
http://lxr.free-electrons.com/source/scripts/
http://lxr.free-electrons.com/source/security/
http://lxr.free-electrons.com/source/sound/
http://lxr.free-electrons.com/source/tools/

Linux sources structure 5/5

I usr/
I Code to generate an initramfs cpio archive

I virt/
I Virtualization support (KVM)

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 54/472

http://lxr.free-electrons.com/source/usr/
http://lxr.free-electrons.com/source/virt/

Kernel Source Code

Kernel source management tools

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 55/472

Cscope

I Tool to browse source code (mainly C, but also C++ or Java)

I Supports huge projects like the Linux kernel. Typically takes
less than 1 min. to index the whole Linux sources.

I In Linux kernel sources, two ways of running it:
I cscope -Rk

All files for all architectures at once
I make cscope

cscope -d cscope.out

Only files for your current architecture

I Allows searching for a symbol, a definition, functions, strings,
files, etc.

I Integration with editors like vim and emacs.

I Dedicated graphical front-end: KScope

I http://cscope.sourceforge.net/

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 56/472

http://cscope.sourceforge.net/

Cscope screenshot

[Tab]: move the cursor between search results and commands
[Ctrl] [D]: exit cscope

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 57/472

LXR: Linux Cross Reference

I Generic source indexing tool and code browser

I Web server based, very easy and fast to use

I Very easy to find the declaration, implementation or usage of
symbols

I Supports C and C++

I Supports huge code projects such as the Linux kernel (431
MB of source code in version 3.0).

I Takes a little time and patience to setup (configuration,
indexing, web server configuration)

I You don’t need to set up LXR by yourself. Use our
http://lxr.free-electrons.com server!

I http://sourceforge.net/projects/lxr

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 58/472

http://lxr.free-electrons.com
http://sourceforge.net/projects/lxr

LXR screenshot

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 59/472

Practical lab - Kernel Source Code - Exploring

I Explore kernel sources manually

I Use automated tools to explore the
source code

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 60/472

Kernel Source Code

Kernel configuration

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 61/472

Kernel configuration and build system

I The kernel configuration and build system is based on
multiple Makefiles

I One only interacts with the main Makefile, present at the
top directory of the kernel source tree

I Interaction takes place
I using the make tool, which parses the Makefile
I through various targets, defining which action should be done

(configuration, compilation, installation, etc.). Run
make help to see all available targets.

I Example
I cd linux-3.6.x/
I make <target>

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 62/472

http://lxr.free-electrons.com/source/Makefile

Kernel configuration (1)

I The kernel contains thousands of device drivers, filesystem
drivers, network protocols and other configurable items

I Thousands of options are available, that are used to
selectively compile parts of the kernel source code

I The kernel configuration is the process of defining the set of
options with which you want your kernel to be compiled

I The set of options depends
I On your hardware (for device drivers, etc.)
I On the capabilities you would like to give to your kernel

(network capabilities, filesystems, real-time, etc.)

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 63/472

Kernel configuration (2)

I The configuration is stored in the .config file at the root of
kernel sources

I Simple text file, key=value style

I As options have dependencies, typically never edited by hand,
but through graphical or text interfaces:

I make xconfig, make gconfig (graphical)
I make menuconfig, make nconfig (text)
I You can switch from one to another, they all load/save the

same .config file, and show the same set of options

I To modify a kernel in a GNU/Linux distribution: the
configuration files are usually released in /boot/, together
with kernel images: /boot/config-3.2.0-31-generic

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 64/472

Kernel or module?

I The kernel image is a single file, resulting from the linking
of all object files that correspond to features enabled in the
configuration

I This is the file that gets loaded in memory by the bootloader
I All included features are therefore available as soon as the

kernel starts, at a time where no filesystem exists

I Some features (device drivers, filesystems, etc.) can however
be compiled as modules

I These are plugins that can be loaded/unloaded dynamically to
add/remove features to the kernel

I Each module is stored as a separate file in the filesystem,
and therefore access to a filesystem is mandatory to use
modules

I This is not possible in the early boot procedure of the kernel,
because no filesystem is available

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 65/472

Kernel option types

I There are different types of options
I bool options, they are either

I true (to include the feature in the kernel) or
I false (to exclude the feature from the kernel)

I tristate options, they are either
I true (to include the feature in the kernel image) or
I module (to include the feature as a kernel module) or
I false (to exclude the feature)

I int options, to specify integer values
I hex options, to specify hexadecimal values
I string options, to specify string values

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 66/472

Kernel option dependencies

I There are dependencies between kernel options

I For example, enabling a network driver requires the network
stack to be enabled

I Two types of dependencies
I depends on dependencies. In this case, option A that depends

on option B is not visible until option B is enabled
I select dependencies. In this case, with option A depending

on option B, when option A is enabled, option B is
automatically enabled

I make xconfig allows to see all options, even the ones that
cannot be selected because of missing dependencies. In this
case, they are displayed in gray

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 67/472

make xconfig

make xconfig

I The most common graphical interface to configure the kernel.

I Make sure you read
help -> introduction: useful options!

I File browser: easier to load configuration files

I Search interface to look for parameters

I Required Debian / Ubuntu packages: libqt4-dev g++

(libqt3-mt-dev for older kernel releases)

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 68/472

make xconfig screenshot

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 69/472

make xconfig search interface

Looks for a keyword in the parameter name. Allows to select or
unselect found parameters.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 70/472

Kernel configuration options

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 71/472

Corresponding .config file excerpt

Options are grouped by sections and are prefixed with CONFIG_.

#

CD-ROM/DVD Filesystems

#

CONFIG_ISO9660_FS=m

CONFIG_JOLIET=y

CONFIG_ZISOFS=y

CONFIG_UDF_FS=y

CONFIG_UDF_NLS=y

#

DOS/FAT/NT Filesystems

#

CONFIG_MSDOS_FS is not set

CONFIG_VFAT_FS is not set

CONFIG_NTFS_FS=m

CONFIG_NTFS_DEBUG is not set

CONFIG_NTFS_RW=y

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 72/472

make gconfig

make gconfig

I GTK based graphical
configuration interface.
Functionality similar to that
of make xconfig.

I Just lacking a search
functionality.

I Required Debian packages:
libglade2-dev

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 73/472

make menuconfig

make menuconfig

I Useful when no graphics are
available. Pretty convenient
too!

I Same interface found in
other tools: BusyBox,
Buildroot...

I Required Debian packages:
libncurses-dev

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 74/472

make nconfig

make nconfig

I A newer, similar text
interface

I More user friendly (for
example, easier to access
help information).

I Required Debian packages:
libncurses-dev

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 75/472

make oldconfig

make oldconfig

I Needed very often!

I Useful to upgrade a .config file from an earlier kernel release

I Issues warnings for configuration parameters that no longer
exist in the new kernel.

I Asks for values for new parameters

If you edit a .config file by hand, it’s strongly recommended to
run make oldconfig afterwards!

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 76/472

Undoing configuration changes

A frequent problem:

I After changing several kernel configuration settings, your
kernel no longer works.

I If you don’t remember all the changes you made, you can get
back to your previous configuration:
$ cp .config.old .config

I All the configuration interfaces of the kernel (xconfig,
menuconfig, oldconfig...) keep this .config.old backup
copy.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 77/472

Configuration per architecture

I The set of configuration options is architecture dependent
I Some configuration options are very architecture-specific
I Most of the configuration options (global kernel options,

network subsystem, filesystems, most of the device drivers) are
visible in all architectures.

I By default, the kernel build system assumes that the kernel is
being built for the host architecture, i.e. native compilation

I The architecture is not defined inside the configuration, but at
a higher level

I We will see later how to override this behaviour, to allow the
configuration of kernels for a different architecture

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 78/472

Kernel Source Code

Compiling and installing the kernel
for the host system

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 79/472

Kernel compilation

I make
I in the main kernel source directory
I Remember to run multiple jobs in parallel if you have multiple

CPU cores. Example: make -j 4
I No need to run as root!

I Generates
I vmlinux, the raw uncompressed kernel image, at the ELF

format, useful for debugging purposes, but cannot be booted
I arch/<arch>/boot/*Image, the final, usually compressed,

kernel image that can be booted
I bzImage for x86, zImage for ARM, vmImage.gz for Blackfin,

etc.

I arch/<arch>/boot/dts/*.dtb, compiled Device Tree files
(on some architectures)

I All kernel modules, spread over the kernel source tree, as .ko

files.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 80/472

Kernel installation

I make install
I Does the installation for the host system by default, so needs

to be run as root. Generally not used when compiling for an
embedded system, and it installs files on the development
workstation.

I Installs
I /boot/vmlinuz-<version>

Compressed kernel image. Same as the one in
arch/<arch>/boot

I /boot/System.map-<version>

Stores kernel symbol addresses
I /boot/config-<version>

Kernel configuration for this version

I Typically re-runs the bootloader configuration utility to take
the new kernel into account.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 81/472

Module installation

I make modules_install
I Does the installation for the host system by default, so needs

to be run as root

I Installs all modules in /lib/modules/<version>/
I kernel/

Module .ko (Kernel Object) files, in the same directory
structure as in the sources.

I modules.alias

Module aliases for module loading utilities. Example line:
alias sound-service-?-0 snd_mixer_oss

I modules.dep

Module dependencies
I modules.symbols

Tells which module a given symbol belongs to.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 82/472

Kernel cleanup targets

I Clean-up generated files (to force
re-compilation):
make clean

I Remove all generated files. Needed when
switching from one architecture to another.
Caution: it also removes your .config file!
make mrproper

I Also remove editor backup and patch reject files
(mainly to generate patches):
make distclean

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 83/472

Kernel Source Code

Cross-compiling the kernel

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 84/472

Cross-compiling the kernel

When you compile a Linux kernel for another CPU architecture

I Much faster than compiling natively, when the target system
is much slower than your GNU/Linux workstation.

I Much easier as development tools for your GNU/Linux
workstation are much easier to find.

I To make the difference with a native compiler, cross-compiler
executables are prefixed by the name of the target system,
architecture and sometimes library. Examples:
mips-linux-gcc, the prefix is mips-linux-

arm-linux-gnueabi-gcc, the prefix is arm-linux-gnueabi-

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 85/472

Specifying cross-compilation (1)

The CPU architecture and cross-compiler prefix are defined through
the ARCH and CROSS_COMPILE variables in the toplevel Makefile.

I ARCH is the name of the architecture. It is defined by the
name of the subdirectory in arch/ in the kernel sources

I Example: arm if you want to compile a kernel for the arm

architecture.

I CROSS_COMPILE is the prefix of the cross compilation tools
I Example: arm-linux- if your compiler is arm-linux-gcc

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 86/472

Specifying cross-compilation (2)

Two solutions to define ARCH and CROSS_COMPILE:

I Pass ARCH and CROSS_COMPILE on the make command line:
make ARCH=arm CROSS_COMPILE=arm-linux- ...

Drawback: it is easy to forget to pass these variables when
you run any make command, causing your build and
configuration to be screwed up.

I Define ARCH and CROSS_COMPILE as environment variables:
export ARCH=arm

export CROSS_COMPILE=arm-linux-

Drawback: it only works inside the current shell or terminal.
You could put these settings in a file that you source every
time you start working on the project. If you only work on a
single architecture with always the same toolchain, you could
even put these settings in your ~/.bashrc file to make them
permanent and visible from any terminal.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 87/472

Predefined configuration files

I Default configuration files available, per board or per-CPU
family

I They are stored in arch/<arch>/configs/, and are just
minimal .config files

I This is the most common way of configuring a kernel for
embedded platforms

I Run make help to find if one is available for your platform

I To load a default configuration file, just run
make acme_defconfig

I This will overwrite your existing .config file!

I To create your own default configuration file
I make savedefconfig, to create a minimal configuration file
I mv defconfig arch/<arch>/configs/myown_defconfig

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 88/472

Configuring the kernel

I After loading a default configuration file, you can adjust the
configuration to your needs with the normal xconfig,
gconfig or menuconfig interfaces

I You can also start the configuration from scratch without
loading a default configuration file

I As the architecture is different from your host architecture
I Some options will be different from the native configuration

(processor and architecture specific options, specific drivers,
etc.)

I Many options will be identical (filesystems, network protocols,
architecture-independent drivers, etc.)

I Make sure you have the support for the right CPU, the right
board and the right device drivers.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 89/472

Device Tree

I Many embedded architectures have a lot of non-discoverable
hardware.

I Depending on the architecture, such hardware is either
described using C code directly within the kernel, or using a
special hardware description language in a Device Tree.

I ARM, PowerPC, OpenRISC, ARC, Microblaze are examples of
architectures using the Device Tree.

I A Device Tree Source, written by kernel developers, is
compiled into a binary Device Tree Blob, passed at boot time
to the kernel.

I There is one different Device Tree for each board/platform
supported by the kernel, available in
arch/arm/boot/dts/<board>.dtb.

I The bootloader must load both the kernel image and the
Device Tree Blob in memory before starting the kernel.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 90/472

Building and installing the kernel

I Run make

I Copy the final kernel image to the target storage
I can be uImage, zImage, vmlinux, bzImage in

arch/<arch>/boot
I copying the Device Tree Blob might be necessary as well, they

are available in arch/<arch>/boot/dts

I make install is rarely used in embedded development, as
the kernel image is a single file, easy to handle

I It is however possible to customize the make install behaviour
in arch/<arch>/boot/install.sh

I make modules_install is used even in embedded
development, as it installs many modules and description files

I make INSTALL_MOD_PATH=<dir>/ modules_install
I The INSTALL_MOD_PATH variable is needed to install the

modules in the target root filesystem instead of your host root
filesystem.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 91/472

Booting with U-Boot

I Recent versions of U-Boot can boot the zImage binary.
I Older versions require a special kernel image format: uImage

I uImage is generated from zImage using the mkimage tool. It
is done automatically by the kernel make uImage target.

I On some ARM platforms, make uImage requires passing a
LOADADDR environment variable, which indicates at which
physical memory address the kernel will be executed.

I In addition to the kernel image, U-Boot can also pass a
Device Tree Blob to the kernel.

I The typical boot process is therefore:

1. Load zImage or uImage at address X in memory
2. Load <board>.dtb at address Y in memory
3. Start the kernel with bootz X - Y or bootm X - Y

The - in the middle indicates no initramfs

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 92/472

Kernel command line

I In addition to the compile time configuration, the kernel
behaviour can be adjusted with no recompilation using the
kernel command line

I The kernel command line is a string that defines various
arguments to the kernel

I It is very important for system configuration
I root= for the root filesystem (covered later)
I console= for the destination of kernel messages
I Many more exist. The most important ones are documented in

Documentation/kernel-parameters.txt in kernel sources.

I This kernel command line is either
I Passed by the bootloader. In U-Boot, the contents of the

bootargs environment variable is automatically passed to the
kernel

I Built into the kernel, using the CONFIG_CMDLINE option.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 93/472

http://free-electrons.com/kerneldoc/latest/kernel-parameters.txt

Practical lab - Kernel compiling and booting

1st lab: board and bootloader setup:

I Prepare the board and access its
serial port

I Configure its bootloader to use
TFTP

2nd lab: kernel compiling and booting:

I Set up a cross-compiling
environment

I Cross-compile a kernel for an ARM
target platform

I Boot this kernel from a directory
on your workstation, accessed by
the board through NFS

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 94/472

Kernel Source Code

Using kernel modules

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 95/472

Advantages of modules

I Modules make it easy to develop drivers without rebooting:
load, test, unload, rebuild, load...

I Useful to keep the kernel image size to the minimum
(essential in GNU/Linux distributions for PCs).

I Also useful to reduce boot time: you don’t spend time
initializing devices and kernel features that you only need later.

I Caution: once loaded, have full control and privileges in the
system. No particular protection. That’s why only the root

user can load and unload modules.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 96/472

Module dependencies

I Some kernel modules can depend on other modules, which
need to be loaded first.

I Example: the usb-storage module depends on the
scsi_mod, libusual and usbcore modules.

I Dependencies are described in
/lib/modules/<kernel-version>/modules.dep

This file is generated when you run make modules_install.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 97/472

Kernel log

When a new module is loaded, related information is available in
the kernel log.

I The kernel keeps its messages in a circular buffer (so that it
doesn’t consume more memory with many messages)

I Kernel log messages are available through the dmesg

command (diagnostic message)

I Kernel log messages are also displayed in the system console
(console messages can be filtered by level using the loglevel

kernel parameter, or completely disabled with the quiet

parameter).

I Note that you can write to the kernel log from user space too:
echo "<n>Debug info" > /dev/kmsg

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 98/472

Module utilities (1)

I modinfo <module_name>

modinfo <module_path>.ko

Gets information about a module: parameters, license,
description and dependencies.
Very useful before deciding to load a module or not.

I sudo insmod <module_path>.ko

Tries to load the given module. The full path to the module
object file must be given.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 99/472

Understanding module loading issues

I When loading a module fails, insmod often doesn’t give you
enough details!

I Details are often available in the kernel log.

I Example:

$ sudo insmod ./intr_monitor.ko

insmod: error inserting './intr_monitor.ko': -1 Device or resource busy

$ dmesg

[17549774.552000] Failed to register handler for irq channel 2

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 100/472

Module utilities (2)

I sudo modprobe <module_name>

Most common usage of modprobe: tries to load all the
modules the given module depends on, and then this module.
Lots of other options are available. modprobe automatically
looks in /lib/modules/<version>/ for the object file
corresponding to the given module name.

I lsmod

Displays the list of loaded modules
Compare its output with the contents of /proc/modules!

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 101/472

Module utilities (3)

I sudo rmmod <module_name>

Tries to remove the given module.
Will only be allowed if the module is no longer in use (for
example, no more processes opening a device file)

I sudo modprobe -r <module_name>

Tries to remove the given module and all dependent modules
(which are no longer needed after removing the module)

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 102/472

Passing parameters to modules

I Find available parameters:
modinfo snd-intel8x0m

I Through insmod:
sudo insmod ./snd-intel8x0m.ko index=-2

I Through modprobe:
Set parameters in /etc/modprobe.conf or in any file in
/etc/modprobe.d/:
options snd-intel8x0m index=-2

I Through the kernel command line, when the driver is built
statically into the kernel:
snd-intel8x0m.index=-2

I snd-intel8x0m is the driver name
I index is the driver parameter name
I -2 is the driver parameter value

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 103/472

Check module parameter values

How to find the current values for the parameters of a loaded
module?

I Check /sys/module/<name>/parameters.

I There is one file per parameter, containing the parameter
value.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 104/472

Useful reading

Linux Kernel in a Nutshell, Dec 2006

I By Greg Kroah-Hartman, O’Reilly
http://www.kroah.com/lkn/

I A good reference book and guide on
configuring, compiling and managing the
Linux kernel sources.

I Freely available on-line!
Great companion to the printed book for
easy electronic searches!
Available as single PDF file on
http://free-electrons.com/

community/kernel/lkn/

I Our rating: 2 stars

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 105/472

http://www.kroah.com/lkn/
http://free-electrons.com/community/kernel/lkn/
http://free-electrons.com/community/kernel/lkn/

Developing Kernel Modules

Developing Kernel
Modules
Free Electrons

© Copyright 2004-2014, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 106/472

Hello Module 1/2

/* hello.c */

#include <linux/init.h>

#include <linux/module.h>

#include <linux/kernel.h>

static int __init hello_init(void)

{

pr_alert("Good morrow to this fair assembly.\n");

return 0;

}

static void __exit hello_exit(void)

{

pr_alert("Alas, poor world, what treasure hast thou lost!\n");

}

module_init(hello_init);

module_exit(hello_exit);

MODULE_LICENSE("GPL");

MODULE_DESCRIPTION("Greeting module");

MODULE_AUTHOR("William Shakespeare");

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 107/472

Hello Module 2/2

I __init
I removed after initialization (static kernel or module.)

I __exit
I discarded when module compiled statically into the kernel, or

when module unloading support is not enabled.

I Example available on
http://git.free-electrons.com/training-

materials/plain/code/hello/hello.c

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 108/472

http://lxr.free-electrons.com/ident?i=__init
http://lxr.free-electrons.com/ident?i=__exit
http://git.free-electrons.com/training-materials/plain/code/hello/hello.c
http://git.free-electrons.com/training-materials/plain/code/hello/hello.c

Hello Module Explanations

I Headers specific to the Linux kernel: linux/xxx.h
I No access to the usual C library, we’re doing kernel

programming

I An initialization function
I Called when the module is loaded, returns an error code (0 on

success, negative value on failure)
I Declared by the module_init() macro: the name of the

function doesn’t matter, even though <modulename>_init()

is a convention.

I A cleanup function
I Called when the module is unloaded
I Declared by the module_exit() macro.

I Metadata information declared using MODULE_LICENSE(),
MODULE_DESCRIPTION() and MODULE_AUTHOR()

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 109/472

http://lxr.free-electrons.com/ident?i=module_init
http://lxr.free-electrons.com/ident?i=module_exit
http://lxr.free-electrons.com/ident?i=MODULE_LICENSE
http://lxr.free-electrons.com/ident?i=MODULE_DESCRIPTION
http://lxr.free-electrons.com/ident?i=MODULE_AUTHOR

Symbols Exported to Modules 1/2

I From a kernel module, only a limited number of kernel
functions can be called

I Functions and variables have to be explicitly exported by the
kernel to be visible to a kernel module

I Two macros are used in the kernel to export functions and
variables:

I EXPORT_SYMBOL(symbolname), which exports a function or
variable to all modules

I EXPORT_SYMBOL_GPL(symbolname), which exports a function
or variable only to GPL modules

I A normal driver should not need any non-exported function.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 110/472

Symbols exported to modules 2/2

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 111/472

Module License

I Several usages
I Used to restrict the kernel functions that the module can use if

it isn’t a GPL licensed module
I Difference between EXPORT_SYMBOL() and

EXPORT_SYMBOL_GPL()

I Used by kernel developers to identify issues coming from
proprietary drivers, which they can’t do anything about
(“Tainted” kernel notice in kernel crashes and oopses).

I Useful for users to check that their system is 100% free (check
/proc/sys/kernel/tainted)

I Values
I GPL compatible (see include/linux/license.h: GPL,

GPL v2, GPL and additional rights, Dual MIT/GPL,
Dual BSD/GPL, Dual MPL/GPL)

I Proprietary

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 112/472

http://lxr.free-electrons.com/ident?i=EXPORT_SYMBOL
http://lxr.free-electrons.com/ident?i=EXPORT_SYMBOL_GPL
http://lxr.free-electrons.com/source/include/linux/license.h

Compiling a Module

I Two solutions
I Out of tree

I When the code is outside of the kernel source tree, in a
different directory

I Advantage: Might be easier to handle than modifications to
the kernel itself

I Drawbacks: Not integrated to the kernel
configuration/compilation process, needs to be built
separately, the driver cannot be built statically

I Inside the kernel tree
I Well integrated into the kernel configuration/compilation

process
I Driver can be built statically if needed

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 113/472

Compiling an out-of-tree Module 1/2

I The below Makefile should be reusable for any single-file
out-of-tree Linux module

I The source file is hello.c

I Just run make to build the hello.ko file

ifneq ($(KERNELRELEASE),)

obj-m := hello.o

else

KDIR := /path/to/kernel/sources

all:

<tab>$(MAKE) -C $(KDIR) M=$$PWD

endif

I For KDIR, you can either set:
I full kernel source directory

(configured + make modules_prepare)
I or just kernel headers directory (make headers_install)

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 114/472

Compiling an out-of-tree Module 2/2

I The module Makefile is interpreted with KERNELRELEASE

undefined, so it calls the kernel Makefile, passing the module
directory in the M variable

I The kernel Makefile knows how to compile a module, and
thanks to the M variable, knows where the Makefile for our
module is. The module Makefile is interpreted with
KERNELRELEASE defined, so the kernel sees the obj-m

definition.
Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 115/472

Modules and Kernel Version

I To be compiled, a kernel module needs access to the kernel
headers, containing the definitions of functions, types and
constants.

I Two solutions
I Full kernel sources
I Only kernel headers (linux-headers-* packages in

Debian/Ubuntu distributions)

I The sources or headers must be configured
I Many macros or functions depend on the configuration

I A kernel module compiled against version X of kernel headers
will not load in kernel version Y

I modprobe / insmod will say Invalid module format

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 116/472

New Driver in Kernel Sources 1/2

I To add a new driver to the kernel sources:
I Add your new source file to the appropriate source directory.

Example: drivers/usb/serial/navman.c
I Single file drivers in the common case, even if the file is several

thousand lines of code big. Only really big drivers are split in
several files or have their own directory.

I Describe the configuration interface for your new driver by
adding the following lines to the Kconfig file in this directory:

config USB_SERIAL_NAVMAN

tristate "USB Navman GPS device"

depends on USB_SERIAL

help

To compile this driver as a module, choose M

here: the module will be called navman.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 117/472

http://lxr.free-electrons.com/source/drivers/usb/serial/navman.c

New Driver in Kernel Sources 2/2

I Add a line in the Makefile file based on the Kconfig setting:
obj-$(CONFIG_USB_SERIAL_NAVMAN) += navman.o

I It tells the kernel build system to build navman.c when the
USB_SERIAL_NAVMAN option is enabled. It works both if
compiled statically or as a module.

I Run make xconfig and see your new options!
I Run make and your new files are compiled!
I See Documentation/kbuild/ for details and more elaborate

examples like drivers with several source files, or drivers in their
own subdirectory, etc.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 118/472

http://free-electrons.com/kerneldoc/latest/kbuild/

Hello Module with Parameters 1/2

/* hello_param.c */

#include <linux/init.h>

#include <linux/module.h>

MODULE_LICENSE("GPL");

/* A couple of parameters that can be passed in: how many

times we say hello, and to whom */

static char *whom = "world";

module_param(whom, charp, 0);

static int howmany = 1;

module_param(howmany, int, 0);

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 119/472

Hello Module with Parameters 2/2

static int __init hello_init(void)

{

int i;

for (i = 0; i < howmany; i++)

pr_alert("(%d) Hello, %s\n", i, whom);

return 0;

}

static void __exit hello_exit(void)

{

pr_alert("Goodbye, cruel %s\n", whom);

}

module_init(hello_init);

module_exit(hello_exit);

Thanks to Jonathan Corbet for the example!
Source code available on:
http://git.free-electrons.com/training-

materials/plain/code/hello-param/hello_param.c

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 120/472

http://git.free-electrons.com/training-materials/plain/code/hello-param/hello_param.c
http://git.free-electrons.com/training-materials/plain/code/hello-param/hello_param.c

Declaring a module parameter

module_param(

name, /* name of an already defined variable */

type, /* either byte, short, ushort, int, uint, long, ulong,

charp, bool or invbool. (checked at run time!) */

perm /* for /sys/module/<module_name>/parameters/<param>,

0: no such module parameter value file */

);

/* Example */

static int irq=5;

module_param(irq, int, S_IRUGO);

Modules parameter arrays are also possible with
module_param_array().

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 121/472

http://lxr.free-electrons.com/ident?i=module_param_array

Practical lab - Writing Modules

I Create, compile and load your first
module

I Add module parameters

I Access kernel internals from your
module

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 122/472

Useful general-purpose kernel APIs

Useful
general-purpose
kernel APIs
Free Electrons

© Copyright 2004-2014, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 123/472

Memory/string utilities

I In linux/string.h
I Memory-related: memset(), memcpy(), memmove(),

memscan(), memcmp(), memchr()
I String-related: strcpy(), strcat(), strcmp(), strchr(),

strrchr(), strlen() and variants
I Allocate and copy a string: kstrdup(), kstrndup()
I Allocate and copy a memory area: kmemdup()

I In linux/kernel.h
I String to int conversion: simple_strtoul(),

simple_strtol(), simple_strtoull(),
simple_strtoll()

I Other string functions: sprintf(), sscanf()

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 124/472

http://lxr.free-electrons.com/source/linux/string.h
http://lxr.free-electrons.com/ident?i=memset
http://lxr.free-electrons.com/ident?i=memcpy
http://lxr.free-electrons.com/ident?i=memmove
http://lxr.free-electrons.com/ident?i=memscan
http://lxr.free-electrons.com/ident?i=memcmp
http://lxr.free-electrons.com/ident?i=memchr
http://lxr.free-electrons.com/ident?i=strcpy
http://lxr.free-electrons.com/ident?i=strcat
http://lxr.free-electrons.com/ident?i=strcmp
http://lxr.free-electrons.com/ident?i=strchr
http://lxr.free-electrons.com/ident?i=strrchr
http://lxr.free-electrons.com/ident?i=strlen
http://lxr.free-electrons.com/ident?i=kstrdup
http://lxr.free-electrons.com/ident?i=kstrndup
http://lxr.free-electrons.com/ident?i=kmemdup
http://lxr.free-electrons.com/source/linux/kernel.h
http://lxr.free-electrons.com/ident?i=simple_strtoul
http://lxr.free-electrons.com/ident?i=simple_strtol
http://lxr.free-electrons.com/ident?i=simple_strtoull
http://lxr.free-electrons.com/ident?i=simple_strtoll
http://lxr.free-electrons.com/ident?i=sprintf
http://lxr.free-electrons.com/ident?i=sscanf

Linked lists

I Convenient linked-list facility in linux/list.h
I Used in thousands of places in the kernel

I Add a struct list_head member to the structure whose
instances will be part of the linked list. It is usually named
node when each instance needs to only be part of a single list.

I Define the list with the LIST_HEAD() macro for a global list,
or define a struct list_head element and initialize it with
INIT_LIST_HEAD() for lists embedded in a structure.

I Then use the list_*() API to manipulate the list
I Add elements: list_add(), list_add_tail()
I Remove, move or replace elements: list_del(),

list_move(), list_move_tail(), list_replace()
I Test the list: list_empty()
I Iterate over the list: list_for_each_*() family of macros

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 125/472

http://lxr.free-electrons.com/source/linux/list.h
http://lxr.free-electrons.com/ident?i=list_head
http://lxr.free-electrons.com/ident?i=LIST_HEAD
http://lxr.free-electrons.com/ident?i=list_head
http://lxr.free-electrons.com/ident?i=INIT_LIST_HEAD
http://lxr.free-electrons.com/ident?i=list_add
http://lxr.free-electrons.com/ident?i=list_add_tail
http://lxr.free-electrons.com/ident?i=list_del
http://lxr.free-electrons.com/ident?i=list_move
http://lxr.free-electrons.com/ident?i=list_move_tail
http://lxr.free-electrons.com/ident?i=list_replace
http://lxr.free-electrons.com/ident?i=list_empty

Linked Lists Examples (1)

I From include/linux/atmel_tc.h

/*

* Definition of a list element, with a

* struct list_head member

*/

struct atmel_tc

{

/* some members */

struct list_head node;

};

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 126/472

http://lxr.free-electrons.com/source/include/linux/atmel_tc.h

Linked Lists Examples (2)

I From drivers/misc/atmel_tclib.c

/* Define the global list */

static LIST_HEAD(tc_list);

static int __init tc_probe(struct platform_device *pdev) {

struct atmel_tc *tc;

tc = kzalloc(sizeof(struct atmel_tc), GFP_KERNEL);

/* Add an element to the list */

list_add_tail(&tc->node, &tc_list);

}

struct atmel_tc *atmel_tc_alloc(unsigned block, const char *name)

{

struct atmel_tc *tc;

/* Iterate over the list elements */

list_for_each_entry(tc, &tc_list, node) {

/* Do something with tc */

}

[...]

}

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 127/472

http://lxr.free-electrons.com/source/drivers/misc/atmel_tclib.c

