CS540
Introduction to
Artificial Intelligence:
Programming in Logic

“We just haven't been flapping them hard enough.”

Michael Coen
Week of Wednesday, November 11, 2015
(Week #10)

Declarative Programming

A powerful technique
— Rely on our programming language to do most of the work

Do you recall this quote?

Underlying our approach to this subject is our conviction that “computer
science” is not a science and that its significance has little to do with
computers. The computer revolution is a revolution in the way we think
and in the way we express what we think... Mathematics provides a
framework for dealing precisely with notions of “what is.” Computation
provides a framework for dealing precisely with notions of “how to.”

Abelson and Sussman, Structure and Interpretation of Computer Programs
(1984).

Declarative Programming

A powerful technique
— Rely on our programming language to do most of the work

Do you recall this quote?

Underlying our approach to this subject is our conviction that “computer
science” is not a science and that its significance has little to do with
computers. The computer revolution is a revolution in the way we think
and in the way we express what we think... Mathematics provides a
framework for dealing precisely with notions of “what is.” Computation
provides a framework for dealing precisely with notions of “how to.”

Abelson and Sussman, Structure and Interpretation of Computer Programs
(1984).

Programming in logic blurs this distinction.

Programming Styles

* Imperative:
— Procedural
Step -by-step instructions for doing something
C, C++, Java, Python, Fortran, etc.

— Functional

Solve problems by reducing them to simpler problems
Recursion is a basic motif
Scheme, Lisp, Algol, Haskel, etc.

 Declarative:

Jx is the y such that y* = x and y =0

Um, ok? But what’s \/7 ?
Prolog, Aleph, Golem, etc.

Preliminary Prolog

* This will be a gentle introduction to Prolog

— The ideas are important
— You should know this stuff is possible

* Prolog = “Programming in Logic”
— Developed by Colmerauer, Roussel, Kowalski, and others around 1972

“Programmation en Logique”

* Stems from two intellectual threads:
— Logic as the theoretical foundation for Computer Science
— Strong focus in Al to use logic to represent and reason about problems.

Early Al focused almost exclusively on symbolic logic. Probabilistic logics have
made a strong resurgence in recent years, particularly with the popularity of

Bayesian methods.

Some Comments about Logic Programming

Prolog is the most popular logic programming language
— Many versions of Prolog
— SWI-Prolog is free, runs on all platforms, and very popular: http://www.swi-prolog.org

— Weé'll be using SWI-Prolog for demos and the little bit of Prolog you may be playing with.

Other popular implementations:
— BProlog: Provides memoization and all the mathematical functions missing in ISO Prolog
— Datalog: Russell and Norvig seem to like this. (Should have replaced SQL years ago...)
* Not Turing-complete! (This is not a “real” programming language)
— Many, many others... (Yap = “Yet Another Prolog” is popular here)

Major programming languages have Prolog extensions, libraries...
* Java, C, C++, Matlab, Scheme, Python, Haskell, SQL, Perl, Fortran, etc...

Side note:
— | program alot in a language called Prism, a probabilistic version of Prolog.
— Derives the most likely inference.
— Wonderful tool for modeling human reasoning, especially “weird” human reasoning

Knowledge Representation

Towards a definition of “family!”

Motherhood: Vm,c Mother(c) = m < Female(m) A Parent(m,c).
Husband: Vw,h Husband (h,w) < Male(h) A Spouse(h,w).
Disjoint: Vx Male(x) < —Female(x).
Inverse: Vp,c Parent(p,c) < Child(c, p).
Sibling: Vx,y Sibling(x,y) < x#y A dp Parent(p,x) A Parent(p,y)
Transitivity: Vg,c Grandparent(g,c) < dp Parent(g,p) A Parent(p,c).

Recursion: Va,c Ancestor(a,c) < dp Parent(p,c) A Ancestor(a,p).

Recursion: Va,c Ancestor(a,c) < dr Ancestor(r,c) A Parent(a,r).

Can we prove things in this system?

- Vx,y Sibling(x,y) & Sibling(y,x)

Knowledge Representation in Prolog

Fatherhood: Vd,c Father(c)=d < Male(d) A Parent(d ,c).

Child) @ male (Da@ parent (Dad, Chil@

So, what this rule really says is:

Fatherhood: Vd,c Male(d) A Parent(d,c) = Father(c)=d

How would | say “Mike is male” ?

male) .

Things to remember:

e Variables are always upper-cased.
e Constants are lower-cased.

e Commas mean “and.”

e Everything ends in a period.

mother (P, C)
father (P, C)

wife (W, H)

husband (H, W) :

Defining a family
female (P), parent (P,C).

male (P), parent(P,C).

female (W), spouse (W,H).
male (H), spouse (H, W) .

Defining a family

mother (P,C) :- female(P), parent (P,C).
father (P,C) :- male(P), parent(P,C).
Rules

wife (W, H) :— female (W), spouse(W,H).
\\;husband(H,W):— male (H), spouse(H,W).J/
//’ﬁale(mike). ‘\\

female (aimee) .

female(lila) .

spouse (mike, aimee). Facts

parent (mike, lila).

\\\?arent aimee, lila). 4//

(
(
spouse (aimee, mike).
(
(

Prolog programs consist of rules, facts, and queries!

Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 7.3.11)
Copyright (c) 1990-2015 University of Amsterdam, VU Amsterdam
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

% /Volumes/MacintoshHD2/Users/mhcoen/Dropbox/FileS/Teaching/CS540~15/Lectures/Week
10/family-examples.pl compiled 0.00 sec, 20 clauses

1 ?- father(mike, 1lila). 9 |s mike the father of lila?

true.
zr‘?‘;'mother(aimee, lila). % Is aimee the mother of lila? Programs are
written in an editor.
3 ?- father(mike, X). % Who is mike the father of?
X = lila. _ o
_ . _ _ . Queries are inside
:aigemother(x, aimee). 0/o Who is the mother’of aimee” the program or
’ %o The system doesn’t know!
5 2 char(X. 111 typed at the read-
- mother ’ lla). i i .
X o afoegon) % Who is the mother of lila? eval-print loop.
false. % What'’s this??
?- father(X, Y). % Who is the father of who?

6

X = mike,

Y = lila.

7 ?- father(mike,X), mother(aimee,X). % \Who are aimee and mike the mother and father of?
X = lila.

8

2= |

Defining a family

husband (H, W) :

.

male (H

mother (P,C) :- female(P), parent (P,C)
father (P,C) :- male(P), parent(P,C).
wife (W, H) :— female (W), spouse(W,H).

), spouse (H, W) .

J

//imale(mike).

female (aimee) .

female (1ila) .

spouse (mike, aimee).

parent (mike, lila).

(

(
spouse (aimee, mike).

(
\\fmrent(aimee, lila).

~

Rules

Facts

Quick check...

18 ?- father (X, 1lila).

X = mike.

Okay, that’s fine...

Defining a family

//;mther(P,C) :— female (P), parent(P,C);\\
father (P,C) :- male(P), parent(P,C).
Rules
wife (W, H) :— female (W), spouse(W,H).
husband (H,W) : - male (H), spouse (H, W) .
\\ﬁ@le(X) :— not (female (X)) . A//
//ffemale(aimee). ‘\\
female(lila) .
spouse (mike, aimee). Facts
spouse (aimee, mike).
parent (mike, lila).
\\kparent(aimee, lila). 4//
1 ?- male(mike).
Query

true.

But????

1 ?- father(mike,lila).

true.

2 ?- father(X,1lila).

false.

What’s going on here? Why can it prove | am Lila’s father,
but it can’t derive who the father of Lila is anymore???

It’s because this rule

father (P,C) :- male(P), parent(P,C).

never unifies in the second query!! What fact or goal would P unify with?
All we have is this:

male (X) :— not (female (X)) .

We can’t unify a variable through a “negative” goal.
There is nothing left to do! Prolog proves through negation!
We can’t prove through a “negative negation!” (Oy! Does my head hurt!!)

But????
If this had worked, you could write an evil rule like:
true (X) :— not (untrue (X)).

This would enumerate through all true interpretations of X.

Not is unsound in Prolog!

The ghosts of numerous mathematicians would come yell at you if it were.

[NON | X/ ferm.pl

File Edit Browse Compile Prolog Pce Help 4|5
ferm.pl | 5
checkFermat(A, B, C, N) :- =
AtoN 1s A”N,
BtoN is B”N,
CtoN 1s C”N,
Sum 1s AtoN + BtoN,
CtoN = Sum,
viritFafF I NT FAaiind +hat NG 1L NG — QAL W Tn Nl D N ~ NTN
| NN _

Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 7.3.11)

Copyright (c) 1990-2015 University of Amsterdam, VU Amsterdam
pSWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,

and you are welcome to redistribute it under certain conditions.
p:Please visit http://www.swi-prolog.org for details.

P rFor help, use ?- help(Topic). or ?- apropos(Word).

p

I)% /Volumes/MacintoshED2/Users/mhcoen/Dropbox/FileS/Teaching/CS540~15/Lectures/Week E
10/ferm.pl compiled 0.00 sec, 8 clauses g
1 ?- checkFermat(3,4,5,2). /
I found that 372 + 472 = 572
true.

2 ?- proveFermat(l,4,5,2)
I found that 372 + 472 =
true .

542

3 ?- not(proveFermat).|

Defining a family

//;mther(P,C) :— female (P), parent(P,C);\\
father (P,C) :-|parent(P,C),male(P).

4____—/’/ Rules

spouse (W, H) .

spouse (H, W) .

'_h
D
@
|_|
0]
>

Facts

1 ?- father (X,1lila).

[¢]

X = mike. % Yay!!! Query

Defining a family

//;mther(P,C) :— female (P), parent(P,C);\\
father (P,C) :- parent(P,C),male (P).
Rules
wife (W, H) :— female (W), spouse(W,H).

husband (H,W) : - male (H), spouse (H, W) .

\\lee(X) :— not (female (X)) . A//
‘\

(lffemale aimee) .
female (1ila) .
[spouse mike, aimee).] Facts

(
(
(
spouse (aimee, mike).
(
(

parent (mike, lila).

\\¥parent aimee, lila). 41/

Defining a family

female (P), parent(P,C)T\\\

///;other(P,C)

father (P,C) :- parent(P,C),male (P).
Rules
wife (W, H) :— female (W), spouse(W,H).
husband (H,W) : - male (H), spouse (W, H) .
male (X) :— not (female (X)) .
\\\Epouse(X,Y) :— spouse (Y, X). % Good?A///
/,>female aimee) . ﬂ\
female (1ila) .

parent (mike, lila).

(
(
spouse (mike, aimee) . Facts
(
(

\\»parent almee, lila). 4/

Defining a family

female (P), parent(P,C)i\\\

///;other(P,C)

father (P,C) :- parent(P,C),male (P).
Rules
wife (W, H) :— female (W), spouse(W,H).
husband (H,W) : - male (H), spouse (W, H) .
male (X) :— not (female (X)) .
\\\Epouse(X,Y) :— spouse (Y, X). % Good?A///
/,ﬁfemale(aimee). i\
female (1ila) .
spouse (mike, aimee) . Facts
parent (mike, lila).
\\¥parent(aimee, lila). ,/
(" . .
1 ?- spouse (aimee,mike) .
ERROR: Out of local stack Query

Exception: (246,482) spouse (mike, aimee) °?

Defining a family

//i;other(P,C) :— female (P), parent(P,C)T\\\

father (P,C) :- parent(P,C),male (P).
Rules
wife (W, H) :— female (W), spouse(W,H).
husband (H,W) : - male (H), spouse (W, H) .
male (X) :— not (female (X)) .
spouse (X, Y) :— married(Y,X). % Good!
\\\gpouse(X,Y) :— married(X,Y). % Goodl‘///
/,7female(aimee). i\
female (1ila) .
married (mike, aimee). Facts
parent (mike, lila).
\\7parent(aimee, lila). 4/
o . .
1 = spouse (almee, mike) . Query

true

Towards a definition of a family...

Motherhood: Vm,c Mother(c) = m < Female(m) A Parent(m,c).
Husband: Vw,h Husband (h,w) < Male(h) A Spouse(h,w).
Disjoint: Vx Male(x) < —Female(x).
Inverse: Vp,c Parent(p,c) < Child(c, p).
/ Sibling: Vx,y Sibling(x,y) < x#y A dp Parent(p,x) A Parent(p,y)\

Transitivity: Vg,c Grandparent(g,c) < dp Parent(g,p) A Parent(p,c).

Recursion: Va,c Ancestor(a,c) < dp Parent(p,c) A Ancestor(a,p).

\Recursion: Ya,c Ancestor(a,c) < dr Ancestor(r,c) A Parent(a,r). /

Can we prove things in this system?

- Vx,y Sibling(x,y) & Sibling(y,x)

More definitions

sibling (X,Y) :- mother(M,X), mother(M,Y), father (F,X),
father (F,Y), different (X,Y).
different(X,Y) :- not(X = Y).
Rules
sisters (X,Y) :— sibling(X,Y), female(X), female(Y).
brothers (X,Y) :- sibling(X,Y), male(X), male(Y).
parent (roberta, jenny
Facts

()

parent (stanley, jenny) .

parent (roberta, mike)
()

parent (stanley, mike

1 ?- sibling(X,Y).
X = jenny, Query

Y = mike

Spanning the generations...

grandparent (X, Z)

ancestor (X,2) :- parent(X,2).

ancestor (X, Z2) :- parent(X,Y),

:— parent (X,Y), parent(Y,z).

ancestor (Y, 7Z) .

parent (stanley,
parent (avraham,

parent (yitzhok,

mike) .
stanley) .

avraham) .

Rules

Facts

Querying the Generations

1 ?- ancestor(yitzhok, mike).
true .

2 ?- ancestor(yitzhok, lila).

true.

3 ?- ancestor(lila, yitzhok).

false.

4 ?- ancestor(X,mike).

X =roberta; % A semicolon triggers a cut!
X =stanley ;

X =avraham;

X =chana;

X =vyitzhok ;

X =rivka ;

false.

5 ?- ancestor(rivka, X).
X =avraham;

X =stanley ;

X =jenny;

X =mike ;

X=lila;

false.

6 ?- ancestor(X, avraham).
X =yitzhok ;

X =rivka ;

false.

7 ?- ancestor(aimee,X).
X=lila.

8 ?- ancestor(X,lila), ancestor(Y,lila), spouse(X,Y).

X =aimee,
Y = mike ; Rivka Yitzhok ’
X = mike,
Y =aimee;
false.
‘ Chana Avraham ’
‘ Roberta Stanley ‘
‘ Aimee Mike ’ ‘ Jenny ‘

Important!

e Variables are universally quantified

spouse (X, Y) :— married(Y,X).

Vx,y married(x, y) = spouse(x, y)

* Unless they only appear in the clause of the rule:

ancestor (X, 2) :- parent(X,Y), ancestor(Y,z).

VY x,z (Ay parent(x,y)Aancestor (y,z)=ancestor(x,2))

Prolog will make up an internal variable to represent y.

What expressive power is this exactly?!

Spanning the generations...

ancestor (X, 2)

ancestor (X, 2)

parent (X, 2) .

parent (X,Y), ancestor(Y,ZzZ).

ancestor (X, 72)

ancestor (X, 2)

parent (X, 2) .

ancestor (X,Y), parent(Y,Zz).

ancestor (X, Z2)

ancestor (X, Z2)

parent (X, 2) .

ancestor (X,Y),ancestor (Y, 72) .

Which way is better?

Rules

Rules,

Rules,

Spanning the generations...

ancestor (X, 2)

ancestor (X, 2)

parent (X, 2) .

parent (X,Y), ancestor(Y,ZzZ).

ancestor (X, Z2)

ancestor (X, 2)

parent (X,Y), ancestor(Y,Zz2).

parent (X, 2) .

What’s wrong with this?

Rules

Rules,,?

Just replacing the operator names...

path (X, Z) = ancestor (X, 2) ancestor (X,Z) :- parent (X,Z). .
1ink (X, Z) = parent (X, Z) " ancestor (X,%) :- parent(X,Y), ancestor(Y,Z). |
path (X,2) :- link(X,Z).
path(X,7) :- link(X,Y), path(Y,Z7). Rules
path (X,z2) :- link(X,Y), path(Y,Zz).

. Rules,,?
path (X,2) :- 1link(X,2).

What’s wrong with this?

Suppose we have:
link(a,b), link (b, c)

NB: Russell & Norvig book gets this wrong!
path(X,2) :- path(X,Y), link(Y).

Prolog Does Backward Chaining Depth First Search

path (X, Z) :- l1link(X,Z2).

path (X,Z) :- 1link(X,Y), path(Y,Z).
link(a,b), link(b,c)

?—- path(a,c).

link (a,c)

fail

path(a, c)

path(a,Y)

path (X, Z2)
path (X, Z)
link(a,b), link(b,c)
?—- path(a,c).

:— 1link (X,Y), path(Y,Z).
:— link (X, 2) .

link (b, c)

link(a,Y)

(Y/Db)

path(a,c)

path(a,Y)

link (Y, c)

path(a,Y’) link(Y’,Y)

Remember this?

(define (factorial x)
(if (k= x 1)
1
(* x (factorial (- x 1)))))

VS.

(define (factorial x)
(* x (factorial (- x 1)))
(if (<= x 1)

um, done???))

This is the same issue...

(define (ancestor X Z)
(Lf (parent? X Z)
true
(and JY (parent X Y) (ancestor Y Z))))

VS.

(define (ancestor X 2)
(and JY (parent X Y) (ancestor Y Z))
(1f (parent? X Z)
true))

A B C
E—e—©

(a)

Finding a path fromatoc

can cause an infinite loop.

Caveats

Finding a path from a to node J, can be very inefficient.
Requires 877 inferences in this case because we try to
find paths from nodes that can’t reach the goal!
Forward chaining would only look at 62 inferences.

Memoization (tabling) fixes this!
It’s like adding dynamic programming.

More issues

 Most Prologs are not sound!
— Missing something called occur check during unification.

— Shouldn’t unify variable x with something containing variable x, but Prolog
doesn’t check!

data (X, name (X)) . Fact

\

1 ?- data(X,Y).

Y = name (X) . Flags in SWI-Prolog:

occurs check(true) .
occurs check(error) .
occurs check(false).

Queries
2 ?- data(Y,Y).

Y = name (**) .

This is like saying ¥=_name (name (name (name(...name(7)...)))) -—00 number of ti1

More thoughts

Prolog allows both side-effects and backtracking.
— What happens to side-effects when you backtrack???

Equality (=) in Prolog means unifiable. It does not mean logical equality!
— E.g., friend(bart, X) unifies with friend(Y, Milhouse)
— But 2.99999999.... might not unify with 3, even though we know 2.99999... = 3
— And in Prolog, foo #bar, even though they might actually be equal in FOL.

Prolog is a compromise between representational power, inferential
power, and efficiency.

Towers of Hanoi

move (1l,X,Y,) :- write('Move top disk from '), write(X), write(' to '), write(Y), nl.
move(N,X,Y,Z) :- N>1, M is N-1, move(M,X,Z,Y), move(l,X,Y,), move(M,Z,Y, X).

(define (hanoi n)

?- move(3,left,right,center).

Move top disk from left to right

(define (hanoi-hel{ Move top disk from left to center

(cend ((=n 1) | Move top disk from right to center

PrIntt M Move top disk from left to right
(hanoi-ne MoVve top disk from center to left
(hanoi-he| Move top disk from center to right
(hanoi-hel Move top disk from left to right

(hanoi-helper 'A

(else

Lists in Prolog

A list is built with brackets: [...]
e.g., [apple, pear, banana, peach], [] (empty list)
1 ?- member (2, [1,2,3]).% (Whatwouldhappen with member(2,X)?)

true

2 ?- member (X, [1,2,3]).

X =17
X = 2
X =3 ;
false.

3 ?—- member (2, [1, X, 3]).
X =2

First element

first([X@, X) . % _(underscore) means ignore the value

1 ?- first([1,2,3], X).
X = 1.

2 ?- first([X,2,3], 1).
X = 1.

3 ?- first([l, X, 2,3], 1).

true.

4 ?- first([2, X, 2,3], 1).

false.

Lists in Prolog
Append two lists:
append(X, Y, Z)istrueif Z=[X | Y]. | partitions a list into head and tail
append ([],Y,Y).
append ([A|X], Y, [A|Z]) :—- append(X,Y,Z).

?- append([1,2], [3,4], 2).
Z = _G2044
z = 1[1, 2, 3, 4]

append([1, 2], [3, 4], _G2044)
~G2044 = [1 | _G2126]
_G2044 = [1, 2, 3, 4]

append([2], [3, 4], _G2126)
_G2126 = [2 | _G2129]
_G2126 = [2, 3, 4]

append ([], [3, 4], _G2129)
_G2129 = [3,4]

Lists in Prolog

Append two lists:
append(X, Y, Z)istrueif Z=[X | Y]. | partitions a list into head and tail
append ([],Y,Y).

append ([A|X], Y, [AlZ]) :- append(X,Y,Z2).

1 ?- append([1,2], [3,4], Z).

T Call: (7) append([1, 2], [3, 4], _G2044)

T Call: (8) append([2], [3, 4], _G2126)

T Call: (9) append([], [3, 4], _G2129)

T Exit: (9) append([], [3, 41, [3, 41)

T Exit: (8) append([2], [3, 41, [2, 3, 4])

T Exit: (7) append([1, 2], [3, 4], [1, 2, 3, 4])
zZ =1[1, 2, 3, 4].

Lists in Prolog

Append two lists:

append(X, Y, Z)istrueif Z=[X | Y]. | partitions a list into head and tail
append ([],Y,Y).

append ([A|X], Y, [A|Z]) :—- append(X,Y,Z).

[append([x, Y, [1/2])-

Reversing a list

Reverse a list:
reverse([],X,X).
reverse ([X|Y],Z2,W) :- reverse(Y, [X|Z2],W).

reverse (A,R) :- reverse (A, [],R).

1 ?- reverse([1l,2,3], X). (or reverse (X, [1,2,3]).)
X = 1[3, 2, 1].

last (List, Last) :- reverse(List,R), first (R, Last).
1 ?- last([1l,2,3], X).
X = 3.
2 ?- last([1,2,X], 17).
X = 17. last ([Elem], Elem).

last ([|Tail], Elem) :- last(Tail,Elem).
3 ?- last([1,2],2).

Visualizing This

?- reverse([1,2,3],[1,A)
reverse([2,3],[1],3)
reverse([3],[2,1],A)

reverse([],[3,2,1],A)

true
A=103,2,1]

Permutations

takeout (X, [X|R],R).

takeout (X, [FIR], [FIS])

perm([],

perm ([X]

[
Y

) .
y 2)

3]

:— perm(Y,W),

4

([1,2,31, P).

:— takeout (X, R, S).

takeout (X, Z,W) .

Verifying rather than computing

takeout(3,[1,2,3]1,[1,2])

takeout(3,[2,3]1,[2])

takeout(3,[3],[1)

true

Permutations

takeout (X, [X|R],R).

takeout (X, [F|IR], [F|S]) :- takeout (X,R,S).
perm([],[]) .

perm([X]|Y],Z2) :— perm(Y,W), takeout (X,zZ,W).

1 ?- perm([1,2,3,4, 5], P), first(p, 2), last (P, 4).
p =12, 1, 3, 5, 41 ;

p =12, 3, 1, 5, 4] ;

p =12, 3, 5, 1, 41 ;

p =112, 1, 5, 3, 4] ;

Pp =112, 5, 1, 3, 41 ;

p =12, 5, 3, 1, 41 ;

Permutations

sumlist ([],0).

sumlist ([X|Rest],Sum) :— sumlist (Rest, Suml), Sum is X + Suml.

1 ?- perm([1,2,3,4], P), first(P,X), last(P,Y), sumlist([X, Y],

p =11, 2, 3, 4];
p =11, 3, 2, 4];
p =113, 1, 4, 2];
p=1[3, 4, 1, 2];
p =112, 1, 4, 3];
P = [2, 4, 1, 31;
p =14, 2, 3, 1];
p =14, 3, 2, 1];

~
~
~

Revisiting Lists & Append

A list is built with brackets: [...]
[apple, pear, banana, peach], [] (D or the empty list)

The | operator unifies this way:
[Head | Tail] = [apple | pear, banana, peach]

Examining unification:

[X|Y] unifies with [a,b,c] with the unifier {X =23, Y = [b,c]}.
[X|Y] unifies with [a,b,c,d] with the unifier {X=2a, Y = [b,c,d]}.
[X|Y] unifies with [a] with the unifier {X =23, Y =[]}.

[X|Y] does not unify with [].

Revisiting Append

Append two lists:

append(X,Y,Z) is true if Z=[X | Y]. | partitions a list into head and tail
append ([],List,List).

append ([H|T], List, [H|New]) :- append(T,List,New).

Let’s examine: append ([] ,List,List) .

_____aQuey | Unifir | PrologOutput

?- append([],[b,c,d],[b,c,d]). {List = [b,c,d]} True.
?- append([],[b,c,d],X). {List = [b,c,d], X = [b,c,d]} X = [b,c,d]
?- append(X,Y,Z). {X=1],Y = List, Z = List} X=[],Y=2Z

?- append([],[b,c],[b,c,d]). {} False.

Revisiting Append

Append two lists:

append(X,Y,Z) is true if Z=[X | Y]. | partitions a list into head and tail
append ([],List,List).

append ([H|T], List, [H|New]) :- append(T,List,New).

Let’s examine:

append ([H|T], List, [H|New]) :- append(T,List,New).

One way to think about this:

If we have append (T, List,New) is true, meaning New = [T, List] , then
adding something to the beginning of T and New doesn’t change the
interpretation, so append ([H|T], List, [H|New]) isalso true,
implying [H|New] = [[H|T], List].

If this makes sense, then just think about it backwards!

Revisiting Append

Append two lists:

append(X,Y,Z) is true if Z=[X | Y]. | partitions a list into head and tail
append ([],List,List).

append ([H|T], List, [H|New]) :- append(T,List,New).

Let’s examine:

append ([H|T], List, [H|New]) :- append(T,List,New).

?—- append([1,2,3], [4,5,0], Result).
Unifies: {H =1, T=[2,3], List = [4,5,6], Result = [1|New] }
?— append([2,3], [4,5,6], New).

Unifies: {H =2, T =[3], List = [4,5,6], Result = [2|New] }
?— append ([3], [4,5,6], New).

Unifies: {H =3, T =[], List = [4,5,6], Result = [3|New] }
?— append([], [4,5,6], New).

Revisiting Append

(1) append([],List,List).

(2) append([H|T], List, [H|New]) :- append(T,List,New).
?— append([1,2,3], [4,5,06], Result).

Unifies: {H =1, T=[2,3], List = [4,5,6], Result = [1|New] }

?— append([2,3], [4,5,6], New).

Unifies: { H =2, T =[3], List = [4,5,6], Result = [2|New’] }

?— append([3], [4,5,6], New’).

Unifies: {H =3, T =[], List = [4,5,6], Result = [3| New"’] }

?— append([], [4,5,6], New’’). (This now matches (1)!)
Unifies: {New” = [4,5,6] }

?— append([], [4,5,06], [4,5,0]).

?—- append([3], [4,5,6], [3,4,5,0]).

?— append([2,3], [4,5,6], [2,3,4,5,6]).

?—- append([1,2,3], [4,5,06], [1,2,3,4,5,6]).

Lists in Prolog

Append two lists:

append(X,Y,Z) is true if Z=[X | Y]. | partitions a list into head and tail
append ([],List,List).

append ([H|T], List, [H|New]) :- append(T,List,New).

1 ?- append([1], [2,3], Z).
z = [1, 2, 3].

2 ?- append([1], [2,3]1, 2).

T Call: (7) append([1], [2, 3], G751)

T Call: (8) append([], [2, 3], G826)

T Exit: (8) append([], [2, 3], [2, 3])

T Exit: (7) append([1], [2, 3], [1, 2, 31)
Zz = [1, 2, 3].

Lists in Prolog

Append two lists:
append(X,Y,Z) istrue if Z=[X | Y]. | partitions a list into head and tail
append ([],List,List).

append ([H|T], List, [H|New]) :- append(T,List,New).

1 ?- append([1,2,3], [4,5,6], Z).
z = 1[1, 2, 3, 4, 5, 6].

2 ?- append([1,2,3],1[4,5,6],2).
T Call: (7) append([1l, 2, 3], [4, 5, 6], G777)
T Call: (8) append([2, 3], [4, 5, o], G8o6l)
T Call: (9) append([3], [4, 5, 6], G864)
T Call: (10) append([], [4, 5, 6], G867)
T Exit: (10) append([], [4, 5, 6], [4, 5, 61])
T Exit: (9) append([3], [4, 5, 6], [3, 4, 5, 6])
T Exit: (8) append([2, 3], [4, 5, 6], [2, 3, 4,
T Exit: (7) append([1l, 2, 31, [4, 5, 61, [1, 2,
Zz = [1, 2, 3, 4, 5, 6].

If two queens can attack each other, then one of the
following must be the case:

N-Queens

They must be on the same column.
They must be on the same row.
The sum of the row and column must be the same for both.

The difference of the row and column must be the same for both.

To solve N-Queens, we simply need to be able to describe a bad solution.
We don’t need to know how to “generate” a good one!

Check that a position is safe

qgueenDoesntHit(_, ,[]) :- !.

queenDoesntHit(Col,Row_dist,[A_queen_col|OtherQueens]) :- !,
Diag_hit_coll is Col + Row_dist, A_queen_col =\= Diag_hit_col1,
Diag_hit_col2 is Col - Row_dist, A_gqueen_col =\= Diag_hit_col?2,
Row_distl is Row_dist + 1, queenDoesntHit(Col,Row_dist1,0therQueens).

safePosition([_]) :- !. % A single queen position is always safe

safePosition([A_queen|OtherQueens]) :- |, queenDoesntHit(A_queen,
1,0therQueens), safePosition(OtherQueens).

How many ways to make change from a dollar?

Change([HrQ/D/N/P]) T

member (H, [0,1,2]), /* Half-dollars */
member (Q, [0,1,2,3,4]), /* quarters */
member (D, [0,1,2,3,4,5,06,7,8,9,10]) , /* dimes */
member (N, [0,1,2,3,4,5,6,7,8,9,10, /* nickels * /

11,12,13,14,15,16,17,18,19,2071),
S is 50*H + 25*Q +10*D + 5*N,
S =< 100,
P 1s 100-S.

?- findall (T, change([H,Q,D,N,P]), B), length(B,C).

Note: It's easier to show one solution exists than to count all possible solutions!

Parsing in Prolog

“The agent likes dry martinis.”

S
NP VP

-) —
7
v

Det N
|
|
|
the agent likes Det

N
\
[
[

dry martinis

A Very Simple Grammar

S -~ np, vp.

np - det, n.

Vb - VvV, Dp. This is called a definite clause grammar (DCG).
VP - V. Prolog can automatically turn these into Prolog
det — [the]. programs!

det - [a]. S

det — [dry]. / \

n —~ [agent]. w .

n — [hero]. / \

n — [martinis]. Det N v NP

\Y% - [likes]. \
\4 — [drinks] e agent likes %l T

?— parse (Structure, [the,agent,likes,dry,martinis]).
Structure = s (np(the, agent), vp(likes, np(dry, martinis)))

Using Probabilistic Prolog

Suppose we are less interested in whether something is true but rather
how likely it is to be true.

We want to attach probabilities to our rules in Prolog and guide the search
along the probabilistic most likely path!

So, we assign every rule a. :- B; a unique probability (p))
a; - B; (p;)

Two gquestions:
— When would we want to do this?
— How do we know what the probabilities should be?
— How does this change Prolog’s semantics?

Remember this game? |?

We'll call it the next number game:

Given an ordered sequence of numbers, come up with the next number!

67? (Even numbers) No, how do you explain the 1?

1,2,4,7

8? (Powers of 2) Seems good!

Joint work with Yue Gao.
(To appear in Proceedings of the Thirty-First Annual Conference of the Cognitive Science
Society. Amsterdam, Netherlands. 2009.)

1,8,27,...
64

Why? This is the sequence x°.

2,3,5,7,..
11

Why? These are the prime numbers.

But is it always so obvious?

6, n = prime numbers — 1
1,2,4,6,10,12, 16, ...

7, n=i(i+1)/2+1
1,2,4,7,11,16,22,29, ...

1,2,4,°7
8, n="2"
1,2,4,8,16,32,64, ...

9, n = partial sums of Catalan numbers
1,2,4,9,23,65,197, ...

The Problem of Inductive Bias

How do you make a guess with so little data?!
— Classic problem in philosophy and Al

We innately prefer certain explanations to others.
— Called the inductive bias

For computers to reason as people do, they need to share our innate
preferences!

But what are our innate cognitive biases?!

A Grammar for Mental Arithmetic

Expression - PrefixOp (Expression) P-1

Expression - Expression InfixOp Expression P-?
Expression - Previous. ; -3 | Previous_,P-*| Previous, ;°-°
Expression - Number P-6

Expression = Index P-’

PrefixOp - expP-8 | logP-? | sinP-19 | cosP-11 | tanP-12
PrefixOp = floorP-13 | ceiling P-4 | mod P-> | remP-1® | prime P-%/
InﬁxOp - P18 | —p_19 | % Pb_20 | ~p_21 | N p_22

Number - SmallNum | LargeNum | SpecialNum
SmallNum - [-9P-26, .., 9P47]

LargeNum - [-50,..., -11, 11, ..., 50] P-#6

SpecialNum = -100P-47 | -10P-48 | ¥, P-49] 1, P30
SpecialNum = mtP->1 | 10P-°2 | 100P-°3

Index - [1,...,10] P->%

Collect Data of People Solving Problems

* Consider the sequence [1, 4, 9]. We found that all subjects predicted the
next number would be 16, but provided two syntactically different but
numerically equivalent generating formulae.

40% guessed: f(index) = index

60% guessed: f(index) = Previous + 2xindex + 1

Who would have imagined this??

Collect Data of People Solving Problems

* Consider the sequence [1,2,10]. That this sequence is in some sense more
difficult was apparent because subjects spent more time studying it, often
commenting it felt “difficult” or under constrained.

All but one: f(index) = Previous + (index — 1)
Yielding: [1, 2, 10, 37, 101, ...]

One guess: f(index) = Previous + (Previous)
Yielding: [1, 2, 10, 1010, 1.0303x10%,...]

Structurally quite similar.

Collect Data of People Solving Problems

* Consider the sequence [0,7,26], where all the subjects agreed on the next
element (63) and on the generating formula:

f(index) = index> — 1

Here, cubing is the “simplest” explanation for people.
We had to pick a sequence to force them to cube.

Deriving the Probabilities

From a corpus of
solutions, we can derive
the probabilities on
each rule using the
inside-outside
algorithm.

Production Rule Probability
Expression - PrefixOp (Expression) 0.00402
Expression = Expression InfixOp Expression 0.349
Expression - Previous, , 0.177
Expression - Previous, , 0.0321
Expression - Number 0.317
Expression = Index 0.104
InfixOp = + 0.388
InfixOp - - 0.143
InfixOp - x 0.263
InfixOp - + 0.0388
InfixOp > * 0.163
SmallNum - -1 0.04
SmallNum - 1 0.24
SmallNum - 2 0.40
SmallNum - 3 0.08
SmallNum = 4 0.04

The sequence [8,4,1]

(A)

Expression,

_— T

Expression, InfixOp Expression,
/’7\
Prevmlas‘...‘u.,. /I Expression, Infix
Number >|< |
SmallNum
2

f(index) = Previous;, g2/ (2 % Previous;,g...1)

Expressiong

Previous gndec-2)

(B) is after training.
88% of humans select this answer.

(A) is before training

Expression,

Expression, InfixOp, Expression,
/]\
Previom!s.,,.,u.,, 1 Expression, InfixOp, Expressiong
mc!cx | Nun!nber
SmalllNum
l

f(index) = Previous;,j...1 + index - 6

The sequence [1, 2, 4, 6]

(A)

Expression,

/~\\

Expression, InfixOp Expression,

N | |

PrefixOp Expression, - |

Prime index

f(index) = Prime(index) - 1

The system predicts (A) is
91% likely. The second
most likely solution, in (B),
has probability of 1%.

(B)

PrefixOp

Floor

index

Expression,

N

Expression,

/\

Expression, InfixOp, Expressiong

/’7\ I

Expression,

Expressiong / Number

Previous jndec-1) SmallNum

f(index)=Floor((index + Previous;ge)/ 2)

Probabilistic Prolog

A very interesting tool for modeling cognition
— Predicting human behavior is also commercially valuable!

We need a corpus of data to train our system.
— This is how we derive the probabilities.
— Alternatively, you might know them in advance.

The probabilities capture the inductive bias of the sample population represented
in the corpus.

There is also inductive bias reflected in the structure of the grammar, but learning
a grammar is much more difficult.

— For math, it seems unnecessary.

We use a programming language called Prism to implement this.
— Uses the Viterbi algorithm to derive the most likely proofs.
— Avery different notion than a traditional proof in mathematics.

