
CS540	
Introduc/on	to		

Ar/ficial	Intelligence:	
Programming	in	Logic	

Michael	Coen	
Week	of	Wednesday,	November	11,	2015	

(Week	#10)	

Declara/ve	Programming	

•  A	powerful	technique	
–  Rely	on	our	programming	language	to	do	most	of	the	work	

•  Do	you	recall	this	quote?	

	Underlying	our	approach	to	this	subject	is	our	convic6on	that	“computer	
science”	is	not	a	science	and	that	its	significance	has	li;le	to	do	with	
computers.		The	computer	revolu6on	is	a	revolu6on	in	the	way	we	think	
and	in	the	way	we	express	what	we	think…	Mathema6cs	provides	a	
framework	for	dealing	precisely	with	no6ons	of	“what	is.”	Computa6on	
provides	a	framework	for	dealing	precisely	with	no6ons	of	“how	to.”	

	

	Abelson	and	Sussman,	Structure	and	Interpreta6on	of	Computer	Programs	
(1984).	

	

•  A	powerful	technique	
–  Rely	on	our	programming	language	to	do	most	of	the	work	

•  Do	you	recall	this	quote?	

	Underlying	our	approach	to	this	subject	is	our	convic6on	that	“computer	
science”	is	not	a	science	and	that	its	significance	has	li;le	to	do	with	
computers.		The	computer	revolu6on	is	a	revolu6on	in	the	way	we	think	
and	in	the	way	we	express	what	we	think…	Mathema6cs	provides	a	
framework	for	dealing	precisely	with	no6ons	of	“what	is.”	Computa6on	
provides	a	framework	for	dealing	precisely	with	no6ons	of	“how	to.”	

	

	Abelson	and	Sussman,	Structure	and	Interpreta6on	of	Computer	Programs	
(1984).	

	

•  A	powerful	technique	
–  Rely	on	our	programming	language	to	do	most	of	the	work	

•  Do	you	recall	this	quote?	

	Underlying	our	approach	to	this	subject	is	our	convic6on	that	“computer	
science”	is	not	a	science	and	that	its	significance	has	li;le	to	do	with	
computers.		The	computer	revolu6on	is	a	revolu6on	in	the	way	we	think	
and	in	the	way	we	express	what	we	think…	Mathema6cs	provides	a	
framework	for	dealing	precisely	with	no6ons	of	“what	is.”	Computa6on	
provides	a	framework	for	dealing	precisely	with	no6ons	of	“how	to.”	

	

	Abelson	and	Sussman,	Structure	and	Interpreta6on	of	Computer	Programs	
(1984).	

	
	
	

Declara/ve	Programming	

Programming	in	logic	blurs	this	dis/nc/on.	

Programming	Styles	

•  Impera/ve:	
–  Procedural	

	 	Step	-by-step	instruc/ons	for	doing	something		
	 	C,	C++,	Java,	Python,	Fortran,	etc.	

–  Func/onal	
	 	Solve	problems	by	reducing	them	to	simpler	problems 	 		
	 	Recursion	is	a	basic	mo/f	
	 	Scheme,	Lisp,	Algol,	Haskel,	etc.	

	
•  Declara/ve:		

	Um,	ok?		But	what’s							?	
	Prolog,	Aleph,	Golem,	etc.	

	

2 is the such that and 0x y y x y= ≥
7

Preliminary	Prolog	

•  This	will	be	a	gentle	introduc/on	to	Prolog	
–  The	ideas	are	important	
–  You	should	know	this	stuff	is	possible	

•  Prolog	=	“Programming	in	Logic”	
–  Developed	by	Colmerauer,	Roussel,	Kowalski,	and	others	around	1972	

	“Programma/on	en	Logique”	
	

•  Stems	from	two	intellectual	threads:	
–  Logic	as	the	theore/cal	founda/on	for	Computer	Science	
–  Strong	focus	in	AI	to	use	logic	to	represent	and	reason	about	problems.	
			

	Early	AI	focused	almost	exclusively	on	symbolic	logic.		Probabilis9c	logics	have	
made	a	strong	resurgence	in	recent	years,	par9cularly	with	the	popularity	of	
Bayesian	methods.	

	

Some	Comments	about	Logic	Programming	

•  Prolog	is	the	most	popular	logic	programming	language	
–  Many	versions	of	Prolog	
–  SWI-Prolog	is	free,	runs	on	all	plaeorms,	and	very	popular:	hfp://www.swi-prolog.org	
–  We’ll	be	using	SWI-Prolog	for	demos	and	the	lifle	bit	of	Prolog	you	may	be	playing	with.	

•  Other	popular	implementa/ons:	
–  BProlog:	Provides	memoiza/on	and	all	the	mathema/cal	func/ons	missing	in	ISO	Prolog	
–  Datalog:	Russell	and	Norvig	seem	to	like	this.		(Should	have	replaced	SQL	years	ago…)	

•  Not	Turing-complete!		(This	is	not	a	“real”	programming	language)	
–  Many,	many	others…	(Yap	=	“Yet	Another	Prolog”	is	popular	here)	

•  Major	programming	languages	have	Prolog	extensions,	libraries…	
•  Java,	C,	C++,	Matlab,	Scheme,	Python,	Haskell,	SQL,	Perl,	Fortran,	etc…	

•  Side	note:		
–  I	program	a	lot	in	a	language	called	Prism,	a	probabilis/c	version	of	Prolog.	
–  Derives	the	most	likely	inference.	
–  Wonderful	tool	for	modeling	human	reasoning,	especially	“weird”	human	reasoning	

Knowledge	Representa/on	

Motherhood: , () () (,).
Husband: , (,) () (,).
Disjoint: () ().
Inverse: , (,) (,).
Sibling: , (,)

m c Mother c m Female m Parent m c
w h Husband h w Male h Spouse h w
x Male x Female x
p c Parent p c Child c p
x y Sibling x y x y

∀ = ⇔ ∧
∀ ⇔ ∧
∀ ⇔ ¬
∀ ⇔
∀ ⇔ ≠ ∧

Recursion: , (,) (,) (,).
Recur

 (,) (,)
Transitivity: , (,) (,

sion: , (,)

) (,

(

).
p P

a c Ancestor a c p Parent p c Ancestor a

arent p x Parent p y
g c Grandparent g c p Parent g p Pare

p
a c Ancestor a c r Anc

nt p

sto

c

e r
∀

∃

⇔ ∃ ∧
∀ ⇔ ∃

∧
∀ ⇔ ∃ ∧

,) (,).

Can we prove things in this system?
 , (,) (,)x y Sibli

r c Par

ng x y Sibli

ent a r

ng y x∴ ∀ ⇔

∧

Towards	a	defini/on	of	“family!”	

Knowledge	Representa/on	in	Prolog	

father(Dad,Child) :- male(Dad), parent(Dad,Child).

So,	what	this	rule	really	says	is:	
	
	
How	would	I	say	“Mike	is	male”	?	
male(mike).

Things	to	remember:	
•  Variables	are	always	upper-cased.	
•  Constants	are	lower-cased.	
•  Commas	mean	“and.”	
•  Everything	ends	in	a	period.	

	

Fatherhood: , () () (,).d c Father c d Male d Parent d c∀ = ⇔ ∧

Fatherhood: , () (,) ()d c Male d Parent d c Father c d∀ ∧ ⇒ =

Defining	a	family	

mother(P,C) :- female(P), parent(P,C).
father(P,C) :- male(P), parent(P,C).

wife(W,H) :- female(W), spouse(W,H).

husband(H,W):- male(H), spouse(H,W).

	

Defining	a	family	

mother(P,C) :- female(P), parent(P,C).
father(P,C) :- male(P), parent(P,C).

wife(W,H) :- female(W), spouse(W,H).

husband(H,W):- male(H), spouse(H,W).

male(mike).

female(aimee).

female(lila).

spouse(mike, aimee).

spouse(aimee, mike).

parent(mike, lila).

parent(aimee, lila).

	

Rules	

Facts	

Prolog	programs	consist	of	rules,	facts,	and	queries!	

Programs	are	
wrifen	in	an	editor.	

	
Queries	are	inside	
the	program	or		

typed	at	the	read-
eval-print	loop.	

% Is mike the father of lila?

 % Is aimee the mother of lila?

% Who is mike the father of?

% Who is the mother of aimee?
% The system doesn’t know!
 % Who is the mother of lila?
% What’s this??

% Who is the father of who?

% Who are aimee and mike the mother and father of?

Defining	a	family	

mother(P,C) :- female(P), parent(P,C).
father(P,C) :- male(P), parent(P,C).

wife(W,H) :- female(W), spouse(W,H).

husband(H,W):- male(H), spouse(H,W).

male(mike).

female(aimee).

female(lila).

spouse(mike, aimee).

spouse(aimee, mike).

parent(mike, lila).

parent(aimee, lila).

	

Rules	

Facts	

Quick	check…	

18 ?- father(X, lila).

X = mike.
	

Okay,	that’s	fine...	

Defining	a	family	

mother(P,C) :- female(P), parent(P,C).
father(P,C) :- male(P), parent(P,C).

wife(W,H) :- female(W), spouse(W,H).

husband(H,W):- male(H), spouse(H,W).

male(X) :- not(female(X)).

female(aimee).

female(lila).

spouse(mike, aimee).

spouse(aimee, mike).

parent(mike, lila).

parent(aimee, lila).

1 ?- male(mike).

true.

	

Rules	

Facts	

Query	

But????	
1 ?- father(mike,lila).
true.

2 ?- father(X,lila).

false.

What’s	going	on	here?		Why	can	it	prove	I	am	Lila’s	father,		
but	it	can’t	derive	who	the	father	of	Lila	is	anymore???	

	
It’s	because	this	rule	
father(P,C) :- male(P), parent(P,C).

never	unifies	in	the	second	query!!		What	fact	or	goal	would	P	unify	with?		
All	we	have	is	this:	
male(X) :- not(female(X)).

	
We	can’t	unify	a	variable	through	a	“nega/ve”	goal.			

There	is	nothing	lep	to	do!		Prolog	proves	through	nega6on!	
We	can’t	prove	through	a	“nega/ve	nega/on!”		(Oy!		Does	my	head	hurt!!)	

But????	
If	this	had	worked,	you	could	write	an	evil	rule	like:	
	
true(X) :- not(untrue(X)).

This	would	enumerate	through	all	true	interpreta9ons	of	X.	
Not	is	unsound	in	Prolog!	
	
The	ghosts	of	numerous	mathema/cians	would	come	yell	at	you	if	it	were.	

Defining	a	family	

mother(P,C) :- female(P), parent(P,C).
father(P,C) :- parent(P,C),male(P).

wife(W,H) :- female(W), spouse(W,H).

husband(H,W):- male(H), spouse(H,W).

male(X) :- not(female(X)).

female(aimee).

female(lila).

spouse(mike, aimee).

spouse(aimee, mike).

parent(mike, lila).

parent(aimee, lila).

1 ?- father(X,lila).

X = mike. % Yay!!!

	

Rules	

Facts	

Query	

Defining	a	family	

mother(P,C) :- female(P), parent(P,C).
father(P,C) :- parent(P,C),male(P).

wife(W,H) :- female(W), spouse(W,H).

husband(H,W):- male(H), spouse(H,W).

male(X) :- not(female(X)).

female(aimee).

female(lila).

spouse(mike, aimee).

spouse(aimee, mike).

parent(mike, lila).

parent(aimee, lila).

	

Rules	

Facts	

Defining	a	family	
mother(P,C) :- female(P), parent(P,C).
father(P,C) :- parent(P,C),male(P).

wife(W,H) :- female(W), spouse(W,H).

husband(H,W):- male(H), spouse(W,H).

male(X) :- not(female(X)).

spouse(X,Y) :- spouse(Y,X). % Good?

female(aimee).

female(lila).

spouse(mike, aimee).

parent(mike, lila).

parent(aimee, lila).

	

Rules	

Facts	

Defining	a	family	
mother(P,C) :- female(P), parent(P,C).
father(P,C) :- parent(P,C),male(P).

wife(W,H) :- female(W), spouse(W,H).

husband(H,W):- male(H), spouse(W,H).

male(X) :- not(female(X)).

spouse(X,Y) :- spouse(Y,X). % Good?

female(aimee).

female(lila).

spouse(mike, aimee).

parent(mike, lila).

parent(aimee, lila).

1 ?- spouse(aimee,mike).

ERROR: Out of local stack

 Exception: (246,482) spouse(mike, aimee) ?

	

Rules	

Facts	

Query	

Defining	a	family	
mother(P,C) :- female(P), parent(P,C).
father(P,C) :- parent(P,C),male(P).

wife(W,H) :- female(W), spouse(W,H).

husband(H,W):- male(H), spouse(W,H).

male(X) :- not(female(X)).

spouse(X,Y) :- married(Y,X). % Good!

spouse(X,Y) :- married(X,Y). % Good!

female(aimee).

female(lila).

married(mike, aimee).

parent(mike, lila).

parent(aimee, lila).

1 ?- spouse(aimee,mike).

true .

	

Rules	

Facts	

Query	

Towards	a	defini/on	of	a	family…	

Motherhood: , () () (,).
Husband: , (,) () (,).
Disjoint: () ().
Inverse: , (,) (,).
Sibling: , (,)

m c Mother c m Female m Parent m c
w h Husband h w Male h Spouse h w
x Male x Female x
p c Parent p c Child c p
x y Sibling x y x y

∀ = ⇔ ∧
∀ ⇔ ∧
∀ ⇔ ¬
∀ ⇔
∀ ⇔ ≠ ∧

Recursion: , (,) (,) (,).
Recur

 (,) (,)
Transitivity: , (,) (,

sion: , (,)

) (,

(

).
p P

a c Ancestor a c p Parent p c Ancestor a

arent p x Parent p y
g c Grandparent g c p Parent g p Pare

p
a c Ancestor a c r Anc

nt p

sto

c

e r
∀

∃

⇔ ∃ ∧
∀ ⇔ ∃

∧
∀ ⇔ ∃ ∧

,) (,).

Can we prove things in this system?
 , (,) (,)x y Sibli

r c Par

ng x y Sibli

ent a r

ng y x∴ ∀ ⇔

∧

More	defini/ons	
sibling(X,Y) :- mother(M,X), mother(M,Y), father(F,X),

father(F,Y), different(X,Y).
different(X,Y) :- not(X = Y).

sisters(X,Y) :- sibling(X,Y), female(X), female(Y).

brothers(X,Y) :- sibling(X,Y), male(X), male(Y).

parent(roberta,jenny).

parent(stanley,jenny).

parent(roberta, mike).

parent(stanley, mike).

1 ?- sibling(X,Y).

X = jenny,

Y = mike .

	

Rules	

Facts	

Query	

Spanning	the	genera/ons…	

grandparent(X,Z) :- parent(X,Y), parent(Y,Z).

ancestor(X,Z) :- parent(X,Z).

ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

parent(stanley, mike).
parent(avraham, stanley).

parent(yitzhok, avraham).

Rules	

Facts	

Querying	the	Genera/ons	
1	?-	ancestor(yitzhok,	mike).	
true	.		
	
2	?-	ancestor(yitzhok,	lila).	
true	.	
	
3	?-	ancestor(lila,	yitzhok).	
false.	
	
4	?-	ancestor(X,mike).	
X	=	roberta	;		%	A	semicolon	triggers	a	cut!	
X	=	stanley	;	
X	=	avraham	;	
X	=	chana	;	
X	=	yitzhok	;	
X	=	rivka	;	
false.	
	
5	?-	ancestor(rivka,	X).	
X	=	avraham	;	
X	=	stanley	;	
X	=	jenny	;	
X	=	mike	;	
X	=	lila	;	
false.	

6	?-	ancestor(X,	avraham).	
X	=	yitzhok	;	
X	=	rivka	;	
false.	
	
7	?-	ancestor(aimee,X).	
X	=	lila	.	
	
8	?-	ancestor(X,lila),	ancestor(Y,lila),	spouse(X,Y).	
X	=	aimee,	
Y	=	mike	;	
X	=	mike,	
Y	=	aimee	;	
false.	

Important!	

•  Variables	are	universally	quan9fied	
spouse(X,Y) :- married(Y,X).	
	
	

•  Unless	they	only	appear	in	the	clause	of	the	rule:	
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

Prolog	will	make	up	an	internal	variable	to	represent	𝑦.

	

, married(,) spouse(,)x y x y x y∀ ⇒

∀ 𝑥,𝑧 (∃𝑦 parent(𝑥,𝑦)∧ancestor(𝑦,𝑧)⟹ancestor(𝑥,𝑧))	

What expressive power is this exactly?!

Spanning	the	genera/ons…	

ancestor(X,Z) :- parent(X,Z).

ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

ancestor(X,Z) :- parent(X,Z).

ancestor(X,Z) :- ancestor(X,Y), parent(Y,Z).

ancestor(X,Z) :- parent(X,Z).

ancestor(X,Z) :- ancestor(X,Y),ancestor(Y,Z).

Rules	

Rules2	

Which	way	is	befer?	

Rules3	

Spanning	the	genera/ons…	

ancestor(X,Z) :- parent(X,Z).

ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

ancestor(X,Z) :- parent(X,Z).

	

Rules	

RulesYuk?	

What’s	wrong	with	this?	

Just	replacing	the	operator	names…	

path(X,Z) :- link(X,Z).

path(X,Z) :- link(X,Y), path(Y,Z).

path(X,Z) :- link(X,Y), path(Y,Z).
path(X,Z) :- link(X,Z).

	
Suppose	we	have:	
 link(a,b), link(b,c)

Rules	

RulesYuk?	

path(X,Z) ≡ ancestor(X,Z)
link(X,Z) ≡ parent(X,Z)

What’s	wrong	with	this?	

ancestor(X,Z) :- parent(X,Z).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

NB:	Russell	&	Norvig	book	gets	this	wrong!	
path(X,Z) :- path(X,Y), link(Y).

Prolog	Does	Backward	Chaining	Depth	First	Search	

path(X,Z) :- link(X,Z).
path(X,Z) :- link(X,Y), path(Y,Z).
link(a,b), link(b,c)
?- path(a,c).

path(X,Z) :- link(X,Y), path(Y,Z).
path(X,Z) :- link(X,Z).
link(a,b), link(b,c)
?- path(a,c).

Remember	this?	

(define (factorial x)
 (if (<= x 1)
 1
 (* x (factorial (- x 1)))))

vs.	

(define (factorial x)
 (* x (factorial (- x 1)))
 (if (<= x 1)
 um, done???))

This	is	the	same	issue…	

(define (ancestor X Z)
 (if (parent? X Z)
 true
 (and ∃Y (parent X Y) (ancestor Y Z))))

vs.	

(define (ancestor X Z)
 (and ∃Y(parent X Y) (ancestor Y Z))
 (if (parent? X Z)
 true))

Caveats	

Finding	a	path	from	a	to	c	
can	cause	an	infinite	loop.	

Finding	a	path	from	a	to	node	J4	can	be	very	inefficient.	
Requires	877	inferences	in	this	case	because	we	try	to	
find	paths	from	nodes	that	can’t	reach	the	goal!	
Forward	chaining	would	only	look	at	62	inferences.	

Memoiza/on	(tabling)	fixes	this!	
It’s	like	adding	dynamic	programming.	

More	issues	

•  Most	Prologs	are	not	sound!	
–  Missing	something	called	occur	check	during	unifica/on.	
–  Shouldn’t	unify	variable	x	with	something	containing	variable	x,	but	Prolog	

doesn’t	check!	

	
data(X, name(X)).

1 ?- data(X,Y).

Y = name(X).

2 ?- data(Y,Y).

Y = name(**).

Fact	

Queries	

Flags	in	SWI-Prolog:	
occurs_check(true).
occurs_check(error).
occurs_check(false).

This	is	like	saying	𝑌= ⏟name(name(name(name(…name(𝑌)…)))) ┬∞ number of times! 	

More	thoughts	

•  Prolog	allows	both	side-effects	and	backtracking.	
–  What	happens	to	side-effects	when	you	backtrack???	

•  Equality	(=)	in	Prolog	means	unifiable.		It	does	not	mean	logical	equality!	
–  E.g.,	friend(bart,	X)	unifies	with	friend(Y,	Milhouse)	
–  But	2.99999999….	might	not	unify	with	3,	even	though	we	know	2.99999…	=	3	
–  And	in	Prolog,	foo	≠bar,	even	though	they	might	actually	be	equal	in	FOL.	

•  Prolog	is	a	compromise	between	representa/onal	power,	inferen/al	
power,	and	efficiency.	

Towers	of	Hanoi	

move(1,X,Y,_) :- write('Move top disk from '), write(X), write(' to '), write(Y), nl.
move(N,X,Y,Z) :- N>1, M is N-1, move(M,X,Z,Y), move(1,X,Y,_), move(M,Z,Y,X).

(define (hanoi n)
 (hanoi-helper 'A 'B 'C n)) ; We use symbols for the 3 positions

(define (hanoi-helper source workspace destination n)
 (cond ((= n 1)
 (printf "Moving from disc ~a to ~a.\n" source destination))
 (else

 (hanoi-helper source destination workspace (- n 1))
 (hanoi-helper source workspace destination 1)
 (hanoi-helper workspace source destination (- n 1)))))

?- move(3,left,right,center).
Move top disk from left to right
Move top disk from left to center
Move top disk from right to center
Move top disk from left to right
Move top disk from center to left
Move top disk from center to right
Move top disk from left to right

Lists	in	Prolog	

A	list	is	built	with	brackets:	[…]	
e.g.,	[apple,	pear,	banana,	peach],	[]	(empty	list)	
1 ?- member(2, [1,2,3]).% (What	would	happen	with	member(2,X)?)	
true .

2 ?- member(X, [1,2,3]).

X = 1 ;
X = 2 ;

X = 3 ;

false.

3 ?- member(2, [1, X, 3]).
X = 2 .

	

First	element	

first([X|_], X). %	_	(underscore)	means	ignore	the	value	

1 ?- first([1,2,3], X).

X = 1.

2 ?- first([X,2,3], 1).

X = 1.

3 ?- first([1, X, 2,3], 1).

true.

4 ?- first([2, X, 2,3], 1).
false.

Lists	in	Prolog	
Append	two	lists:	
append(X,	Y,	Z)	is	true	if	Z	=	[X	|	Y].		|	par//ons	a	list	into	head	and	tail	
append([],Y,Y).

append([A|X], Y, [A|Z]) :- append(X,Y,Z).

?- append([1,2], [3,4], Z).
 Z = _G2044
 Z = [1, 2, 3, 4]

append([1, 2], [3, 4], _G2044)
_G2044 = [1 | _G2126]
_G2044 = [1, 2, 3, 4]

append([2], [3, 4], _G2126)
_G2126 = [2 | _G2129]
_G2126 = [2, 3, 4]

append([], [3, 4], _G2129)
_G2129 = [3,4]

Lists	in	Prolog	

Append	two	lists:	
append(X,	Y,	Z)	is	true	if	Z	=	[X	|	Y].		|	par//ons	a	list	into	head	and	tail	
append([],Y,Y).

append([A|X], Y, [A|Z]) :- append(X,Y,Z).

1 ?- append([1,2], [3,4], Z).
T Call: (7) append([1, 2], [3, 4], _G2044)
T Call: (8) append([2], [3, 4], _G2126)
T Call: (9) append([], [3, 4], _G2129)
T Exit: (9) append([], [3, 4], [3, 4])
T Exit: (8) append([2], [3, 4], [2, 3, 4])
T Exit: (7) append([1, 2], [3, 4], [1, 2, 3, 4])
Z = [1, 2, 3, 4].

Lists	in	Prolog	

Append	two	lists:	
append(X,	Y,	Z)	is	true	if	Z	=	[X	|	Y].		|	par//ons	a	list	into	head	and	tail	
append([],Y,Y).

append([A|X], Y, [A|Z]) :- append(X,Y,Z).

1 ?- append([X, Y, [1,2]).

X = [],
Y = [1, 2] ;

X = [1],

Y = [2] ;

X = [1, 2],

Y = [] ;
false.	

Reversing	a	list	

Reverse	a	list:	
reverse([],X,X).
reverse([X|Y],Z,W) :- reverse(Y,[X|Z],W).

reverse(A,R) :- reverse(A,[],R).

1 ?- reverse([1,2,3], X). (or reverse(X, [1,2,3]).)

X = [3, 2, 1].

last(List, Last) :- reverse(List,R), first(R, Last).

1 ?- last([1,2,3], X).

X = 3.

2 ?- last([1,2,X], 17).
X = 17.

3 ?- last([1,2],2).

true.

last([Elem], Elem).
last([_|Tail], Elem) :- last(Tail,Elem).

Visualizing	This	

Permuta/ons	

takeout(X,[X|R],R).
takeout(X,[F|R],[F|S]) :- takeout(X,R,S).

perm([],[]).

perm([X|Y],Z) :- perm(Y,W), takeout(X,Z,W).

1 ?- perm([1,2,3], P).

P = [1, 2, 3] ;

P = [2, 1, 3] ;

P = [2, 3, 1] ;
P = [1, 3, 2] ;

P = [3, 1, 2] ;

P = [3, 2, 1] ;

false.

Verifying	rather	than	compu/ng	

Permuta/ons	

takeout(X,[X|R],R).
takeout(X,[F|R],[F|S]) :- takeout(X,R,S).

perm([],[]).

perm([X|Y],Z) :- perm(Y,W), takeout(X,Z,W).

1 ?- perm([1,2,3,4, 5], P), first(P, 2), last(P, 4).

P = [2, 1, 3, 5, 4] ;

P = [2, 3, 1, 5, 4] ;

P = [2, 3, 5, 1, 4] ;
P = [2, 1, 5, 3, 4] ;

P = [2, 5, 1, 3, 4] ;

P = [2, 5, 3, 1, 4] ;

false.

Permuta/ons	

sumlist([],0).

sumlist([X|Rest],Sum) :- sumlist(Rest, Sum1), Sum is X + Sum1.

1 ?- perm([1,2,3,4], P), first(P,X), last(P,Y), sumlist([X, Y],

5).

P = [1, 2, 3, 4];

P = [1, 3, 2, 4];

P = [3, 1, 4, 2];

P = [3, 4, 1, 2];
P = [2, 1, 4, 3];

P = [2, 4, 1, 3];

P = [4, 2, 3, 1];

P = [4, 3, 2, 1];

false.

Revisi/ng	Lists	&	Append	

A	list	is	built	with	brackets:	[…]	
	[apple,	pear,	banana,	peach],	[]	(∅	or	the	empty	list)	

	
The	|	operator	unifies	this	way:	

	[Head	|	Tail]	=	[apple	|	pear,	banana,	peach]	
	
Examining	unifica/on:	
	
[X|Y]	unifies	with	[a,b,c]	with	the	unifier	{X	=	a,	Y	=	[b,c]}.	
[X|Y]	unifies	with	[a,b,c,d]	with	the	unifier	{X	=	a,	Y	=	[b,c,d]}.	
[X|Y]	unifies	with	[a]	with	the	unifier	{X	=	a,	Y	=	[]}.	
[X|Y]	does	not	unify	with	[].	
	

Revisi/ng	Append	
Append	two	lists:	
append(X,Y,Z)	is	true	if	Z	=	[X	|	Y].		|	par//ons	a	list	into	head	and	tail	
append([],List,List).

append([H|T], List, [H|New]) :- append(T,List,New).

	
	
Let’s	examine:	append([],List,List).
	
	
	
	

Query	 Unifier	 Prolog	Output	

?-	append([],[b,c,d],[b,c,d]).		 {List	=	[b,c,d]}		 True.	

?-	append([],[b,c,d],X).		 {List	=	[b,c,d],	X	=	[b,c,d]}	 X	=	[b,c,d]	

?-	append(X,Y,Z).		 {X	=	[],	Y	=	List,	Z	=	List}	 X	=	[],	Y	=	Z	

?-	append([],[b,c],[b,c,d]).	 {}	 False.	

Revisi/ng	Append	
Append	two	lists:	
append(X,Y,Z)	is	true	if	Z	=	[X	|	Y].		|	par//ons	a	list	into	head	and	tail	
append([],List,List).

append([H|T], List, [H|New]) :- append(T,List,New).

	
Let’s	examine:		

append([H|T], List, [H|New]) :- append(T,List,New).

One	way	to	think	about	this:			

	If	we	have	append(T,List,New)	is	true,	meaning	New	=	[T,	List]	,	then	
adding	something	to	the	beginning	of	T	and	New doesn’t	change	the	
interpreta/on,	so		append([H|T], List, [H|New])	is	also	true,	
implying	[H|New] = [[H|T], List].

If	this	makes	sense,	then	just	think	about	it	backwards!	
	
	
	
	

Revisi/ng	Append	
Append	two	lists:	
append(X,Y,Z)	is	true	if	Z	=	[X	|	Y].		|	par//ons	a	list	into	head	and	tail	
append([],List,List).

append([H|T], List, [H|New]) :- append(T,List,New).

	
Let’s	examine:		

append([H|T], List, [H|New]) :- append(T,List,New).

?- append([1,2,3], [4,5,6], Result).

Unifies:	{	H	=	1,	T	=	[2,3],	List	=	[4,5,6],	Result	=	[1|New]	}	
?- append([2,3], [4,5,6], New).

Unifies:	{	H	=	2,	T	=	[3],	List	=	[4,5,6],	Result	=	[2|New]	}	
?- append([3], [4,5,6], New).

Unifies:	{	H	=	3,	T	=	[],	List	=	[4,5,6],	Result	=	[3|New]	}	
?- append([], [4,5,6], New).

	

	
	
	
	

Revisi/ng	Append	
(1) append([],List,List).

(2) append([H|T], List, [H|New]) :- append(T,List,New).
?- append([1,2,3], [4,5,6], Result).

Unifies:	{	H	=	1,	T	=	[2,3],	List	=	[4,5,6],	Result	=	[1|New]	}	
?- append([2,3], [4,5,6], New).

Unifies:	{	H	=	2,	T	=	[3],	List	=	[4,5,6],	Result	=	[2|New’]	}	
?- append([3], [4,5,6], New’).
Unifies:	{	H	=	3,	T	=	[],	List	=	[4,5,6],	Result	=	[3|New’’]	}	
?- append([], [4,5,6], New’’). (This now matches (1)!)

Unifies:	{New’’	=	[4,5,6]	}	
?- append([], [4,5,6], [4,5,6]).	
?- append([3], [4,5,6], [3,4,5,6]).
?- append([2,3], [4,5,6], [2,3,4,5,6]).

?- append([1,2,3], [4,5,6], [1,2,3,4,5,6]).

	

	
	
	
	

Lists	in	Prolog	
Append	two	lists:	
append(X,Y,Z)	is	true	if	Z	=	[X	|	Y].		|	par//ons	a	list	into	head	and	tail	
append([],List,List).

append([H|T], List, [H|New]) :- append(T,List,New).

1 ?- append([1], [2,3], Z).

Z = [1, 2, 3].

2 ?- append([1], [2,3], Z).

 T Call: (7) append([1], [2, 3], _G751)

 T Call: (8) append([], [2, 3], _G826)

 T Exit: (8) append([], [2, 3], [2, 3])

 T Exit: (7) append([1], [2, 3], [1, 2, 3])

Z = [1, 2, 3].

Lists	in	Prolog	
Append	two	lists:	
append(X,Y,Z)	is	true	if	Z	=	[X	|	Y].		|	par//ons	a	list	into	head	and	tail	
append([],List,List).

append([H|T], List, [H|New]) :- append(T,List,New).

1 ?- append([1,2,3], [4,5,6], Z).

Z = [1, 2, 3, 4, 5, 6].

2 ?- append([1,2,3],[4,5,6],Z).

 T Call: (7) append([1, 2, 3], [4, 5, 6], _G777)

 T Call: (8) append([2, 3], [4, 5, 6], _G861)

 T Call: (9) append([3], [4, 5, 6], _G864)

 T Call: (10) append([], [4, 5, 6], _G867)

 T Exit: (10) append([], [4, 5, 6], [4, 5, 6])

 T Exit: (9) append([3], [4, 5, 6], [3, 4, 5, 6])

 T Exit: (8) append([2, 3], [4, 5, 6], [2, 3, 4, 5, 6])

 T Exit: (7) append([1, 2, 3], [4, 5, 6], [1, 2, 3, 4, 5, 6])

Z = [1, 2, 3, 4, 5, 6].

N-Queens	

If	two	queens	can	afack	each	other,	then	one	of	the		
following	must	be	the	case:	
•  They	must	be	on	the	same	column.	
•  They	must	be	on	the	same	row.	
•  The	sum	of	the	row	and	column	must	be	the	same	for	both.	
•  The	difference	of	the	row	and	column	must	be	the	same	for	both.	
	

To	solve	N-Queens,	we	simply	need	to	be	able	to	describe	a	bad	solu/on.	
We	don’t	need	to	know	how	to	“generate”	a	good	one!	

Check	that	a	posi/on	is	safe	

queenDoesntHit(_,_,[])	:-	!.		
	

queenDoesntHit(Col,Row_dist,[A_queen_col|OtherQueens])	:-	!,	
Diag_hit_col1	is	Col	+	Row_dist,	A_queen_col	=\=	Diag_hit_col1,	
Diag_hit_col2	is	Col	-	Row_dist,	A_queen_col	=\=	Diag_hit_col2,	
Row_dist1	is	Row_dist	+	1,	queenDoesntHit(Col,Row_dist1,OtherQueens).		

	
safePosi/on([_])	:-	!.	%	A	single	queen	posi/on	is	always	safe	
	

safePosi/on([A_queen|OtherQueens])	:-	!,	queenDoesntHit(A_queen,
1,OtherQueens),	safePosi/on(OtherQueens).		

How	many	ways	to	make	change	from	a	dollar?	

change([H,Q,D,N,P]) :-
 member(H,[0,1,2]), /* Half-dollars */

 member(Q,[0,1,2,3,4]), /* quarters */

 member(D,[0,1,2,3,4,5,6,7,8,9,10]) , /* dimes */

 member(N,[0,1,2,3,4,5,6,7,8,9,10, /* nickels */

 11,12,13,14,15,16,17,18,19,20]),

 S is 50*H + 25*Q +10*D + 5*N,

 S =< 100,

 P is 100-S.

?- findall(T, change([H,Q,D,N,P]), B), length(B,C).

Note:	It’s	easier	to	show	one	solu/on	exists	than	to	count	all	possible	solu/ons!	

Parsing	in	Prolog	

“The	agent	likes	dry	mar/nis.”	
	
	

A	Very	Simple	Grammar	
S → np, vp.

np → det, n.
vp → v, np.

vp → v.

det → [the].

det → [a].

det → [dry].
n → [agent].

n → [hero].

n → [martinis].

v → [likes].

v → [drinks].

This	is	called	a	definite	clause	grammar	(DCG).	
Prolog	can	automa/cally	turn	these	into	Prolog	

programs!	

?- parse(Structure, [the,agent,likes,dry,martinis]).
Structure = s(np(the, agent), vp(likes, np(dry, martinis)))

Using	Probabilis/c	Prolog	

•  Suppose	we	are	less	interested	in	whether	something	is	true	but	rather	
how	likely	it	is	to	be	true.	

•  We	want	to	afach	probabili/es	to	our	rules	in	Prolog	and	guide	the	search	
along	the	probabilis/c	most	likely	path!	

•  So,	we	assign	every	rule	αi	:-	βi	a	unique	probability	(pi)	
	 		αi	:-	βi		(pi)	

•  Two	ques/ons:	
–  When	would	we	want	to	do	this?	
–  How	do	we	know	what	the	probabili/es	should	be?	
–  How	does	this	change	Prolog’s	seman/cs?		

	

Remember	this	game?	�	
	

We’ll	call	it	the	next	number	game:	
Given	an	ordered	sequence	of	numbers,	come	up	with	the	next	number!	

	

1,	2,	4,	?	
6?		(Even	numbers)		No,	how	do	you	explain	the	1?	

8?		(Powers	of	2)		Seems	good!		

Joint	work	with	Yue	Gao.	
(To	appear	in	Proceedings	of	the	Thirty-First	Annual	Conference	of	the	Cogni6ve	Science	
Society.	Amsterdam,	Netherlands.	2009.)	

1,8,27,…	

Why?		This	is	the	sequence	x3.	

64	

2,	3,	5,	7,…	
11	

Why?		These	are	the	prime	numbers.	

But	is	it	always	so	obvious?	

1,	2,	4,	?	

6, n = prime numbers – 1
1, 2, 4, 6, 10, 12, 16, …

7, n =i(i+1)/2+1
1, 2, 4, 7, 11, 16, 22, 29, …

8, n = 2i

1, 2, 4, 8, 16, 32, 64, …

9, n = partial sums of Catalan numbers
1, 2, 4, 9, 23, 65, 197, …

The	Problem	of	Induc/ve	Bias	

•  How	do	you	make	a	guess	with	so	lifle	data?!	
–  Classic	problem	in	philosophy	and	AI!	

	
•  We	innately	prefer	certain	explana/ons	to	others.	

–  Called	the	induc.ve	bias	

•  For	computers	to	reason	as	people	do,	they	need	to	share	our	innate	
preferences!	

•  But	what	are	our	innate	cogni/ve	biases?!	

	

	

A	Grammar	for	Mental	Arithme/c	

•  Expression	→	PrefixOp	(Expression)	p_1	
•  Expression	→	Expression	InfixOp	Expression	p_2	
•  Expression	→	Previousi-1	p_3	|	Previousi-2	p_4	|	Previousi-3	p_5	
•  Expression	→	Number	p_6	
•  Expression	→	Index	p_7	
•  PrefixOp	→	exp	p_8	|	log	p_9	|	sin	p_10	|	cos	p_11	|	tan	p_12	
•  PrefixOp	→	floor	p_13	|	ceiling	p_14	|	mod	p_15	|	rem	p_16	|	prime	p_17		
•  InfixOp	→	+	p_18	|	−	p_19	|	×	p_20	|	÷	p_21	|	^	p_22	
•  Number	→	SmallNum	|	LargeNum	|	SpecialNum	
•  SmallNum	→	[-9	p_26,…,9	p_45]			
•  LargeNum	→	[-50,…,	-11,	11,	…,	50]	p_46	
•  SpecialNum	→	-100	p_47	|	-10	p_48	|	¼	p_49|	½	p_50		
•  SpecialNum	→	π	p_51	|	10	p_52	|	100	p_53	
•  Index	→	[1,…,10]	p_54	
	

Collect	Data	of	People	Solving	Problems	

•  Consider	the	sequence	[1,	4,	9].				We	found	that	all	subjects	predicted	the	
next	 number	 would	 be	 16,	 but	 provided	 two	 syntac/cally	 different	 but	
numerically	equivalent	genera/ng	formulae.	

		
	40%	guessed:	f(index)	=	index2	

		
	60%	guessed:	f(index)	=	Previousindex-1	+	2×index	+	1		

	

Who	would	have	imagined	this??	

Collect	Data	of	People	Solving	Problems	

•  Consider	the	sequence	[1,2,10].		That	this	sequence	is	in	some	sense	more	
difficult	was	apparent	because	subjects	spent	more	/me	studying	it,	open	
commen/ng	it	felt	“difficult”	or	under	constrained.	

		
	All	but	one:	f(index)	=	Previousindex-1	+	(index	–	1)3	
	Yielding:	[1,	2,	10,	37,	101,	…]	
			
	One	guess:	f(index)	=	Previousindex-1	+	(Previousindex-1)3	
	Yielding:	[1,	2,	10,	1010,	1.0303×109,…]	

	

Structurally	quite	similar.	

Collect	Data	of	People	Solving	Problems	

•  Consider	the	sequence	[0,7,26],	where	all	the	subjects	agreed	on	the	next	
element	(63)	and	on	the	genera/ng	formula:	

		
	f(index)	=	index3	–	1		

	

Here,	cubing	is	the	“simplest”	explana/on	for	people.	
We	had	to	pick	a	sequence	to	force	them	to	cube.	

Deriving	the	Probabili/es	
Produc9on	Rule Probability

Expression	→	PrefixOp	(Expression) 0.00402
Expression	→	Expression	InfixOp	Expression 0.349
Expression	→	Previousi-1 0.177
Expression	→	Previousi-2 0.0321
Expression	→	Number 0.317
Expression	→	Index 0.104

InfixOp	→	+ 0.388
InfixOp	→	− 0.143
InfixOp	→	× 0.263
InfixOp	→	÷ 0.0388
InfixOp	→	^ 0.163

SmallNum	→	-1 0.04
SmallNum	→	1 0.24
SmallNum	→	2 0.40
SmallNum	→	3 0.08
SmallNum	→	4 0.04
… …

From	a	corpus	of	
solu/ons,	we	can	derive	
the	probabili/es	on	
each	rule	using	the	
inside-outside	
algorithm.		

The	sequence	[8,4,1]	

(A)	is	before	training	

(B)	is	aper	training.	
88%	of	humans	select	this	answer.	

The	sequence	[1,	2,	4,	6]	

The	system	predicts	(A)	is	
91%	likely.		The	second	

most	likely	solu/on,	in	(B),	
has	probability	of	1%.	

Probabilis/c	Prolog	

•  A	very	interes/ng	tool	for	modeling	cogni/on	
–  Predic/ng	human	behavior	is	also	commercially	valuable!	

•  We	need	a	corpus	of	data	to	train	our	system.	
–  This	is	how	we	derive	the	probabili/es.	
–  Alterna/vely,	you	might	know	them	in	advance.	

•  The	probabili/es	capture	the	induc/ve	bias	of	the	sample	popula/on	represented	
in	the	corpus.	

•  There	is	also	induc/ve	bias	reflected	in	the	structure	of	the	grammar,	but	learning	
a	grammar	is	much	more	difficult.	

–  For	math,	it	seems	unnecessary.	

•  We	use	a	programming	language	called	Prism	to	implement	this.	
–  Uses	the	Viterbi	algorithm	to	derive	the	most	likely	proofs.	
–  A	very	different	no/on	than	a	tradi/onal	proof	in	mathema/cs.	

