Web Databases (SQL and NoSQL)

Lecture 9 (CPEN 400A)

Some slides based on CS498RK at UIUC
(used with permission), and the
MongoDB tutorial (docs.mongodb.)

Outline

What’s a Database ?

Relational Databases (SQL-based)

Non-traditional Databases (NoSQL)

MongoDB Primer

What’s a Database ?

* Inits simplest form, it’s a collection of data

— Allows applications to modify/access data through
standard interfaces

— Separate data storage from logical organization

* Many types of databases
— Hierarchical
— Object oriented
— Relational
— Document-based

History of Databases

1960s: Hierarchical databases

1970s and 80s: Relational Databases
1990s: OO Databases

2000s: Key-value stores (e.g., Cassandra)

2000s: Document stores (e.g., MongoDB)

Hierarchical Databases

e Store data in a hierarchical fashion (i.e., tree)

e Canresultin fast access times on disks
— But brittle to modifications

— Tree structure does not work well on modern
devices such as non-volatile memory

— Fell out of favour in the 1980s

* Popularized by IBM’s IMS system

Relational Databases

e By far the most popular database model
— Proposed by E.F. Codd in the early 1970s
— Open source implementation: PostgreSQL, MySQL
— Commercial products: IBM DB2,0racle, SQL Server

* Main idea: Organize data into tables — schema
(relations). Queries answered by performing
table joins in a declarative language (SQL).

OO Databases

* Coincided with the rise of OO languages in 80s

* Allowed objects to be stored without a
schema in the database

— Objects could be read/written directly to DB

* Mostly faded away in the late 90s. Used today
in some niche domains (e.g., spatial database)

Key-Value Stores (No-SQL DBs)

 Reduced the database to a giant hash table
— Given a key, retrieve a value from the DB
— Popularized by Amazon with the Dynamo project

— Cassandra was developed by Facebook, but is part of
and supported by the Apache foundation today

* Notion of eventual consistency (we’ll see what
this is soon)

* No single point of failure as database is
distributed across multiple replicas

Document Databases (No-SQL)

Attempt to combine the advantages of relational
databases and key-value stores

Have a schema at the top level, but allow flexibility to
modify it as needed

Also provide eventual consistency, but not as failure
tolerant as Key-value stores

MongoDB is one of the most popular ones as it has
native support for JSON and JavaScript intergration

Outline

What’s a Database ?

Relational Databases (SQL-based)

Non-traditional Databases (NoSQL)

MongoDB Primer

Relational Database

* Stores the data in toe form of tables
(Relations) to map one kind of data to another

* Why tables ?

— Separate data storage from logical view of data
— Easy to express relationships between data

— Aggregate data from multiple tables on demand
(table joins)

— Allow declarative queries to be executed

Example of a Table

 Much like a spreadsheet, except the columns
are of fixed type and rows are identified by a
uniqgue key (known as primary key)

id | given_name | middle_name | family_name | date_of birth | grade_point | start_date
_average

1 | Giles Prentiss Boschwick 3/31/1989 3.92 9/12/2006

2 | Milletta Zorgos Stim 2/2/1989 3.94 9/12/2006

3 | Jules Bloss Miller 11/20/1988 2.76 9/12/2006

4 | Greva Sortingo James 7/14/1989 3.24 9/12/2006

Source: http://archive.oreilly.com/pub/a/ruby/excerpts/
ruby-learning-rails/intro-ruby-relational-db.html

Database schema

* Alogical representation of the tables’
structure listing each column name and type

id Integer
given_name String
middle_name String
family_name String
date_of birth Date
grade_point_average Floating Point

start_date Date

Multiple Unconnected Tables

id | given_name | middle_name | family_name | date_of birth | grade_point | start_date
_average

1 | Giles Prentiss Boschwick 3/31/1989 3.92 9/12/2006

2 | Milletta Zorgos Stim 2/2/1989 3.94 9/12/2006

3 | Jules Bloss Miller 11/20/1988 2.76 9/12/2006

4 | Greva Sortingo James 7/14/1989 3.4 9/12/2006

Source: http://archive.oreilly.com/pub/a/ruby/excerpts/

ruby-learning-rails/intro-ruby-relational-db.html

id username password_hash | role

763 Demetrius | ASVUQP8AZV8 | administrator

845 Sharon 8WEROCPA387 | class_admin

973 Wilmer S3D03VP3A8BAS | class_admin
Nicolai SDF83NC9A2F2) | data_analyst

Connected Tables

* The problem with having multiple
unconnected tables is that it’s difficult to tell if
the same record is present in both tables

— Solution 1 (Ugly): Duplicate the relevant data in
each table. Complicates data management,
updates and need to anticipate queries in advance

— Solution 2 (Preferred): Keep a pointer (foreign
key) to the other table so that you can access the
data by following the pointer. No need to
anticipate queries in advance, easy to modify

Connected Tables

id | given_name | middle_name | family_name | date_of_birth | grade_point |start_date

id | Award Year | Student_id _average
1493 | Best Handwriting 2007 |1 »1 | Giles Prentiss Boschwick [3/31/1989 [3.92 9/12/2006
1657 | Nicest Smile 2007 |3 2 | Milletta ZLorgos Stim 2/2/1989 3.94 9/12/2006
1831 Cleanest Desk 2007 |3 3 |Jules Bloss Miller 11/20/1988 | 2.76 9/12/2006
Most likely to win the lottery 8! 4 |Greva Sortingo James 7/14/1989 (3.24 9/12/2006

Source: http://archive.oreilly.com/pub/a/ruby/excerpts/

ruby-learning-rails/intro-ruby-relational-db.html

Each table has what is known as primary key to uniquely

identify records in it.

Tables keep foreign keys to link to records in other tables. A
foreign key is the primary key of the table being linked to.

Table Joins

e Can be used to combine information from
multiple tables together (e.g., through SQL)

— Produces a single table containing the information
in both tables, without duplication

— Joins can involve more than one table

* For example, we can produce a single join
table having the award name and the student
details from the previous slide

Example of a Join in SQL

e SELECT * from Employees, Departments
where embplovee.dentiD=denartment.deptID

Employee table Department table

LastName DepartmentlD | DepartmentlD DepartmentName

Rafferty 31 31 Sales
Jones 33 33 Engineering
Heisenberg 33 34 Clerical
Robinson 34 35 Marketing
Smith 34
Williams

Employee.LastName Employee.DepartmentiD Department.DepartmentName Department.DepartmentiD

Robinson 34 Clerical 34
Jones 33 Engineering 33
Smith 34 Clerical 34

Heisenberg 33 Engineering 33

Rafferty 31 Sales 31

The problem with Joins

* Joins are expensive as they need to straddle
multiple tables

e Combination of fields from different tables
can result in losing cache locality

* Join performance is poor for large tables,
though databases are very good at optimizing
them (and there are tricks for doing so)

— Will not cover these in this course

SQL supports Transactions

* Transaction is a sequence of operations which
are executed all at once or not at all
(Atomicity)

* |f failures occur, roll-back to the beginning
* Example: Transfer $1000 from Accts. A to B

— Step 1: Locate Account A and check balance
— Step 2: Subtract 1000 dollars from Acct A
— Step 3: Credit 1000 dollars to Acct B

SQL Databases have ACID Semantics

ATOMICITY all or nothing

CONSISTENCY written data follows rules
and constraints

ISOLATION uncommitted transactions are
isolated from each other

DURABILITY committed transactions are
permanent

Consistency

e Can check one or more constraints on the
resulting data, and abort if not satisfied

CREATE TABLE acidtest (
A INTEGER, B INTEGER,
CHECK (A + B = 100));

Isolation

e Transactions are isolated from one another

Tl subtracts 10 from A
T2 subtracts 10 from B
T2 adds 10 to A

Tl adds 10 to B

Durability

* Transactions are permanent when committed

Tl subtracts 10 from A
Tl adds 10 to B
T2 subtracts 10 from B
T2 adds 10 to A

ACID: Pros and Cons

* Pros
— Simplifies reasoning about actions of the system
— Guarantees correctness in presence of failures

* Cons
— Guarantees come with huge performance cost
— Cannot guarantee availability when network fails

* This is due to something called the CAP theorem

Outline

What’s a Database ?

Relational Databases (SQL-based)

Non-traditional Databases (NoSQL)

MongoDB Primer

NoSQL Databases

* Do not perform or natively support Table joins
— Hence much faster
— Must do joins explicitly using program code

* Do not typically support ACID semantics

— So data may be inconsistent or out of sync
(provide what is known as eventual consistency)

— When failures occur, data may be lost or incorrect

CAP Theorem [Brewer’'99]

* You can achieve only two of the following
three properties in any database system

CONSISTENCY “..requiring requests of the distributed shared
memory to act as if they were executing on a single node,
responding one at a time”

AVAILABILITY “.. every request received by a non-failing node
in the system must result in a response”

PARTITION TOLERANCE .. the network will be allowed to lose
arbitrarily many messages sent from one node to another”

CAP theorem continued..

* During a network partition, a system must
choose either consistency or availability for it
to work through the partition

— Traditional SQL-based databases choose
consistency and may hence not be available

— NoSQL databases choose availability and hence
may not be consistent

— In web applications, availability often trumps
consistency

Example of Network Partitioning

UPDATED

UPDATED

®

N2

PARTITION

®

N2

INCONSISTENT
AVAILABLE

CONSISTENT
UNAVAILABLE

Eventual Consistency

* NoSQL databases provide a guarantee that
they will eventually be consistent (e.g., when
the network partition heals)

— Eventually can be a very long time
— Consistent does not mean correct....

TYPES

EXAMPLES

SQL Vs NoSQL -1

SQL

one type

MySQL, SQLite,
Oracle Database

NoSQL

key-value,
document, graph

MongoDB,
Cassandra, HBase,
Neo4j

DATA
STORAGE
MODEL

SQL Vs. NoSQL - 2

SQL

Individual records are
stored as rows; columns
store a specific piece of
data about record

Separate data types are
stored in separate tables
and joined together when
complex queries are
executed

NoSQL

Key-value stores are
similar to SQL, but have
only two columns

Document DBs store all
relevant data togetherin a
single documentin a
hierarchically nested
format (JSON, XML)

www.mongodb.com/nosql-explained

SCHEMAS

SCALING

SQL Vs. NoSQL -3

SQL

Structure and data types
are fixed in advance

Vertically: single server
must be made
increasingly powerful

NoSQL

Unlike SQL rows, dissimilar
data can be stored
together as necessary

Horizontally: distribute
data over several
machines

SUPPORTS
TRANSACTIONS

CONSISTENCY

SQL Vs. NoSQL - 4

SQL

Yes

Strong consistency

NoSQL

In certain circumstances
and at certain levels
(document-level)

Tunable consistency
(MongoDB), Eventual
consistency (Cassandra)

Outline

What’s a Database ?

Relational Databases (SQL-based)

Non-traditional Databases (NoSQL)

MongoDB Primer

MongoDB

 Document-oriented NoSQL database
— Documents are the equivalent of tables

— Stored in JSON format (technically BSON, or
binary JSON)

— Must be smaller than 16 MB in size

* No apriori schema needed, or rather schema
can be modified dynamically

— Can store dissimilar objects in same document

MongoDB: Data types

JSON: null, boolean, number, string,
array, and object

MongoDB: null, boolean, number,
string, array, date, regex, embedded
document, object id, binary data, code

MongoDB: Example Dataset

"address": {
"building": "1007",
"coord": [-73.856077, 40.848447],
"street": "Morris Park Ave",

"zipcode'": "10462"

}s

"borough": "Bronx",

"cuisine": "Bakery",

"grades": [
{ "date": { "$date": 1393804800000 }, '"grade": "A", "score": 2 },
{ "date": { "$date": 1378857600000 }, '"grade": "A", "score": 6 },
{ "date": { "$date": 1358985600000 }, '"grade": "A", "score": 10 },
{ "date": { "$date": 1322006400000 }, '"grade": "A", "score": 9 1},
{ "date": { "S$date": 1299715200000 }, "grade": "B", '"score'": 14 }

1,

"name": "Morris Park Bake Shop",

"restaurant_id": "30075445"

Databases and Collections

* A MongoDB database consists of multiple
databases. Specify db to use by “use test”

* A database can have multiple collections.
Specify collection as db.collectionName.op

A collection can have one or more documents
— Each record is called a document

Insert into a Database

e db.collectName.insert(document in JSON)

db.restaurants.insert(
{
"address" : {
"street" : "2 Avenue",
"zipcode" : "10075",
"building" : '"1480",
"coord" : [-73.9557413, 40.7720266],
}’
"borough" : "Manhattan",
i saneltr=lvalnanits
"grades" : [
{
"date" : ISODate('"'2014-10-01T0O0:00:00Z"),
"grade" : "A",

"score" : 11

"date" : ISODate("2014-01-16T00:00:00Z"),
"grade" : "B",

"score" : 17

]’
"name" : "Vella",

"restaurant_-id" : "41704620"

Finding objects

e db.collectName.find() — shows all documents

e db.collectName.find(JSON object) — shows
documents satisfying the given JSON object

— Finds all docs with the fields and values equal to
the JSON object passed as an argument

— Can also specify conditional operations such as
Slt, Sgt, or logical combinations (using AND, OR)

Examples of queries

e db.restaurants.find({“boroguh”:
“manhattan”})

— Finds all restaurants with the
borough==manhattan

e db.restaurants.find({ “grades.score”:

{ Sgt:30} })

Object id

* Every document is given a unique ‘_id’ value —
automatically assigned by the MongoDB

* Object IDs must be unique in a document, and
should be of type ObjectID

* Can be used to remove or update specific
objects

Update

* db.collectName.update(objects to be
matched, object fields to be updated)

db.restaurants.update(
{ "name" : "Juni" },
{
$set: { "cuisine": "American (New)" },
ScunrentDate: { "lastModified": true }

}

Update operator (full list of operators can be found at:
https://docs.mongodb.org/manual/reference/operator/update/)

Remove

e Can remove documents from a collection
using the remove method

db.collectName.remove(matching condition)

example: db.restaurants.remove({ “borough”:
“Manhattan” })

Operations on each record

Example: Print the grades of all restaurants that
have more than one grade associated with them.

db.restaurants.find().forEach(
function(Object) {
if (Object.grades.length > 1)
printjson(Object.grades);

Class Activity

* You have two collections in a MongoDB
database. marks contains the list of students
in @ course with their marks and student
number, and students contains the student
number along with details such as first name,
last name etc. How will you compute the join
of these two collections (in JS code) from the
Mongdb shell to list the student details along
with the marks. You can assume the database
is already loaded into the shell.

One Solution to the activity

db.marks.find().forEach(
function(Object) {
var st = db.students.find({“student no”:
Object.studentNo});
if (st!=null) {
printjson(st);
printjson(Object.marks);

}
else {

print(“No match found for “ + Object.studentno);
}

Outline

What’s a Database ?

Relational Databases (SQL-based)

Non-traditional Databases (NoSQL)

MongoDB Primer

