Knapsack Problem

A set of items, each has different size and different value.

We only have one knapsack.

Goal: to pick a subset which can fit into the knapsack and maximize the value of this subset.

Knapsack Problem

(The Knapsack Problem) Given a set $S = \{a_1, ..., a_n\}$ of objects, with specified sizes and profits, size(a_i) and profit(a_i), and a knapsack capacity B, find a subset of objects whose total size is bounded by B and total profit is maximized.

Assume size(a_i), profit(a_i), and B are all integers.

We'll design an approximation scheme for the knapsack problem.

Knapsack problem

- Fractional knapsack problem
 - P
- 0/1 knapsack problem
 - NP-Complete
 - Approximation
 - PTAS

Fractional knapsack problem

n objects, each with a weight w_i > 0
 a profit p_i > 0
 capacity of knapsack: M

$$\text{Maximize} \sum_{1 \leq i \leq n} p_i x_i$$

Subject to
$$\sum_{1 \leq i \leq n} w_i x_i \leq M$$
 $0 \leq x_i \leq 1, 1 \leq i \leq n$

The knapsack algorithm

The greedy algorithm:

```
Step 1: Sort p_i/w_i into non-increasing order.
Step 2: Put the objects into the knapsack according to the sorted sequence as possible as we can.
```

• e. g. n = 3, M = 20, $(p_1, p_2, p_3) = (25, 24, 15)$ $(w_1, w_2, w_3) = (18, 15, 10)$ Sol: $p_1/w_1 = 25/18 = 1.32$

 $p_2/w_2 = 24/15 = 1.6$

 $p_3/w_3 = 15/10 = 1.5$

Optimal solution: $x_1 = 0$, $x_2 = 1$, $x_3 = 1/2$

0/1 knapsack problem

 <u>Def:</u> n objects, each with a weight w_i > 0 a profit $p_i > 0$ capacity of knapsack: M Maximize $\sum p_i x_i$ 1≤i≤n Subject to $\sum w_i x_i \leq M$ 1≤i≤n $x_i = 0 \text{ or } 1, 1 \le i \le n$ Decision version : Given K, $\exists \sum p_i x_i \ge K$?

• Knapsack problem : $0 \le x_i \le 1$, $1 \le i \le n$.

Polynomial Time Approximation Scheme (PTAS)

We have seen the definition of a constant factor approximation algorithm.

The following is something even better.

An algorithm \boldsymbol{A} is an approximation scheme if for every $\boldsymbol{\epsilon} > 0$,

 \boldsymbol{A} runs in polynomial time (which may depend on $\boldsymbol{\varepsilon}$) and return a solution:

- $SOL \le (1+\epsilon)OPT$ for a minimization problem
- $SOL \ge (1-\epsilon)OPT$ for a maximization problem

For example, \mathbf{A} may run in time $n^{100/\epsilon}$.

There is a time-accuracy tradeoff.

Greedy Methods

General greedy method:

Sort the objects by some rule, and then put the objects into the knapsack according to this order.

Sort by object size in non-decreasing order:

Sort by profit in non-increasing order:

Sort by profit/object size in non-increasing order:

Greedy won't work.

Dynamic Programming for Knapsack

Suppose we have considered object 1 to object i. We want to remember what profits are achievable. For each achievable profit, we want to minimize the size.

Let S(i,p) denote a subset of $\{a1,...,ai\}$ whose total profit is **exactly** p and total size is **minimized**. Let A(i,p) denote the size of the set S(i,p) $(A(i,p) = \infty$ if no such set exists).

For example, A(1,p) = size(a1) if p=profit(a1), Otherwise $A(1,p) = \infty$ (if $p \neq profit(a1)$).

Recurrence Formula

Remember: A(i,p) denote the minimize size to achieve profit pusing objects from 1 to i.

How to compute A(i+1,p) if we know A(i,q) for all q?

Idea: we either choose object i+1 or not.

If we do not choose object i+1:

then A(i+1,p) = A(i,p).

If we choose object i+1:

then $A(i+1,p) = size(a_{i+1}) + A(i,p-profit(a_{i+1}))$ if $p > profit(a_{i+1})$.

A(i+1,p) is the minimum of these two values.

Running Time

The input has 2n numbers, say each is at most P. So the input has total length 2nlog(P).

For the dynamic programming algorithm,

there are n rows and at most nP columns.

Each entry can be computed in constant time (look up two entries).

So the total time complexity is $O(n^2P)$.

The running time is not polynomial if P is very large (compared to n).

Approximation Algorithm

We know that the knapsack problem is NP-complete.

Can we use the dynamic programming technique to design approximation algorithm?

Scaling Down

Idea: to scale down the numbers and compute the optimal solution in this modified instance

- Suppose P ≥ 1000n.
- Then OPT ≥ 1000n.
- Now scale down each element by 100 times (profit*:=profit/100).
- Compute the optimal solution using this new profit.
- Can't distinguish between element of size, say 2199 and 2100.
- Each element contributes at most an error of 100.
- So total error is at most 100n.
- •However, the running time is 100 times faster.

Approximation Scheme

Goal: to find a solution which is at least $(1 - \epsilon)OPT$ for any $\epsilon > 0$.

Approximation Scheme for Knapsack

- 1. Given $\epsilon > 0$, let $K = \epsilon P/n$, where P is the largest profit of an object.
- 2. For each object ai, define profit*(ai) = \[profit(ai)/K \].
- 3. With these as profits of objects, using the dynamic programming algorithm, find the most profitable set, say 5'.
- 4. Output S' as the approximate solution.

Quality of Solution

Theorem. Let S denote the set returned by the algorithm. Then, profit(S) \geq (1- ϵ)OPT.

Proof.

- ·Let O denote the optimal set.
- •For each object a, because of rounding down, K·profit*(a) can be smaller than profit(a), but by not more than K.
- Since there are at most n objects in O,
 profit(O) K·profit*(O) ≤ nK.
- •Since the algorithm return an optimal solution under the new profits, profit(S) \geq K·profit*(S) \geq K·profit*(O) \geq profit(O) nK = OPT ϵ P \geq (1 ϵ)OPT

because OPT ≥ P.

Running Time

For the dynamic programming algorithm, there are n rows and at most $n \lfloor P/K \rfloor$ columns. Each entry can be computed in constant time (look up two entries). So the total time complexity is $O(n^2 \lfloor P/K \rfloor) = O(n^3/\varepsilon)$.

Therefore, we have an approximation scheme for Knapsack.

Approximation Scheme

Quick Summary

- 1. Modify the instance by rounding the numbers.
- 2. Use <u>dynamic programming</u> to compute an optimal solution S in the modified instance.
- 3. Output S as the approximate solution.