
CSC373H1 Assignment # 1 Fall 2015

Worth: 10% Due: By 9:59pm on Tuesday 27 October

Remember to write the full name and student number of every group member prominently on
your submission.

Please read and understand the policy on Collaboration given on the Course Information Sheet.
Then, to protect yourself, list on the front of your submission every source of information you used
to complete this homework (other than your own lecture and tutorial notes). For example, indicate
clearly the name of every student from another group with whom you had discussions, the title
and sections of every textbook you consulted (including the course textbook), the source of every
web document you used (including documents from the course webpage), etc.

For each question, please write up detailed answers carefully. Make sure that you use notation
and terminology correctly, and that you explain and justify what you are doing. Marks will be
deducted for incorrect or ambiguous use of notation and terminology, and for making incorrect,
unjustified, ambiguous, or vague claims in your solutions.

1. (Worth 20%) Consider the following “MST with Fixed Leaves” problem:

Input: A weighted graph G = (V ,E) with integer costs c(e) for all edged e ∈ E, and a subset of
vertices L ⊆ V .

Output: A spanning tree T of G where every node of L is a leaf in T and T has the minimum total
cost among all such spanning trees.

(a) Does this problem always have a solution? In other words, are there inputs G,L for which
there is no spanning tree T that satisfies the requirements?
Either provide a counter-example (along with an explanation of why it is a counter-example),
or give a detailed argument that there is always some solution.

(b) Let G,L be an input for the MST with Fixed Leaves problem for which there is a solution.
Is every MST of G an optimal solution to the MST with Fixed Leaves problem? Justify.
Is every optimal solution to the MST with Fixed Leaves problem necessarily a MST of G (if we
remove the constraint that every node of L must be a leaf)? Justify.

(c) Write a greedy algorithm to solve the MST with Fixed Leaves problem. Give a detailed pseudo-
code implementation of your algorithm, as well as a high-level English description of the
main steps in your algorithm.
What is the worst-case running time of your algorithm? Justify briefly.

(d) Write a detailed proof that your algorithm always produces an optimal solution.

2. (Worth 25%) Consider nested function calls, such as f (g(x),h(y,k())), and how they are evaluated
by an interpreter. Suppose that, for technical reasons, functions require one time step for each
nested function call they make, and only one function call can be made at each time step. Then the
example expression above can be evaluated in four steps, as follows:

• time 0: call f () — now we know that we have to call g() and h(),

• time 1: f calls g(),

• time 2: f calls h() — now we know that we have to call k(),

Dept. of Computer Science, University of Toronto, St. George Campus page 1 of 3



CSC373H1 Assignment # 1 Fall 2015

• time 3: h calls k(),

• time 4: all done!

You should have no trouble convincing yourself that every order of calls will require the same
number of steps (for example, if f calls h() first, it does not change the other calls that must be
made, just their order).

Now suppose that we have access to a parallel computer that can execute multiple functions calls
at the same time. It is still the case that functions require one time step for each nested function
call they make — but now different functions can make calls at the same time. Then, the example
above can be evaluated in only three steps — we cannot do better, because f requires two time
steps (one to call h and one to call g):

• time 0: call f () — now we know that we have to call g() and h(),

• time 1: f calls h() — now we know that we have to call k(),

• time 2: f calls g() and h calls k(), in parallel,

• time 3: all done!

This situation can be represented by the following abstract “Efficient Function Calls” problem.

Input: A nested function call expression E of the form “f (e1, . . . , ek),” where f is a function name
and each ei is either a variable or another nested function call expression (it is possible to have
k = 0).

Output: The order of nested calls for each function in E, to minimize the total number of steps
required to evaluate the expression on the parallel computer.

Give an algorithm to solve this problem efficiently: include a brief high-level English description,
as well as a detailed pseudo-code implementation. Justify that your algorithm is correct, and
analyze its worst-case running time.

3. (Worth 25%) Suppose you are given a network N , a maximum flow f on N , and one edge e0 ∈N
such that f (e0) = c(e0). The flow f is guaranteed to be maximum and to have integer flow values
f (e) for all edges e.

(a) If we decrease c(e0) by 1 (i.e., let c′(e0) = c(e0)− 1), then we expect that the maximum flow on
N will also decrease by one unit. But does this always happen?
Either give a specific example where the maximum flow on N does not change (and show that
this is the case), or give a general argument that the maximum flow on N always changes.

(b) Irrespective of your answer on the previous part, there are cases when this change in capacity
causes the maximum flow to decrease.
Give an efficient algorithm that takes a network N , a maximum flow f on N , and one edge
e0 ∈ N such that f (e0) = c(e0) and that determines a new maximum flow in the network N ′,
where N ′ = N except for c′(e0) = c(e0)− 1.
Include a brief justification that your algorithm is correct (i.e., explain how your algorithm
works), and a brief analysis of your algorithm’s worst-case runtime (which should be as small
as possible).

(c) If we increase c(e0) by 1 (i.e., let c′(e0) = c(e0) + 1), then we expect that the maximum flow on
N will also increase by one unit. But does this always happen?
Either give a specific example where the maximum flow on N does not change (and show that
this is the case), or give a general argument that the maximum flow on N always changes.

Dept. of Computer Science, University of Toronto, St. George Campus page 2 of 3



CSC373H1 Assignment # 1 Fall 2015

(d) Irrespective of your answer on the previous part, there are cases when this change in capacity
causes the maximum flow to increase.
Give an efficient algorithm that takes a network N , a maximum flow f on N , and one edge
e0 ∈ N such that f (e0) = c(e0) and that determines a new maximum flow in the network N ′,
where N ′ = N except for c′(e0) = c(e0) + 1.
Include a brief justification that your algorithm is correct (i.e., explain how your algorithm
works), and a brief analysis of your algorithm’s worst-case runtime (which should be as small
as possible).

Dept. of Computer Science, University of Toronto, St. George Campus page 3 of 3


