JavaScript on the Server: Node.js

CPEN 400A — Lecture 8

(Based on “JavaScript: The Definitive
Guide” by David Flanagan, and

Outline

Server-side JavaScript
Node.js modules
Events

Files

Network and Http

History of Server-side JS

e JavaScript evolved primarily on the client-side
in the web browser

* However, JavaScript began to be used as a
server side language starting in 2008-2009

— Rhino: JavaScript parser and interpreter written in
Java

— Node.js: V8 JavaScript engine in Chrome
(standalone), written in C++

Server-Side JS: Advantages

 Same language for both client and server
— Eases software maintenance tasks
— Eases movement of code from server to client

* Much easier to exchange data between client
and server, and between server and NoSQL DBs

— Native support for JSON objects in both

* Much more scalable than traditional solutions
— Due to use of asynchronous methods everywhere

Comparison with Traditional Solutions

* Traditional solutions on the server tend to spawn
a new thread for each client request

— Leads to proliferation of threads
— No control over thread scheduling
— Overhead of thread creation and context switches

e Server-side JS: Single-threaded nature of JS
makes it easy to write code

— Scalability achieved by asynchronous calls
— Composition with libraries is straightforward

Node.js Features

Written in C++ and very fast
Provides access to low-level UNIX APlIs

Almost all function calls are asynchronous
— File systems

— Network calls

Module system to manage dependencies
— Centralized package manager for modules

Implements all standared ECMAScript5
constructors, properties, functions and globals

Node.js Example

console.log(“Hello”); // Same as before
setTimeout(function() { // Same as before

console.log(“World”) }, 1000);

// New stuff — can’t do this in client-side JavaScript
var fs = require(“fs”); // Load file system object
var contents = fs.readFilesync(fileName);

console.log(contents);

Outline

Server-side JavaScript
Node.js modules
Events

Files

Network and Http Server

Node.js

* In Node.js, you use modules to package
functionality together

e Use the module.exports keyword to export a
function or object as part of a module

e Use the require keyword to import a module
and its associated functions or objects

Exporting functions

Can be used to create one’s own modules
Calculator.js:

function sum(a, b) {
return a + b;

}

// This exports the sum function
module.exports.sum = sum;

Exporting Objects (Constructors)

* Can also export entire objects through the
module.exports — module is optional below

Shapes.js

var Point = function(x, y) {
this.x = x; this.y = y;

5

module.exports = Point;

Using modules: require

* Used to express dependency on a certain
module’s functionality

// Imports the Calculator module
var calculator = require(“Calculator.js”);
calculator.sum(10, 20);

// Imports the shapes module
var Point = require(“Shapes.js”);
var p = new Point(1, 2);

Points to Note

* Need to provide the full path of the module to
the requires function

* Need to check the value of requires. if it’s
undefined, then module was not found.

* Only functions/objects that are exported using
export are visible in the line that calls require

Outline

Server-side JavaScript
Node.js modules
Events

Files

Network and Http Server

Events

* Node.js code can define events and monitor
for the occurrence of events on a stream (e.g.,
network connection, file etc).

* Associate callback functions to events using
the ‘on()’ or ‘addListener()’ functions

* Trigger by calling the ‘emit’ function

Event

e Refer to specific points in the execution
— Example: exit, before a node process exists

— Example: data, when data is available on
connection

— Example: end when a connection is closed

* Can be defined by the application and event
registers can be added on streams

* Event can be triggerred by the streams

Example of ‘on” and emit

var EventEmitter = require('events').EventEmitter;
if (! EventEmitter) process.exit(1);

var myEmitter = new EventEmitter();

var connection = function(id) { ... };

var message = function(msg) { ... };

// Add event handlers
myEmitter.on("connection”, connection);
myEmitter.on("message", message);

// Emit the events
myEmitter.emit(“connection”, 100);
myEmitter.emit(“message”, “hello”);

addListener and removelistener

* |t's possible to add event listeners using
‘addListener’ too — exactly the same as ‘on’

— emitter.addListener(name, f);

* Event handlers can also be removed (much
like in the case of DOM handlers)

— emitter.removelistener(name, f);

e Can remove all handlers associated with an
event using the removeAllListeners functions

— emitter.removeAllListeners(name);

Outline

Server-side JavaScript
Node.js modules
Events

Files

Network and Http Server

File handling in Node

* Node.js supports two ways to read/write files
— Asynchronous reads and writes
— Synchronous reads and writes

 The asynchronous methods require callback
functions to be specified and are more scalable

* Synchronous is similar to regular reads and writes
in other languages

Asynchronously reading a file

var fs = require("fs"); // Filesystem module in node.js
var length = 0;
var fileName = "sample.txt";

fs.readFile(fileName, function(err, buf) {
if (err) throw err;
length = buf.length;;

console.log("Number of characters read ="
+ length);

Asynchronous Reads using Streams

* |t's also possible to start processing a file as
and when it is being read. We need to read
files as event streams: fs.createReadStream

* Three types of events on files
— data: There’s data available to be read
— end: The end of the file was reached
— error: There was an error in reading the data

Example of Using Streams

var fs = require('fs');

var length = 0;

var fileName = "sample.txt";

var readStream = fs.createReadStream(fileName);;

readStream.on("data", function(blob) {

console.log("Read " + blob.length);
length += blob.length;

1);

readStream.on("end", function() {
console.log("Total number of chars read =" + length);

H);

readStream.on("error", function() {
console.log("Error occurred when reading from file " + fileName);

H);

Asynchronous writes

* Like reads, writes can also be asynchronous. Just
call fs.writeFile with the callback function

fs.writeFile(fileName, data, function(err) {
if (! err)
console.log(“Finished writing data”);
else
4 console.log(“Error writing to “ + fileName);

Writeable Stream

e Like readStreams, we can define writeStreams
and write data to them in blobs

— Same events as before

— Useful when combined with readableStreams to
avoid buffering in memory

— Need to call end() when the writing is completed

Example: Copying one file to another

var fs = require("fs");

var readStream = fs.createReadStream(“sample.txt”);
var writeStream = fs.createWriteStream(“sample-copy.txt”);

readStream.on("data", function(blob) {

console.log("Read " + blob.length);
writeStream.write(blob);

1),

readStream.on("end", function() {

console.log("End of stream");
writeStream.end();

1),

Alternate method: Using Pipe

var fs = require(‘fs’);

readStream = fs.createReadStream(“sample.txt”);

var writeStream = fs.createWriteStream(“sample-
copy.txt”);

// Copies contents of read stream to write stream

readStream.pipe(writeStream);

Synchronized Reads and Writes

* readFileSync and writeFileSync to read/write
files synchronously (operations block JS)

* Not suitable for reading/writing large files
— Can lead to large performance delays

var f= fs.readFileSync(fileName);
var f = fs.writeFileSync(fineName, data);

Class Activity

* Write a function that searches for a given
string in a large text file in node.js. The file
should be read using streams and
asynchronous I/0, and should not be buffered
in memory all at once (as it’s too large).

* NOTE: You may get multiple calls to the
callback function as file data comes in chunks.
Your method must search between chunks.

Outline

Server-side JavaScript
Node.js modules
Events

Files

Network and Http Server

Network Server

* Node.js has built in modules for servers
— ‘net’ module for general-purpose servers
— ‘http’ module for http servers

* To create a http server
— new http.Server

— createServer(foo): foo is called when a request
arrives, with request & response parameters

Method 1: Handling http connections

var http = require('http');

// Create a simple function to serve a request

var serveRequest = function(request, response) {
console.log(request.headers);
response.write("Welcome to node.js");
response.end();

5

// Start the server on the port and setup response
var port = 8080;

var server = http.createServer(serveRequest);
server.listen(port);

Method 2: Using Streams

var http = require('http');

// Create a simple function to serve a request

var serveRequest = function(request, response) {
console.log("Received request ” + request);
response.write("Received: " + request.url);
response.end();

%

// Start the server on the port and setup response
var port = 8080;

var server = http.createServer();
server.on("request”, serveRequest);
server.listen(port);

Inside serveRequest

* Both request and response are streams

* You can add listeners on both request and
response as you do on streams

— Call end on response when you’re done

* Can retrieve the headers and url of request
— request.url
— request.headers

AJAX Server

e Let’s write a simple AJAX server for the AJAX
client we wrote earlier

* |If the client requests a JS or html file, serve it
from the “./client” directory

* If the client sends a message with the prefix
‘hello-’, send back a response ‘world-" with the
same suffix as that of the request

— Add a delay of 3000 for each request

AJAX-Server 1: AJAX Messages

var serveRequest = function(request, response) {
if (request.url.startsWith("/hello")) {
// If it's an AJAX request, return world
console.log("Received " + request.url);
setTimeout(function() {
var count = request.url.split("-")[1];
response.write("world-" + count);
response.statusCode = 200;
response.end();
}, 3000); // delay of 3 seconds

AJAX-Server 2: File Reading

else if (request.url.endsWith(".html") | | request.url.endsWith(".js")) {
// If it's a HTML or JS file, retrieve the file in the request
response.statusCode = 200;
var fileName = path + request.url;
var rs = fs.createReadStream(fileName);
rs.on("error", function(error) {
console.log(error);
response.write("Unable to read file : " + fileName);
response.statusCode = 404;
});
rs.on("data", function(data) {
response.write(data);
};
rs.on("end", function() {
response.end();

1;

AJAX Server-3: Rest of the code

}else {
response.write("Unknown request " + request.url);
response.statusCode = 404;
response.end();

5

// Start the server on the port and setup response
var port = 8080;

var server = http.createServer(serveRequest);
server.listen(port);

console.log("Starting server on port " + port);

Class Activity

* Extend the AJAX server application to log the
set of all requests received from the client to a
text file. The logging should be done
asynchronously and right after the request is
received. You should also be able to handle
connections from more than 1 client (HINT:
Use a separate text file for each client).

Outline

Server-side JavaScript
Node.js modules
Events

Files

Network and Http Server

